Segmentation of nodules on chest computed tomography for growth assessment
Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a real...
Saved in:
| Published in: | Medical physics (Lancaster) Vol. 31; no. 4; pp. 839 - 848 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Association of Physicists in Medicine
01.04.2004
|
| Subjects: | |
| ISSN: | 0094-2405, 2473-4209 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule characteristics. The segmentation methods were also tested on sequential CT scans of patients. The methods’ estimation of nodule growth were compared to the volume change calculated by a chest radiologist. The best method segmented nodules on average 43% smaller or larger than the actual nodule when errors were computed across all nodule variations on the phantom. Some methods achieved smaller errors when examined with respect to certain nodule properties. In particular, on the phantom individual methods segmented solid nodules to within 23% of their actual size and nodules with 60.7 mm3 volumes to within 14%. On the clinical data, none of the methods examined showed a statistically significant difference in growth estimation from the radiologist. |
|---|---|
| AbstractList | Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule characteristics. The segmentation methods were also tested on sequential CT scans of patients. The methods' estimation of nodule growth were compared to the volume change calculated by a chest radiologist. The best method segmented nodules on average 43% smaller or larger than the actual nodule when errors were computed across all nodule variations on the phantom. Some methods achieved smaller errors when examined with respect to certain nodule properties. In particular, on the phantom individual methods segmented solid nodules to within 23% of their actual size and nodules with 60.7 mm3 volumes to within 14%. On the clinical data, none of the methods examined showed a statistically significant difference in growth estimation from the radiologist. Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule characteristics. The segmentation methods were also tested on sequential CT scans of patients. The methods' estimation of nodule growth were compared to the volume change calculated by a chest radiologist. The best method segmented nodules on average 43% smaller or larger than the actual nodule when errors were computed across all nodule variations on the phantom. Some methods achieved smaller errors when examined with respect to certain nodule properties. In particular, on the phantom individual methods segmented solid nodules to within 23% of their actual size and nodules with 60.7 mm 3 volumes to within 14%. On the clinical data, none of the methods examined showed a statistically significant difference in growth estimation from the radiologist. Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule characteristics. The segmentation methods were also tested on sequential CT scans of patients. The methods' estimation of nodule growth were compared to the volume change calculated by a chest radiologist. The best method segmented nodules on average 43% smaller or larger than the actual nodule when errors were computed across all nodule variations on the phantom. Some methods achieved smaller errors when examined with respect to certain nodule properties. In particular, on the phantom individual methods segmented solid nodules to within 23% of their actual size and nodules with 60.7 mm3 volumes to within 14%. On the clinical data, none of the methods examined showed a statistically significant difference in growth estimation from the radiologist.Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule characteristics. The segmentation methods were also tested on sequential CT scans of patients. The methods' estimation of nodule growth were compared to the volume change calculated by a chest radiologist. The best method segmented nodules on average 43% smaller or larger than the actual nodule when errors were computed across all nodule variations on the phantom. Some methods achieved smaller errors when examined with respect to certain nodule properties. In particular, on the phantom individual methods segmented solid nodules to within 23% of their actual size and nodules with 60.7 mm3 volumes to within 14%. On the clinical data, none of the methods examined showed a statistically significant difference in growth estimation from the radiologist. |
| Author | Ko, Jane P. Betke, Margrit Wang, Jingbin Mullally, William |
| Author_xml | – sequence: 1 givenname: William surname: Mullally fullname: Mullally, William organization: Computer Science Department, Boston University, Boston, Massachusetts 02215 – sequence: 2 givenname: Margrit surname: Betke fullname: Betke, Margrit organization: Computer Science Department, Boston University, Boston, Massachusetts 02215 – sequence: 3 givenname: Jingbin surname: Wang fullname: Wang, Jingbin organization: Computer Science Department, Boston University, Boston, Massachusetts 02215 – sequence: 4 givenname: Jane P. surname: Ko fullname: Ko, Jane P. organization: Department of Radiology, New York University Medical Center, New York, New York 10016 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15125002$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kFtLwzAYhoNM3EEv_AOSK0GhW05N10sZHpkoqNchS5Ot0jY1aR3793a0QxHn1Uf4nu_hzTsEvcIWGoBTjMYY4-kEjzEPeRjTAzAgLKIBIyjugQFCMQsIQ2EfDL1_RwhxGqIj0MchJiFCZAAeXvQy10Ulq9QW0BpY2KTOtIfNS620r6CyeVlXOoGVze3SyXK1gcY6uHR2Xa2g9F57v1Ucg0MjM69PujkCbzfXr7O7YP50ez-7mgeKTmMaTBmjSEocm2kTlcQoigiXPFSGM6MoY1LSBeeamaTZxJRTzI3BeEESSaMwoSNw3npLZz_qJqLIU690lslC29qLCMeI4gg34FkH1otcJ6J0aS7dRux-3wAXLaCc9d5p840gsW1WYNE127CTX6xK29YqJ9Psz4ugvVinmd7sV4vH546_bHm_M_8bZy_8ad0PeZkY-gVJG6Ki |
| CODEN | MPHYA6 |
| CitedBy_id | crossref_primary_10_1118_1_4793409 crossref_primary_10_1118_1_4892056 crossref_primary_10_1063_5_0216374 crossref_primary_10_1109_TBME_2011_2167621 crossref_primary_10_1109_TITB_2007_899504 crossref_primary_10_1111_j_1617_0830_2009_00129_x crossref_primary_10_1118_1_4869265 crossref_primary_10_1118_1_2799885 crossref_primary_10_1259_bjr_40733553 crossref_primary_10_1016_j_compmedimag_2019_03_002 crossref_primary_10_1016_j_media_2015_02_002 crossref_primary_10_1155_2013_942353 crossref_primary_10_1002_mp_13998 crossref_primary_10_1186_s13244_023_01480_z crossref_primary_10_1007_s00330_006_0562_1 crossref_primary_10_1109_TMI_2005_862753 crossref_primary_10_1371_journal_pone_0085580 crossref_primary_10_1016_j_media_2006_05_003 crossref_primary_10_1118_1_2977537 crossref_primary_10_1109_TIP_2013_2282899 crossref_primary_10_1109_TVCG_2010_56 crossref_primary_10_1007_s00330_006_0254_x crossref_primary_10_1109_TMI_2007_907555 crossref_primary_10_1109_TMI_2008_2010441 |
| Cites_doi | 10.1118/1.1515762 10.1016/S0140-6736(99)06093-6 10.1109/42.650879 10.1016/S1076-6332(03)80115-0 10.1118/1.598605 10.1097/00004424-199404000-00013 10.1109/42.932744 10.1016/S0033-8389(22)00407-9 10.1148/radiology.218.1.r01ja39267 10.1117/1.602176 10.1118/1.1544679 10.1007/3-540-45468-3_13 10.1200/JCO.2000.18.10.2179 10.1148/radiology.217.1.r00oc33251 10.1148/radiology.212.2.r99au33561 10.3322/canjclin.49.1.8 10.1117/12.348494 10.1109/TMI.2003.817785 10.1148/radiographics.19.5.g99se181303 10.1016/S0033-8389(05)70177-9 |
| ContentType | Journal Article |
| Copyright | American Association of Physicists in Medicine 2004 American Association of Physicists in Medicine |
| Copyright_xml | – notice: American Association of Physicists in Medicine – notice: 2004 American Association of Physicists in Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1118/1.1656593 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 2473-4209 |
| EndPage | 848 |
| ExternalDocumentID | 15125002 10_1118_1_1656593 MP6593 |
| Genre | article Validation Studies Research Support, U.S. Gov't, Non-P.H.S Comparative Study Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 476 53G 5GY 5RE 5VS AAHHS AANLZ AAQQT AASGY AAXRX AAZKR ABCUV ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACSMX ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AHBTC AIACR AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P G8K HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAHQN AAIPD AAMMB AAMNL AAYCA ABDPE ADMLS AEFGJ AEYWJ AFWVQ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE AITYG ALVPJ LH4 AAYXX ABUFD CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c3893-84430aa19f84732907726a65cf64fc344aa3b66e4fd772936316ff11b2da375d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000220898000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-2405 |
| IngestDate | Thu Sep 04 19:31:38 EDT 2025 Wed Sep 03 06:00:44 EDT 2025 Sat Nov 29 04:18:22 EST 2025 Tue Nov 18 22:31:10 EST 2025 Thu Sep 25 07:34:07 EDT 2025 Sun Jul 14 10:05:20 EDT 2019 Fri Jun 21 00:29:06 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | lung cancer phantom study computed tomography volume effects 3D algorithms image segmentation shape analysis computer-aided diagnosis |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3893-84430aa19f84732907726a65cf64fc344aa3b66e4fd772936316ff11b2da375d3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
| PMID | 15125002 |
| PQID | 71903171 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_71903171 pubmed_primary_15125002 crossref_citationtrail_10_1118_1_1656593 crossref_primary_10_1118_1_1656593 wiley_primary_10_1118_1_1656593_MP6593 scitation_primary_10_1118_1_1656593 |
| PublicationCentury | 2000 |
| PublicationDate | April 2004 |
| PublicationDateYYYYMMDD | 2004-04-01 |
| PublicationDate_xml | – month: 04 year: 2004 text: April 2004 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical physics (Lancaster) |
| PublicationTitleAlternate | Med Phys |
| PublicationYear | 2004 |
| Publisher | American Association of Physicists in Medicine |
| Publisher_xml | – name: American Association of Physicists in Medicine |
| References | Armato, Giger, Moran, Blackburn, Doi, MacMahon (r16) 1999; 19 Ko, Betke (r21) 2001; 218 Hillman (r4) 2003; 10 Henschke, Yankelevitz, Libby, Kimmel (r3) 2002; 8 Kostis, Reeves, Yankelevitz, Henschke (r25) 2003; 22 Landis, Murray, Bolden, Wingo (r2) 1999; 49 Lee, Hara, Fujita, Itoh, Ishigaki (r22) 2001; 20 Henschke, McCauley, Yankelevitz, Naidich, McGuinness, Miettinen, Libby, Pasmantier, Koizumi, Altorki, Smith (r6) 1999; 354 Yankelevitz, Gupta, Zhao, Henschke (r7) 1999; 212 Gurcan, Sahiner, Petrick, Chan, Kazerooni, Cascade, Hadjiiski (r20) 2002; 29 Yankelevitz, Henschke (r29) 2000; 38 Schwartz, Ginsberg, DeCorato, Rothenberg, Einstein, Kijewski (r9) 2000; 18 Zhao, Reeves, Yankelevitz, Henschke (r12) 1999; 38 Armato, Altman, La Rivière (r15) 2003; 30 Zhao, Yankelevitz, Reeves, Henschke (r11) 1999; 26 Brown, McNitt-Gray, Mankovich, Goldin, Hiller, Wilson, Aberle (r17) 1997; 16 Yankelevitz, Reeves, Kostis, Zhao, Henschke (r8) 2000; 217 Giger, Bae, MacMahon (r19) 1994; 29 Naidich (r5) 1994; 32 2000; 18 2002; 29 2000; 38 1999; 19 1999; 49 2000; 217 1999; 38 1999; 26 2002; 8 1997; 16 1999; 212 1994; 29 1999; 354 2001; 218 2003; 30 2003; 10 1994; 32 2001; 20 2003; 22 e_1_2_1_20_1 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_27_1 Naidich D. P. (e_1_2_1_6_1) 1994; 32 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_26_1 e_1_2_1_29_1 e_1_2_1_7_1 e_1_2_1_8_1 e_1_2_1_30_1 Henschke C. I. (e_1_2_1_4_1) 2002; 8 e_1_2_1_5_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_13_1 e_1_2_1_10_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_14_1 e_1_2_1_15_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
| References_xml | – volume: 20 start-page: 595 issn: 0278-0062 year: 2001 ident: r22 article-title: Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique publication-title: IEEE Trans. Med. Imaging – volume: 29 start-page: 2552 issn: 0094-2405 year: 2002 ident: r20 article-title: Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system publication-title: Med. Phys. – volume: 18 start-page: 2179 issn: 0732-183X year: 2000 ident: r9 article-title: Evaluation of tumor measurements in oncology: Use of film-based and electronic techniques publication-title: J. Clin. Oncol. – volume: 22 start-page: 1259 issn: 0278-0062 year: 2003 ident: r25 article-title: Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images. publication-title: IEEE Trans. Med. Imaging – volume: 19 start-page: 1303 issn: 0271-5333 year: 1999 ident: r16 article-title: Computerized detection of pulmonary nodules on CT scans publication-title: Radiographics – volume: 217 start-page: 251 issn: 0033-8419 year: 2000 ident: r8 article-title: Small pulmonary nodules: Volumetrically determined growth rates based on CT evaluation publication-title: Radiology – volume: 26 start-page: 889 issn: 0094-2405 year: 1999 ident: r11 article-title: Two-dimensional multi-criterion segmentation of pulmonary nodules on helical CT images publication-title: Med. Phys. – volume: 38 start-page: 471 issn: 0033-8389 year: 2000 ident: r29 article-title: Small solitary pulmonary nodules publication-title: Radiol. Clin. North Am. – volume: 32 start-page: 759 issn: 0033-8389 year: 1994 ident: r5 article-title: Helical computer tomography of the thorax publication-title: Radiol. Clin. North Am. – volume: 354 start-page: 99 issn: 0140-6736 year: 1999 ident: r6 article-title: Early Lung Cancer Action Project: Overall design and findings from baseline screening publication-title: Lancet – volume: 38 start-page: 1340 issn: 0091-3286 year: 1999 ident: r12 article-title: Three-dimensional multicriterion automatic segmentation of pulmonary nodules of helical computed tomography images publication-title: Opt. Eng. (Bellingham) – volume: 10 start-page: 349 issn: 1076-6332 year: 2003 ident: r4 article-title: Economic, legal, and ethical rationales for the ACRIN national lung screening trial of CT screening for lung cancer publication-title: Acad. Radiol. – volume: 30 start-page: 461 issn: 0094-2405 year: 2003 ident: r15 article-title: Automated detection of lung nodules in CT scans: Effect of image reconstruction algorithm publication-title: Med. Phys. – volume: 29 start-page: 459 issn: 0020-9996 year: 1994 ident: r19 article-title: Computerized detection of pulmonary nodules in computed tomography images publication-title: Invest. Radiol. – volume: 8 start-page: 47 issn: 0008-543X year: 2002 ident: r3 article-title: CT screening for lung cancer: The first ten years publication-title: Cancer (N.Y.) – volume: 49 start-page: 8 issn: 0007-9235 year: 1999 ident: r2 article-title: Cancer statistics, 1999 publication-title: CA Cancer J. Clin. – volume: 212 start-page: 561 issn: 0033-8419 year: 1999 ident: r7 article-title: Small pulmonary nodules: Evaluation with repeat CT—preliminary experience publication-title: Radiology – volume: 218 start-page: 267 issn: 0033-8419 year: 2001 ident: r21 article-title: Chest CT: Automated nodule detection and assessment of change over time—preliminary experience publication-title: Radiology – volume: 16 start-page: 828 issn: 0278-0062 year: 1997 ident: r17 article-title: Method for segmenting chest CT image data using an anatomical model: Preliminary results publication-title: IEEE Trans. Med. Imaging – volume: 29 start-page: 2552 year: 2002 end-page: 2558 article-title: Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer‐aided diagnosis system publication-title: Med. Phys. – volume: 32 start-page: 759 year: 1994 end-page: 774 article-title: Helical computer tomography of the thorax publication-title: Radiol. Clin. North Am. – volume: 38 start-page: 1340 year: 1999 end-page: 1347 article-title: Three‐dimensional multicriterion automatic segmentation of pulmonary nodules of helical computed tomography images publication-title: Opt. Eng. (Bellingham) – volume: 19 start-page: 1303 year: 1999 end-page: 1311 article-title: Computerized detection of pulmonary nodules on CT scans publication-title: Radiographics – volume: 212 start-page: 561 year: 1999 end-page: 566 article-title: Small pulmonary nodules: Evaluation with repeat CT—preliminary experience publication-title: Radiology – volume: 26 start-page: 889 year: 1999 end-page: 895 article-title: Two‐dimensional multi‐criterion segmentation of pulmonary nodules on helical CT images publication-title: Med. Phys. – volume: 217 start-page: 251 year: 2000 end-page: 256 article-title: Small pulmonary nodules: Volumetrically determined growth rates based on CT evaluation publication-title: Radiology – volume: 22 start-page: 1259 year: 2003 end-page: 1274 article-title: Three‐dimensional segmentation and growth‐rate estimation of small pulmonary nodules in helical CT images. publication-title: IEEE Trans. Med. Imaging – volume: 38 start-page: 471 year: 2000 end-page: 478 article-title: Small solitary pulmonary nodules publication-title: Radiol. Clin. North Am. – volume: 49 start-page: 8 year: 1999 end-page: 31 article-title: Cancer statistics, 1999 publication-title: CA Cancer J. Clin. – volume: 30 start-page: 461 year: 2003 end-page: 472 article-title: Automated detection of lung nodules in CT scans: Effect of image reconstruction algorithm publication-title: Med. Phys. – volume: 16 start-page: 828 year: 1997 end-page: 839 article-title: Method for segmenting chest CT image data using an anatomical model: Preliminary results publication-title: IEEE Trans. Med. Imaging – volume: 354 start-page: 99 year: 1999 end-page: 105 article-title: Early Lung Cancer Action Project: Overall design and findings from baseline screening publication-title: Lancet – volume: 18 start-page: 2179 year: 2000 end-page: 2184 article-title: Evaluation of tumor measurements in oncology: Use of film‐based and electronic techniques publication-title: J. Clin. Oncol. – volume: 29 start-page: 459 year: 1994 end-page: 465 article-title: Computerized detection of pulmonary nodules in computed tomography images publication-title: Invest. Radiol. – volume: 8 start-page: 47 year: 2002 end-page: 54 article-title: CT screening for lung cancer: The first ten years publication-title: Cancer (N.Y.) – volume: 218 start-page: 267 year: 2001 end-page: 273 article-title: Chest CT: Automated nodule detection and assessment of change over time—preliminary experience publication-title: Radiology – volume: 20 start-page: 595 year: 2001 end-page: 604 article-title: Automated detection of pulmonary nodules in helical CT images based on an improved template‐matching technique publication-title: IEEE Trans. Med. Imaging – volume: 10 start-page: 349 year: 2003 end-page: 350 article-title: Economic, legal, and ethical rationales for the ACRIN national lung screening trial of CT screening for lung cancer publication-title: Acad. Radiol. – ident: e_1_2_1_21_1 doi: 10.1118/1.1515762 – ident: e_1_2_1_7_1 doi: 10.1016/S0140-6736(99)06093-6 – ident: e_1_2_1_18_1 doi: 10.1109/42.650879 – volume: 8 start-page: 47 year: 2002 ident: e_1_2_1_4_1 article-title: CT screening for lung cancer: The first ten years publication-title: Cancer (N.Y.) – ident: e_1_2_1_5_1 doi: 10.1016/S1076-6332(03)80115-0 – ident: e_1_2_1_27_1 – ident: e_1_2_1_24_1 – ident: e_1_2_1_19_1 – ident: e_1_2_1_12_1 doi: 10.1118/1.598605 – ident: e_1_2_1_20_1 doi: 10.1097/00004424-199404000-00013 – ident: e_1_2_1_23_1 doi: 10.1109/42.932744 – volume: 32 start-page: 759 year: 1994 ident: e_1_2_1_6_1 article-title: Helical computer tomography of the thorax publication-title: Radiol. Clin. North Am. doi: 10.1016/S0033-8389(22)00407-9 – ident: e_1_2_1_29_1 – ident: e_1_2_1_22_1 doi: 10.1148/radiology.218.1.r01ja39267 – ident: e_1_2_1_13_1 doi: 10.1117/1.602176 – ident: e_1_2_1_15_1 – ident: e_1_2_1_16_1 doi: 10.1118/1.1544679 – ident: e_1_2_1_25_1 doi: 10.1007/3-540-45468-3_13 – ident: e_1_2_1_10_1 doi: 10.1200/JCO.2000.18.10.2179 – ident: e_1_2_1_9_1 doi: 10.1148/radiology.217.1.r00oc33251 – ident: e_1_2_1_11_1 – ident: e_1_2_1_2_1 – ident: e_1_2_1_8_1 doi: 10.1148/radiology.212.2.r99au33561 – ident: e_1_2_1_3_1 doi: 10.3322/canjclin.49.1.8 – ident: e_1_2_1_14_1 doi: 10.1117/12.348494 – ident: e_1_2_1_26_1 doi: 10.1109/TMI.2003.817785 – ident: e_1_2_1_17_1 doi: 10.1148/radiographics.19.5.g99se181303 – ident: e_1_2_1_28_1 – ident: e_1_2_1_30_1 doi: 10.1016/S0033-8389(05)70177-9 |
| SSID | ssj0006350 |
| Score | 1.8783543 |
| Snippet | Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods... |
| SourceID | proquest pubmed crossref wiley scitation |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 839 |
| SubjectTerms | 3D algorithms Algorithms Artificial Intelligence cancer Computed radiography computed tomography computer aided analysis computerised tomography computer‐aided diagnosis Humans image segmentation Imaging, Three-Dimensional lung lung cancer medical image processing Neoplasm Staging - methods Pattern Recognition, Automated phantom study phantoms Phantoms, Imaging Physicists Radiographic Image Interpretation, Computer-Assisted - instrumentation Radiographic Image Interpretation, Computer-Assisted - methods Radiography, Thoracic - instrumentation Radiography, Thoracic - methods Radiologists Reproducibility of Results Sensitivity and Specificity shape analysis Solitary Pulmonary Nodule - classification Solitary Pulmonary Nodule - diagnostic imaging Solitary Pulmonary Nodule - pathology tumours volume effects |
| Title | Segmentation of nodules on chest computed tomography for growth assessment |
| URI | http://dx.doi.org/10.1118/1.1656593 https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.1656593 https://www.ncbi.nlm.nih.gov/pubmed/15125002 https://www.proquest.com/docview/71903171 |
| Volume | 31 |
| WOSCitedRecordID | wos000220898000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2473-4209 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4tu5S2B6DQR4CCRRHiknYdO46tnlDbFUKAEBRpb5GT2FAJErQPfn_HiTcrBK0q9RRFGjuRx_Z84_F8A7DnEhxtnmTom1h0UHKVhFlkZSipiaPM8Z9YWxebSM7O5HCozjvwdZYL0_BDtAdubmXU-7Vb4DrzVUiou7hOPzvimFixBehFOG_jLvS-XwyuTtqNGG1pk4GiuAsixJ5YCJt_aRs_NkdPMOZreImWqAmKP4avtf0ZrPzXn6_Csoed5LCZJ2-gY8o1WDr1gfU1eFHfBM3H63B8aa7vfEJSSSpLyqqY3poxwbe6uBbJm0IQBZlUd57wmiD0Jdfo0U9uiG65Pt_C1eDHz29HoS-4EOYOt4SSc9bXmiqLNotF6DcnkdAizq3gNmeca80yIQy3hQPlTDCKqqQ0iwrNkrhg76BbVqX5AERJI13xzUKIjKu-1SJSBY1sP1GxZJwFcDAb93Q2wK4oxm3aeCUypakfpQB2W9H7hoLjOaGdmfJSXCAu6qFLU03HaYKQB0ESDeB9o9N5Jwh2YrQIAXxqlfy3Lzwj9VCN5hLpfWED2K9V_-d-0tNz99j4V8FNeDW_LbQF3cloaj7CYv4w-TUebcNCMpTbfub_Brca_pw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9wwDLf42mAPg7EPug2IBkK8lF2aNG2kvUzbTnzcndAGEm9R2iYwCVp0H_z9c9pcT2gwTeKpquSklR3HP8exDbDrEhxtnmTom1h0UHKZhFlk0zClJo4yV__E2rrZRDIYpBcX8nQOvkxzYZr6EO2Bm9OMer92Cu4OpL2Wu5vr9MBVjoklm4dFjssI1_fi95_d8167E6MxbVJQJHdRhNhXFsLhn9vB9-3RXyDzBSyjKWqi4vfxa22AuqtP-_U1eOmBJ_narJRXMGfKdXje96H1dXhW3wXNR6_h-Je5vPEpSSWpLCmrYnJtRgTf6vZaJG9aQRRkXN34ktcEwS-5RJ9-fEV0W-3zDZx3f5x9Owx9y4Uwd8glTDlnHa2ptGi1WISecxIJLeLcCm5zxrnWLBPCcFs4WM4EoyhMSrOo0CyJC_YWFsqqNBtAZGpS136zECLjsmO1iGRBI9tJZJwyzgLYnzJeTTns2mJcq8YvSRVVnksBfGpJb5siHA8RbU-lp1BFXNxDl6aajFSCoAdhEg3gXSPU2SQId2K0CQHstFL-1xceoLqrhjMKdVvYAPZq2T8-j-qfusf7_yXchuXDs35P9Y4GJx9gZXZ36CMsjIcTswlL-d3492i45RXgDwPdAbM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VbSlwoKUUCH1ZgKpeAuvYcWKJC2pZ9blaASv1ZjmJXSq1SbWP_n7GiTerqgUh9RRFGjuRx5P5JuP5BuCTK3C0eZJhbGIxQMllEmaRTcOUmjjKHP-JtXWziaTfT8_P5WABvs5qYRp-iPaHm7OM-nvtDNzcFNZbuTu5Tj875phYsiewyF0TmQ4sHvzoDU_bLzE606YERXKXRYg9sxAO_9IOvuuP7oHMF_AMXVGTFb-LX2sH1Ft53KuvwksPPMm3Zqe8ggVTrsHymU-tr8HT-ixoPn4Nxz_NxbUvSSpJZUlZFdMrMyZ4V7fXInnTCqIgk-raU14TBL_kAmP6yW-iW7bPdRj2vv_aPwx9y4Uwd8glTDlnXa2ptOi1WISRcxIJLeLcCm5zxrnWLBPCcFs4WM4Eo6hMSrOo0CyJC_YGOmVVmndAZGpS136zECLjsmu1iGRBI9tNZJwyzgLYmy28mq2wa4txpZq4JFVU-VUK4EMretOQcDwktDPTnkITcXkPXZpqOlYJgh6ESTSAt41S55Mg3InRJwTwsdXyv57wgNRtNZpLKFRzALu17v8-jzobuMv7_xXcgeXBQU-dHvVPNuD5_OjQJnQmo6nZgqX8dnI5Hm37_f8Him0BLg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+nodules+on+chest+computed+tomography+for+growth+assessment&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Mullally%2C+William&rft.au=Betke%2C+Margrit&rft.au=Wang%2C+Jingbin&rft.au=Ko%2C+Jane+P.&rft.date=2004-04-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=31&rft.issue=4&rft.spage=839&rft.epage=848&rft_id=info:doi/10.1118%2F1.1656593&rft.externalDBID=n%2Fa&rft.externalDocID=10_1118_1_1656593 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |