Segmentation of nodules on chest computed tomography for growth assessment

Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a real...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) Vol. 31; no. 4; pp. 839 - 848
Main Authors: Mullally, William, Betke, Margrit, Wang, Jingbin, Ko, Jane P.
Format: Journal Article
Language:English
Published: United States American Association of Physicists in Medicine 01.04.2004
Subjects:
ISSN:0094-2405, 2473-4209
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule characteristics. The segmentation methods were also tested on sequential CT scans of patients. The methods’ estimation of nodule growth were compared to the volume change calculated by a chest radiologist. The best method segmented nodules on average 43% smaller or larger than the actual nodule when errors were computed across all nodule variations on the phantom. Some methods achieved smaller errors when examined with respect to certain nodule properties. In particular, on the phantom individual methods segmented solid nodules to within 23% of their actual size and nodules with 60.7 mm3 volumes to within 14%. On the clinical data, none of the methods examined showed a statistically significant difference in growth estimation from the radiologist.
AbstractList Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule characteristics. The segmentation methods were also tested on sequential CT scans of patients. The methods' estimation of nodule growth were compared to the volume change calculated by a chest radiologist. The best method segmented nodules on average 43% smaller or larger than the actual nodule when errors were computed across all nodule variations on the phantom. Some methods achieved smaller errors when examined with respect to certain nodule properties. In particular, on the phantom individual methods segmented solid nodules to within 23% of their actual size and nodules with 60.7 mm3 volumes to within 14%. On the clinical data, none of the methods examined showed a statistically significant difference in growth estimation from the radiologist.
Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule characteristics. The segmentation methods were also tested on sequential CT scans of patients. The methods' estimation of nodule growth were compared to the volume change calculated by a chest radiologist. The best method segmented nodules on average 43% smaller or larger than the actual nodule when errors were computed across all nodule variations on the phantom. Some methods achieved smaller errors when examined with respect to certain nodule properties. In particular, on the phantom individual methods segmented solid nodules to within 23% of their actual size and nodules with 60.7 mm 3 volumes to within 14%. On the clinical data, none of the methods examined showed a statistically significant difference in growth estimation from the radiologist.
Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule characteristics. The segmentation methods were also tested on sequential CT scans of patients. The methods' estimation of nodule growth were compared to the volume change calculated by a chest radiologist. The best method segmented nodules on average 43% smaller or larger than the actual nodule when errors were computed across all nodule variations on the phantom. Some methods achieved smaller errors when examined with respect to certain nodule properties. In particular, on the phantom individual methods segmented solid nodules to within 23% of their actual size and nodules with 60.7 mm3 volumes to within 14%. On the clinical data, none of the methods examined showed a statistically significant difference in growth estimation from the radiologist.Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods are based on adaptively thresholding attenuation levels and use measures of nodule shape. The segmentation methods were first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule characteristics. The segmentation methods were also tested on sequential CT scans of patients. The methods' estimation of nodule growth were compared to the volume change calculated by a chest radiologist. The best method segmented nodules on average 43% smaller or larger than the actual nodule when errors were computed across all nodule variations on the phantom. Some methods achieved smaller errors when examined with respect to certain nodule properties. In particular, on the phantom individual methods segmented solid nodules to within 23% of their actual size and nodules with 60.7 mm3 volumes to within 14%. On the clinical data, none of the methods examined showed a statistically significant difference in growth estimation from the radiologist.
Author Ko, Jane P.
Betke, Margrit
Wang, Jingbin
Mullally, William
Author_xml – sequence: 1
  givenname: William
  surname: Mullally
  fullname: Mullally, William
  organization: Computer Science Department, Boston University, Boston, Massachusetts 02215
– sequence: 2
  givenname: Margrit
  surname: Betke
  fullname: Betke, Margrit
  organization: Computer Science Department, Boston University, Boston, Massachusetts 02215
– sequence: 3
  givenname: Jingbin
  surname: Wang
  fullname: Wang, Jingbin
  organization: Computer Science Department, Boston University, Boston, Massachusetts 02215
– sequence: 4
  givenname: Jane P.
  surname: Ko
  fullname: Ko, Jane P.
  organization: Department of Radiology, New York University Medical Center, New York, New York 10016
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15125002$$D View this record in MEDLINE/PubMed
BookMark eNp9kFtLwzAYhoNM3EEv_AOSK0GhW05N10sZHpkoqNchS5Ot0jY1aR3793a0QxHn1Uf4nu_hzTsEvcIWGoBTjMYY4-kEjzEPeRjTAzAgLKIBIyjugQFCMQsIQ2EfDL1_RwhxGqIj0MchJiFCZAAeXvQy10Ulq9QW0BpY2KTOtIfNS620r6CyeVlXOoGVze3SyXK1gcY6uHR2Xa2g9F57v1Ucg0MjM69PujkCbzfXr7O7YP50ez-7mgeKTmMaTBmjSEocm2kTlcQoigiXPFSGM6MoY1LSBeeamaTZxJRTzI3BeEESSaMwoSNw3npLZz_qJqLIU690lslC29qLCMeI4gg34FkH1otcJ6J0aS7dRux-3wAXLaCc9d5p840gsW1WYNE127CTX6xK29YqJ9Psz4ugvVinmd7sV4vH546_bHm_M_8bZy_8ad0PeZkY-gVJG6Ki
CODEN MPHYA6
CitedBy_id crossref_primary_10_1118_1_4793409
crossref_primary_10_1118_1_4892056
crossref_primary_10_1063_5_0216374
crossref_primary_10_1109_TBME_2011_2167621
crossref_primary_10_1109_TITB_2007_899504
crossref_primary_10_1111_j_1617_0830_2009_00129_x
crossref_primary_10_1118_1_4869265
crossref_primary_10_1118_1_2799885
crossref_primary_10_1259_bjr_40733553
crossref_primary_10_1016_j_compmedimag_2019_03_002
crossref_primary_10_1016_j_media_2015_02_002
crossref_primary_10_1155_2013_942353
crossref_primary_10_1002_mp_13998
crossref_primary_10_1186_s13244_023_01480_z
crossref_primary_10_1007_s00330_006_0562_1
crossref_primary_10_1109_TMI_2005_862753
crossref_primary_10_1371_journal_pone_0085580
crossref_primary_10_1016_j_media_2006_05_003
crossref_primary_10_1118_1_2977537
crossref_primary_10_1109_TIP_2013_2282899
crossref_primary_10_1109_TVCG_2010_56
crossref_primary_10_1007_s00330_006_0254_x
crossref_primary_10_1109_TMI_2007_907555
crossref_primary_10_1109_TMI_2008_2010441
Cites_doi 10.1118/1.1515762
10.1016/S0140-6736(99)06093-6
10.1109/42.650879
10.1016/S1076-6332(03)80115-0
10.1118/1.598605
10.1097/00004424-199404000-00013
10.1109/42.932744
10.1016/S0033-8389(22)00407-9
10.1148/radiology.218.1.r01ja39267
10.1117/1.602176
10.1118/1.1544679
10.1007/3-540-45468-3_13
10.1200/JCO.2000.18.10.2179
10.1148/radiology.217.1.r00oc33251
10.1148/radiology.212.2.r99au33561
10.3322/canjclin.49.1.8
10.1117/12.348494
10.1109/TMI.2003.817785
10.1148/radiographics.19.5.g99se181303
10.1016/S0033-8389(05)70177-9
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2004 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2004 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1118/1.1656593
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 848
ExternalDocumentID 15125002
10_1118_1_1656593
MP6593
Genre article
Validation Studies
Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMMB
AAMNL
AAYCA
ABDPE
ADMLS
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
LH4
AAYXX
ABUFD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3893-84430aa19f84732907726a65cf64fc344aa3b66e4fd772936316ff11b2da375d3
IEDL.DBID DRFUL
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000220898000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
IngestDate Thu Sep 04 19:31:38 EDT 2025
Wed Sep 03 06:00:44 EDT 2025
Sat Nov 29 04:18:22 EST 2025
Tue Nov 18 22:31:10 EST 2025
Thu Sep 25 07:34:07 EDT 2025
Sun Jul 14 10:05:20 EDT 2019
Fri Jun 21 00:29:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords lung cancer
phantom study
computed tomography
volume effects
3D algorithms
image segmentation
shape analysis
computer-aided diagnosis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3893-84430aa19f84732907726a65cf64fc344aa3b66e4fd772936316ff11b2da375d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 15125002
PQID 71903171
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_71903171
pubmed_primary_15125002
crossref_citationtrail_10_1118_1_1656593
crossref_primary_10_1118_1_1656593
wiley_primary_10_1118_1_1656593_MP6593
scitation_primary_10_1118_1_1656593
PublicationCentury 2000
PublicationDate April 2004
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: April 2004
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2004
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Armato, Giger, Moran, Blackburn, Doi, MacMahon (r16) 1999; 19
Ko, Betke (r21) 2001; 218
Hillman (r4) 2003; 10
Henschke, Yankelevitz, Libby, Kimmel (r3) 2002; 8
Kostis, Reeves, Yankelevitz, Henschke (r25) 2003; 22
Landis, Murray, Bolden, Wingo (r2) 1999; 49
Lee, Hara, Fujita, Itoh, Ishigaki (r22) 2001; 20
Henschke, McCauley, Yankelevitz, Naidich, McGuinness, Miettinen, Libby, Pasmantier, Koizumi, Altorki, Smith (r6) 1999; 354
Yankelevitz, Gupta, Zhao, Henschke (r7) 1999; 212
Gurcan, Sahiner, Petrick, Chan, Kazerooni, Cascade, Hadjiiski (r20) 2002; 29
Yankelevitz, Henschke (r29) 2000; 38
Schwartz, Ginsberg, DeCorato, Rothenberg, Einstein, Kijewski (r9) 2000; 18
Zhao, Reeves, Yankelevitz, Henschke (r12) 1999; 38
Armato, Altman, La Rivière (r15) 2003; 30
Zhao, Yankelevitz, Reeves, Henschke (r11) 1999; 26
Brown, McNitt-Gray, Mankovich, Goldin, Hiller, Wilson, Aberle (r17) 1997; 16
Yankelevitz, Reeves, Kostis, Zhao, Henschke (r8) 2000; 217
Giger, Bae, MacMahon (r19) 1994; 29
Naidich (r5) 1994; 32
2000; 18
2002; 29
2000; 38
1999; 19
1999; 49
2000; 217
1999; 38
1999; 26
2002; 8
1997; 16
1999; 212
1994; 29
1999; 354
2001; 218
2003; 30
2003; 10
1994; 32
2001; 20
2003; 22
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
Naidich D. P. (e_1_2_1_6_1) 1994; 32
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
e_1_2_1_29_1
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_30_1
Henschke C. I. (e_1_2_1_4_1) 2002; 8
e_1_2_1_5_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_13_1
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – volume: 20
  start-page: 595
  issn: 0278-0062
  year: 2001
  ident: r22
  article-title: Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique
  publication-title: IEEE Trans. Med. Imaging
– volume: 29
  start-page: 2552
  issn: 0094-2405
  year: 2002
  ident: r20
  article-title: Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system
  publication-title: Med. Phys.
– volume: 18
  start-page: 2179
  issn: 0732-183X
  year: 2000
  ident: r9
  article-title: Evaluation of tumor measurements in oncology: Use of film-based and electronic techniques
  publication-title: J. Clin. Oncol.
– volume: 22
  start-page: 1259
  issn: 0278-0062
  year: 2003
  ident: r25
  article-title: Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images.
  publication-title: IEEE Trans. Med. Imaging
– volume: 19
  start-page: 1303
  issn: 0271-5333
  year: 1999
  ident: r16
  article-title: Computerized detection of pulmonary nodules on CT scans
  publication-title: Radiographics
– volume: 217
  start-page: 251
  issn: 0033-8419
  year: 2000
  ident: r8
  article-title: Small pulmonary nodules: Volumetrically determined growth rates based on CT evaluation
  publication-title: Radiology
– volume: 26
  start-page: 889
  issn: 0094-2405
  year: 1999
  ident: r11
  article-title: Two-dimensional multi-criterion segmentation of pulmonary nodules on helical CT images
  publication-title: Med. Phys.
– volume: 38
  start-page: 471
  issn: 0033-8389
  year: 2000
  ident: r29
  article-title: Small solitary pulmonary nodules
  publication-title: Radiol. Clin. North Am.
– volume: 32
  start-page: 759
  issn: 0033-8389
  year: 1994
  ident: r5
  article-title: Helical computer tomography of the thorax
  publication-title: Radiol. Clin. North Am.
– volume: 354
  start-page: 99
  issn: 0140-6736
  year: 1999
  ident: r6
  article-title: Early Lung Cancer Action Project: Overall design and findings from baseline screening
  publication-title: Lancet
– volume: 38
  start-page: 1340
  issn: 0091-3286
  year: 1999
  ident: r12
  article-title: Three-dimensional multicriterion automatic segmentation of pulmonary nodules of helical computed tomography images
  publication-title: Opt. Eng. (Bellingham)
– volume: 10
  start-page: 349
  issn: 1076-6332
  year: 2003
  ident: r4
  article-title: Economic, legal, and ethical rationales for the ACRIN national lung screening trial of CT screening for lung cancer
  publication-title: Acad. Radiol.
– volume: 30
  start-page: 461
  issn: 0094-2405
  year: 2003
  ident: r15
  article-title: Automated detection of lung nodules in CT scans: Effect of image reconstruction algorithm
  publication-title: Med. Phys.
– volume: 29
  start-page: 459
  issn: 0020-9996
  year: 1994
  ident: r19
  article-title: Computerized detection of pulmonary nodules in computed tomography images
  publication-title: Invest. Radiol.
– volume: 8
  start-page: 47
  issn: 0008-543X
  year: 2002
  ident: r3
  article-title: CT screening for lung cancer: The first ten years
  publication-title: Cancer (N.Y.)
– volume: 49
  start-page: 8
  issn: 0007-9235
  year: 1999
  ident: r2
  article-title: Cancer statistics, 1999
  publication-title: CA Cancer J. Clin.
– volume: 212
  start-page: 561
  issn: 0033-8419
  year: 1999
  ident: r7
  article-title: Small pulmonary nodules: Evaluation with repeat CT—preliminary experience
  publication-title: Radiology
– volume: 218
  start-page: 267
  issn: 0033-8419
  year: 2001
  ident: r21
  article-title: Chest CT: Automated nodule detection and assessment of change over time—preliminary experience
  publication-title: Radiology
– volume: 16
  start-page: 828
  issn: 0278-0062
  year: 1997
  ident: r17
  article-title: Method for segmenting chest CT image data using an anatomical model: Preliminary results
  publication-title: IEEE Trans. Med. Imaging
– volume: 29
  start-page: 2552
  year: 2002
  end-page: 2558
  article-title: Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer‐aided diagnosis system
  publication-title: Med. Phys.
– volume: 32
  start-page: 759
  year: 1994
  end-page: 774
  article-title: Helical computer tomography of the thorax
  publication-title: Radiol. Clin. North Am.
– volume: 38
  start-page: 1340
  year: 1999
  end-page: 1347
  article-title: Three‐dimensional multicriterion automatic segmentation of pulmonary nodules of helical computed tomography images
  publication-title: Opt. Eng. (Bellingham)
– volume: 19
  start-page: 1303
  year: 1999
  end-page: 1311
  article-title: Computerized detection of pulmonary nodules on CT scans
  publication-title: Radiographics
– volume: 212
  start-page: 561
  year: 1999
  end-page: 566
  article-title: Small pulmonary nodules: Evaluation with repeat CT—preliminary experience
  publication-title: Radiology
– volume: 26
  start-page: 889
  year: 1999
  end-page: 895
  article-title: Two‐dimensional multi‐criterion segmentation of pulmonary nodules on helical CT images
  publication-title: Med. Phys.
– volume: 217
  start-page: 251
  year: 2000
  end-page: 256
  article-title: Small pulmonary nodules: Volumetrically determined growth rates based on CT evaluation
  publication-title: Radiology
– volume: 22
  start-page: 1259
  year: 2003
  end-page: 1274
  article-title: Three‐dimensional segmentation and growth‐rate estimation of small pulmonary nodules in helical CT images.
  publication-title: IEEE Trans. Med. Imaging
– volume: 38
  start-page: 471
  year: 2000
  end-page: 478
  article-title: Small solitary pulmonary nodules
  publication-title: Radiol. Clin. North Am.
– volume: 49
  start-page: 8
  year: 1999
  end-page: 31
  article-title: Cancer statistics, 1999
  publication-title: CA Cancer J. Clin.
– volume: 30
  start-page: 461
  year: 2003
  end-page: 472
  article-title: Automated detection of lung nodules in CT scans: Effect of image reconstruction algorithm
  publication-title: Med. Phys.
– volume: 16
  start-page: 828
  year: 1997
  end-page: 839
  article-title: Method for segmenting chest CT image data using an anatomical model: Preliminary results
  publication-title: IEEE Trans. Med. Imaging
– volume: 354
  start-page: 99
  year: 1999
  end-page: 105
  article-title: Early Lung Cancer Action Project: Overall design and findings from baseline screening
  publication-title: Lancet
– volume: 18
  start-page: 2179
  year: 2000
  end-page: 2184
  article-title: Evaluation of tumor measurements in oncology: Use of film‐based and electronic techniques
  publication-title: J. Clin. Oncol.
– volume: 29
  start-page: 459
  year: 1994
  end-page: 465
  article-title: Computerized detection of pulmonary nodules in computed tomography images
  publication-title: Invest. Radiol.
– volume: 8
  start-page: 47
  year: 2002
  end-page: 54
  article-title: CT screening for lung cancer: The first ten years
  publication-title: Cancer (N.Y.)
– volume: 218
  start-page: 267
  year: 2001
  end-page: 273
  article-title: Chest CT: Automated nodule detection and assessment of change over time—preliminary experience
  publication-title: Radiology
– volume: 20
  start-page: 595
  year: 2001
  end-page: 604
  article-title: Automated detection of pulmonary nodules in helical CT images based on an improved template‐matching technique
  publication-title: IEEE Trans. Med. Imaging
– volume: 10
  start-page: 349
  year: 2003
  end-page: 350
  article-title: Economic, legal, and ethical rationales for the ACRIN national lung screening trial of CT screening for lung cancer
  publication-title: Acad. Radiol.
– ident: e_1_2_1_21_1
  doi: 10.1118/1.1515762
– ident: e_1_2_1_7_1
  doi: 10.1016/S0140-6736(99)06093-6
– ident: e_1_2_1_18_1
  doi: 10.1109/42.650879
– volume: 8
  start-page: 47
  year: 2002
  ident: e_1_2_1_4_1
  article-title: CT screening for lung cancer: The first ten years
  publication-title: Cancer (N.Y.)
– ident: e_1_2_1_5_1
  doi: 10.1016/S1076-6332(03)80115-0
– ident: e_1_2_1_27_1
– ident: e_1_2_1_24_1
– ident: e_1_2_1_19_1
– ident: e_1_2_1_12_1
  doi: 10.1118/1.598605
– ident: e_1_2_1_20_1
  doi: 10.1097/00004424-199404000-00013
– ident: e_1_2_1_23_1
  doi: 10.1109/42.932744
– volume: 32
  start-page: 759
  year: 1994
  ident: e_1_2_1_6_1
  article-title: Helical computer tomography of the thorax
  publication-title: Radiol. Clin. North Am.
  doi: 10.1016/S0033-8389(22)00407-9
– ident: e_1_2_1_29_1
– ident: e_1_2_1_22_1
  doi: 10.1148/radiology.218.1.r01ja39267
– ident: e_1_2_1_13_1
  doi: 10.1117/1.602176
– ident: e_1_2_1_15_1
– ident: e_1_2_1_16_1
  doi: 10.1118/1.1544679
– ident: e_1_2_1_25_1
  doi: 10.1007/3-540-45468-3_13
– ident: e_1_2_1_10_1
  doi: 10.1200/JCO.2000.18.10.2179
– ident: e_1_2_1_9_1
  doi: 10.1148/radiology.217.1.r00oc33251
– ident: e_1_2_1_11_1
– ident: e_1_2_1_2_1
– ident: e_1_2_1_8_1
  doi: 10.1148/radiology.212.2.r99au33561
– ident: e_1_2_1_3_1
  doi: 10.3322/canjclin.49.1.8
– ident: e_1_2_1_14_1
  doi: 10.1117/12.348494
– ident: e_1_2_1_26_1
  doi: 10.1109/TMI.2003.817785
– ident: e_1_2_1_17_1
  doi: 10.1148/radiographics.19.5.g99se181303
– ident: e_1_2_1_28_1
– ident: e_1_2_1_30_1
  doi: 10.1016/S0033-8389(05)70177-9
SSID ssj0006350
Score 1.8783543
Snippet Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest computed tomography (CT) are presented. The segmentation methods...
SourceID proquest
pubmed
crossref
wiley
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 839
SubjectTerms 3D algorithms
Algorithms
Artificial Intelligence
cancer
Computed radiography
computed tomography
computer aided analysis
computerised tomography
computer‐aided diagnosis
Humans
image segmentation
Imaging, Three-Dimensional
lung
lung cancer
medical image processing
Neoplasm Staging - methods
Pattern Recognition, Automated
phantom study
phantoms
Phantoms, Imaging
Physicists
Radiographic Image Interpretation, Computer-Assisted - instrumentation
Radiographic Image Interpretation, Computer-Assisted - methods
Radiography, Thoracic - instrumentation
Radiography, Thoracic - methods
Radiologists
Reproducibility of Results
Sensitivity and Specificity
shape analysis
Solitary Pulmonary Nodule - classification
Solitary Pulmonary Nodule - diagnostic imaging
Solitary Pulmonary Nodule - pathology
tumours
volume effects
Title Segmentation of nodules on chest computed tomography for growth assessment
URI http://dx.doi.org/10.1118/1.1656593
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.1656593
https://www.ncbi.nlm.nih.gov/pubmed/15125002
https://www.proquest.com/docview/71903171
Volume 31
WOSCitedRecordID wos000220898000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BUmg59AG0XdpSq6CqlwCOH3HEqWq7qqqCUFukvUWOH4AECdoHv7_jxJsVgqJKnKJIYyf22P4-ezwzADuKC2VZcPtFOEq4Ez4pBbOJEpZbkxvJmGmSTWRHR2o4zI8X4GDmC9PGh-gO3MLMaNbrMMF1GbOQ0HBxne6GwDEiZ4uwlOK4FT1Y-vprcPKzW4gRS1sPlJwHI4KIgYWw-F5X-CYc3eKYq_AYkag1it-krw3-DJ496M-fw9NIO8nndpy8gAVXrcHKYTSsr8FycxPUjNfhx293ehkdkipSe1LVdnrhxgTfmuRaxLSJICyZ1Jcx4DVB6ktOcUc_OSO6i_W5ASeDb3--fE9iwoXEBN6SKM7ZvtY094hZLMV9c5ZKLYXxknvDONealVI67m0g5UwyKr2ntEytZpmw7CX0qrpyr4EIz63iWpVKpJxZX0okxuHoxOSpo6Xvw6dZvxezDg5JMS6KdleiClrEXurDh070qg3BcZfQ-5nyCpwgweqhK1dPx0WGlAdJEu3Dq1an80qQ7AhEhD5sd0q-7wt3SF3Xo7lEcWWxXR8b1f-7nuLwODw2_1fwDTyZ3xZ6C73JaOrewSNzPTkfj7ZgMRuqrTjy_wJTQv9U
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5RaDkeekCBpQdWW1W8BEh8rCP1pWq7ou3uCrUg8WY5PqASJGgPfj_jxJsVKq0q9SmKNHYSjyffZ49nBuCdZFxaGsJ-EY4S5rhPCk5tIrll1uRGUGrqYhPd4VCeneXHC_BhFgvT5IdoN9yCZdT_62DgYUM6Wnk4uZ7uh8wxPKcPYInhNML5vfT5R--03_6JEUybEJScBS8Cj5mFsPlB2_guHv1GMtdgBaGo8Yrf5a81APWe_N-rP4XHkXiSj81MeQYLrlyH5UF0ra_Do_osqBlvwLef7vwqhiSVpPKkrOz00o0J3tXltYhpSkFYMqmuYsprguSXnOOafnJBdJvt8zmc9r6cfDpKYsmFxATmkkjG6KHWae4RtWiGK-duJrTgxgvmDWVMa1oI4Zi3gZZTQVPhfZoWmdW0yy3dhMWyKt02EO6ZlUzLQvKMUesLgdQ4bJ6YPHNp4TuwNxt4NRvhUBbjUjXrEqlSFUepA29a0esmCcd9Qrsz7Sk0keD30KWrpmPVRdKDNCntwFaj1HknSHc4YkIH3rZa_tsT7pG6qUZzCXVt8bve17r_cz9qcBwuO_8quAsrRyeDvup_HX5_Aavzs0MvYXEymrpX8NDcTH6NR6-jAdwCo-wCaw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB7RhdL2oVCgbVooFlQVL4EmPtaR-lKVrijHasUh8WY5PpZKS4L24PfXTrxZIQ5V4imKNHYij8ffZ49nBuArJ5Rr7MN-HRzFxFAb5xTrmFNNtMoUw1hVxSba3S6_vMx6c_BjGgtT54doDty8ZVTrtTdwc6NtsHJ_cz3Z9ZljaIZfwDzxRWRaML9_2rk4blZiB6Z1CEpGvBeBhsxCrvle0_guHt0jmW_glYOi2it-l79WANRZet6vL8PbQDzRz3qmvIM5U6zA4klwra_Ay-ouqBqtwuGZ6V-HkKQClRYVpZ4MzAi5t6q8FlJ1KQiNxuV1SHmNHPlFfbenH18h2WT7XIOLzu_zXwdxKLkQK89cYk4I_i5lklmHWjh1O-d2yiSjyjJiFSZESpwzZojVnpZjhhNmbZLkqZa4TTV-D62iLMxHQNQSzYnkOacpwdrmzFFjf3iistQkuY1gZzrwYjrCvizGQNT7Ei4SEUYpgq1G9KZOwvGQ0OZUe8KZiPd7yMKUk5FoO9LjaFISwYdaqbNOHN2hDhMi2G60_NQXHpC6LYczCeHUHMG3SveP9yNOev7x6X8FN2Gxt98Rx3-6R5_h9ezq0Dq0xsOJ2YAFdTv-Oxp-CfP_HynTAeY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+nodules+on+chest+computed+tomography+for+growth+assessment&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Mullally%2C+William&rft.au=Betke%2C+Margrit&rft.au=Wang%2C+Jingbin&rft.au=Ko%2C+Jane+P&rft.date=2004-04-01&rft.issn=0094-2405&rft.volume=31&rft.issue=4&rft.spage=839&rft_id=info:doi/10.1118%2F1.1656593&rft_id=info%3Apmid%2F15125002&rft.externalDocID=15125002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon