Caputo Fractal Fractional Order Derivative of Soil Pollution Model Due to Industrial and Agrochemical

This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard conditi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of applied and computational mathematics Ročník 8; číslo 5; s. 250
Hlavní autoři: Priya, P., Sabarmathi, A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New Delhi Springer India 01.01.2022
Springer Nature B.V
Témata:
ISSN:2349-5103, 2199-5796, 2199-5796
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder’s fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders ( 0.5 < η < 1 ) and validating the theoretical parameter values of real time data by the support of MATLAB.
AbstractList This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder's fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders ( 0.5 < η < 1 ) and validating the theoretical parameter values of real time data by the support of MATLAB.This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder's fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders ( 0.5 < η < 1 ) and validating the theoretical parameter values of real time data by the support of MATLAB.
This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder's fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders and validating the theoretical parameter values of real time data by the support of MATLAB.
This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder’s fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders (0.5<η<1) and validating the theoretical parameter values of real time data by the support of MATLAB.
This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder’s fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders $$(0.5<\eta <1)$$ (0.5<η<1) and validating the theoretical parameter values of real time data by the support of MATLAB.
This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder’s fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders ( 0.5 < η < 1 ) and validating the theoretical parameter values of real time data by the support of MATLAB.
ArticleNumber 250
Author Priya, P.
Sabarmathi, A.
Author_xml – sequence: 1
  givenname: P.
  orcidid: 0000-0002-6841-909X
  surname: Priya
  fullname: Priya, P.
  email: priyabarath612@gmail.com
  organization: PG and Research Department of Mathematics, Auxilium College (Autonomous), Thiruvalluvar University
– sequence: 2
  givenname: A.
  surname: Sabarmathi
  fullname: Sabarmathi, A.
  organization: PG and Research Department of Mathematics, Auxilium College (Autonomous), Thiruvalluvar University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36091873$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB_0D7BAkdiwCVw_YscbpGpKoVJRkYC15XFupq488WAnI_HvcZqWRxdd-cr-ztHxPcfkYIgDEvKKwjsKoN5nAS3VNTBWAxWc1vCMHDGqdd0oLQ_KzEWZKfBDcprzLQAwKhSw9gU55BI0bRU_Iriyu2mM1UWybrRhOX0cynidOkzVOSa_t6PfYxX76lv0ofoaQ5hmqPoSOwzV-YRVsbgcuimPyRepHbrqbJOiu8Gtdza8JM97GzKe3p8n5MfFx--rz_XV9afL1dlV7XiroV4zKfrWOUG7FpxglikroMFGdroX3DYK1hKlW_dKQ9uVXzitpCwXKKzTDT8hHxbf3bTeYudwGJMNZpf81qZfJlpv_n8Z_I3ZxL3RQnDZ8GLw9t4gxZ8T5tFsfXYYgh0wTtkwRTkHxTUr6JtH6G2cUlncTIHWgms6J3r9b6I_UR4aKEC7AC7FnBP2xvnRztstAX0wFMzct1n6NqVvc9e3gSJlj6QP7k-K-CLKBR42mP7GfkL1G-oBvKQ
CitedBy_id crossref_primary_10_1007_s40819_024_01776_8
crossref_primary_10_1186_s13690_024_01429_8
crossref_primary_10_1016_j_cam_2024_115997
crossref_primary_10_1007_s40808_024_02231_9
crossref_primary_10_1016_j_cnsns_2024_108525
crossref_primary_10_1016_j_sajce_2024_01_003
crossref_primary_10_1007_s40808_025_02473_1
crossref_primary_10_1155_ijmm_9204263
crossref_primary_10_1007_s41939_024_00465_9
crossref_primary_10_3390_electronics14050977
crossref_primary_10_1088_1402_4896_ad1286
crossref_primary_10_3390_fractalfract8080476
crossref_primary_10_1007_s13226_024_00612_5
crossref_primary_10_3390_math11071677
Cites_doi 10.1016/j.padiff.2021.100164
10.1016/j.physa.2022.127429
10.3301/IJG.2015.10
10.1002/num.22707
10.1016/j.apm.2016.10.054
10.1016/j.aej.2022.01.030
10.1186/s13662-017-1456-z
10.1016/j.chaos.2021.110668
10.1073/pnas.27.4.222
10.1080/03067319.2021.1882449
10.1155/2016/6078298
10.1007/s40819-022-01334-0
10.1016/j.physd.2021.132981
10.12944/CWE.16.2.14
10.1142/S0218348X20400101
10.1016/j.chaos.2019.07.035
10.1007/s40840-019-00744-6
10.1140/epjs/s11734-022-00614-6
10.1016/j.physa.2022.127570
10.1016/j.chaos.2022.111937
10.1016/j.chaos.2005.08.199
10.1016/j.camwa.2009.08.020
10.1016/j.chaos.2018.10.023
10.1016/j.aej.2022.04.030
10.1016/j.aej.2021.04.103
10.1016/j.rinp.2021.105103
10.1016/j.rinp.2022.105189
10.1016/S0378-4371(97)00422-6
10.1016/j.cam.2016.05.019
10.1016/j.rinp.2022.105179
10.1002/num.22577
10.1007/s11270-017-3675-z
10.1016/j.rinp.2021.104823
10.1007/BF00475520
10.1007/s10333-010-0205-7
10.1016/j.jhazmat.2004.10.003
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature India Private Limited 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature India Private Limited 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2022
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s40819-022-01431-0
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 2199-5796
ExternalDocumentID PMC9443653
36091873
10_1007_s40819_022_01431_0
Genre Journal Article
GroupedDBID 0R~
203
4.4
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATHPR
AUKKA
AVWKF
AVXWI
AXYYD
AYFIA
AZFZN
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
AFFHD
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PQGLB
NPM
7X8
5PM
ID FETCH-LOGICAL-c3890-b264f8cc41d80c42a27a405e56d9f43a570b6e6cbf7908d360c97666cbe4ac953
IEDL.DBID RSV
ISSN 2349-5103
2199-5796
IngestDate Tue Sep 30 16:55:47 EDT 2025
Fri Jul 11 16:12:43 EDT 2025
Wed Sep 17 23:57:03 EDT 2025
Mon Jul 21 06:00:48 EDT 2025
Sat Nov 29 08:01:01 EST 2025
Tue Nov 18 22:40:12 EST 2025
Mon Jul 21 06:07:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Ulam Hyer stability
Agrochemical
Power law kernel
Fractal dimension
Euler method
Language English
License The Author(s), under exclusive licence to Springer Nature India Private Limited 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3890-b264f8cc41d80c42a27a405e56d9f43a570b6e6cbf7908d360c97666cbe4ac953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6841-909X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9443653
PMID 36091873
PQID 2709943915
PQPubID 2044256
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9443653
proquest_miscellaneous_2713307392
proquest_journals_2709943915
pubmed_primary_36091873
crossref_citationtrail_10_1007_s40819_022_01431_0
crossref_primary_10_1007_s40819_022_01431_0
springer_journals_10_1007_s40819_022_01431_0
PublicationCentury 2000
PublicationDate 20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220101
  day: 1
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: India
– name: Heidelberg
PublicationTitle International journal of applied and computational mathematics
PublicationTitleAbbrev Int. J. Appl. Comput. Math
PublicationTitleAlternate Int J Appl Comput Math
PublicationYear 2022
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References JKK Asamoah (1431_CR20) 2022; 34
M Turkyilmazoglu (1431_CR29) 2022; 600
JH Cushman (1431_CR12) 2010; 59
J-C Zhou (1431_CR19) 2022; 33
Shabir Ahmad and Amanullah (1431_CR43) 2022; 139
R Kanno (1431_CR21) 1998; 248
S Arivoli (1431_CR38) 2021; 16
1431_CR27
CM Pinto (1431_CR10) 2017; 312
1431_CR11
Omar Abu Arqub (1431_CR32) 2022; 8
Omar Abu Arqub (1431_CR35) 2020; 28
Muthyala Sai Chaithanya (1431_CR25) 2021
X-P Li (1431_CR48) 2022; 34
I Ameen (1431_CR5) 2017; 43
1431_CR18
1431_CR14
1431_CR15
1431_CR16
1431_CR44
1431_CR46
1431_CR40
1431_CR42
M Turkyilmazoglu (1431_CR26) 2021; 425
H Mohammadi (1431_CR17) 2021; 144
M Krosshavn (1431_CR22) 1993; 71
M Farman (1431_CR23) 2022; 61
M Turkyilmazoglu (1431_CR28) 2022; 598
Y Nazzal (1431_CR31) 2016; 135
1431_CR33
1431_CR34
1431_CR4
1431_CR3
M Rafej (1431_CR36) 2007; 186
1431_CR2
1431_CR30
1431_CR1
1431_CR8
1431_CR6
C Yu (1431_CR49) 2019; 128
U Skwara (1431_CR47) 2017; 1479
DH Hyers (1431_CR13) 1941; 27
MM El-Dessoky (1431_CR24) 2022; 61
AR Baias (1431_CR9) 2020; 43
Z Zhao (1431_CR50) 2018; 229
T Arora (1431_CR7) 2010; 8
1431_CR37
SM Ulam (1431_CR41) 1960
T Sherene (1431_CR45) 2009; 8
1431_CR39
References_xml – ident: 1431_CR44
– ident: 1431_CR34
  doi: 10.1016/j.padiff.2021.100164
– volume: 598
  year: 2022
  ident: 1431_CR28
  publication-title: Physica A
  doi: 10.1016/j.physa.2022.127429
– volume: 135
  start-page: 210
  issue: 2
  year: 2016
  ident: 1431_CR31
  publication-title: Ital J Geosci
  doi: 10.3301/IJG.2015.10
– ident: 1431_CR40
  doi: 10.1002/num.22707
– volume: 43
  start-page: 78
  year: 2017
  ident: 1431_CR5
  publication-title: Appl. Math. Model
  doi: 10.1016/j.apm.2016.10.054
– ident: 1431_CR4
  doi: 10.1016/j.aej.2022.01.030
– ident: 1431_CR8
  doi: 10.1186/s13662-017-1456-z
– volume: 144
  year: 2021
  ident: 1431_CR17
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2021.110668
– volume: 27
  start-page: 222
  issue: 4
  year: 1941
  ident: 1431_CR13
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.27.4.222
– year: 2021
  ident: 1431_CR25
  publication-title: Int. J. Environ. Anal. Chem.
  doi: 10.1080/03067319.2021.1882449
– ident: 1431_CR42
  doi: 10.1155/2016/6078298
– volume: 8
  start-page: 145
  year: 2022
  ident: 1431_CR32
  publication-title: International Journal of Applied and Computational Mathematics
  doi: 10.1007/s40819-022-01334-0
– volume: 8
  start-page: 613
  year: 2009
  ident: 1431_CR45
  publication-title: Nat. Environ. Pollut. Technol.
– ident: 1431_CR1
– volume: 425
  year: 2021
  ident: 1431_CR26
  publication-title: Physica D
  doi: 10.1016/j.physd.2021.132981
– volume: 16
  start-page: 477
  issue: 2
  year: 2021
  ident: 1431_CR38
  publication-title: Curr. World Environ.
  doi: 10.12944/CWE.16.2.14
– volume: 139
  year: 2022
  ident: 1431_CR43
  publication-title: Chaos, Solitons Fractals
– volume: 28
  start-page: 2040010
  year: 2020
  ident: 1431_CR35
  publication-title: Fractals
  doi: 10.1142/S0218348X20400101
– volume: 128
  start-page: 275
  year: 2019
  ident: 1431_CR49
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2019.07.035
– volume: 43
  start-page: 1357
  year: 2020
  ident: 1431_CR9
  publication-title: Bull. Malaysian Math. Sci. Soc.
  doi: 10.1007/s40840-019-00744-6
– ident: 1431_CR27
  doi: 10.1140/epjs/s11734-022-00614-6
– volume: 600
  year: 2022
  ident: 1431_CR29
  publication-title: Physica A
  doi: 10.1016/j.physa.2022.127570
– ident: 1431_CR16
  doi: 10.1016/j.chaos.2022.111937
– volume: 1479
  start-page: 1339
  issue: 1
  year: 2017
  ident: 1431_CR47
  publication-title: AIP Conf. Proc.
– ident: 1431_CR11
  doi: 10.1016/j.chaos.2005.08.199
– volume: 59
  start-page: 1754
  issue: 5
  year: 2010
  ident: 1431_CR12
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.08.020
– ident: 1431_CR30
  doi: 10.1016/j.chaos.2018.10.023
– ident: 1431_CR46
– volume: 61
  start-page: 10965
  year: 2022
  ident: 1431_CR23
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.04.030
– ident: 1431_CR33
– volume: 61
  start-page: 729
  year: 2022
  ident: 1431_CR24
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.04.103
– volume: 33
  year: 2022
  ident: 1431_CR19
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2021.105103
– volume: 34
  year: 2022
  ident: 1431_CR20
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2022.105189
– volume: 248
  start-page: 165
  year: 1998
  ident: 1431_CR21
  publication-title: Physica A
  doi: 10.1016/S0378-4371(97)00422-6
– volume: 312
  start-page: 240
  year: 2017
  ident: 1431_CR10
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.05.019
– ident: 1431_CR14
– volume: 34
  year: 2022
  ident: 1431_CR48
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2022.105179
– ident: 1431_CR37
– volume-title: A Collection of the Mathematical Problems
  year: 1960
  ident: 1431_CR41
– ident: 1431_CR39
  doi: 10.1002/num.22577
– volume: 229
  start-page: 23
  issue: 1
  year: 2018
  ident: 1431_CR50
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-017-3675-z
– ident: 1431_CR3
  doi: 10.1016/j.rinp.2021.104823
– volume: 71
  start-page: 185
  year: 1993
  ident: 1431_CR22
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/BF00475520
– volume: 8
  start-page: 247
  issue: 3
  year: 2010
  ident: 1431_CR7
  publication-title: Paddy water Environ.
  doi: 10.1007/s10333-010-0205-7
– ident: 1431_CR18
  doi: 10.1016/j.jhazmat.2004.10.003
– ident: 1431_CR15
– ident: 1431_CR6
– ident: 1431_CR2
– volume: 186
  start-page: 1701
  year: 2007
  ident: 1431_CR36
  publication-title: Appl. Math. Comput.
SSID ssj0002147028
Score 2.1826558
Snippet This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 250
SubjectTerms Agrochemicals
Algorithms
Applications of Mathematics
Applied mathematics
Computational mathematics
Computational Science and Engineering
Exact solutions
Fixed points (mathematics)
Fractal models
Fractional calculus
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nuclear Energy
Operations Research/Decision Theory
Operators (mathematics)
Original Paper
Perturbation
Qualitative analysis
Soil analysis
Soil pollution
Stability analysis
Theoretical
Title Caputo Fractal Fractional Order Derivative of Soil Pollution Model Due to Industrial and Agrochemical
URI https://link.springer.com/article/10.1007/s40819-022-01431-0
https://www.ncbi.nlm.nih.gov/pubmed/36091873
https://www.proquest.com/docview/2709943915
https://www.proquest.com/docview/2713307392
https://pubmed.ncbi.nlm.nih.gov/PMC9443653
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2199-5796
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147028
  issn: 2349-5103
  databaseCode: RSV
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6atIf20LTpI27ToEBvjcAPvXwMSZdckgbyYG9GluV2YbFDvJvfnxmt7bBNG2jBYLBGtiWPrE-P-T6Aryrxyide8lJVlgshJbfWJbzWXtpaGuW9CGIT-uzMTKf5eR8U1g273YclyfCnHoPdBPVenHafEycdDoI34Lkkthkao19cjzMrpLwTB1HVNBM5J8q4Plrmz7dZ75EewczHuyV_WzINPdFk6__K8AZe98iTHa5c5S088802bPUolPVtvNuGV6cjk2v3DvyRvVkuWjahaCrMHs5h-pD9INZOdowufBfYw1lbs4t2NmfnJJ9MRoyU1ubseOkZ3uJBJYTZpmKHP4NaV6AreA9Xk--XRye8l2bgDhFOzEvEUbVxTiSViZ1IbaotQj8vVZXXIrNSx6XyypW1zmNTZSp2iHsUXvDCulxmH2CzaRu_AwwhjqwzocpM5sKn0ipT28oa621SYUIEyfB5CtfzlpN8xrwYGZdDrRZYq0Wo1SKO4NuY52bF2vGk9e7w1Yu-BXdFqhE7U1iyjGB_TMa2RwsqtvHtkmxwhE9LnWkEH1dOMj4Oi5wnRmcR6DX3GQ2I13s9pZn9CvzeuRCZkpjzYHCih9f6eyk-_Zv5Z3iZrvwQj13YXNwu_Rd44e4Ws-52Dzb01OyFdnUPjkMbEQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB60CtoHq7VqtOoKvulCfuxuksfSelRsz0Kr9C1sNhM9OJLS3PXv78xeknJWBYVAIDubZDez2W9_zPcBvDcRGoxQy9JUViqltbTWRbJOUdtaZwZRebGJdDrNzs_zkz4orBt2uw9Lkv5PPQa7Ke69JO8-Z046GgTfhXuKZXZ4jH76fZxZ4UuhF1WNE5VLpozro2V-f5v1HukWzLy9W_KXJVPfE022_q8Mj-FRjzzF3spVnsAdbLZhq0ehom_j3TZsHo9Mrt1TwH17sVy0YsLRVJTdn_30ofjKrJ3igFz4yrOHi7YWp-1sLk5YPpmNBCutzcXBEgXd4kYlRNimEns_vFqXpyvYgW-TT2f7h7KXZpCOEE4oS8JRdeaciqosdCq2cWoJ-qE2VV6rxOo0LA0aV9ZpHmZVYkJHuMfQBVTW5Tp5BhtN2-ALEARxdJ0oUyY6Vxhra7LaVjazaKOKEgKIhs9TuJ63nOUz5sXIuOxrtaBaLXytFmEAH8Y8FyvWjr9a7w5fvehbcFfEKWFnDkvWAbwbk6nt8YKKbbBdsg2N8HmpMw7g-cpJxsdRkfMoS5MA0jX3GQ2Y13s9pZn99PzeuVKJ0ZTz4-BEN6_151K8_Dfzt_Dg8Oz4qDj6PP3yCh7GK5-kYxc2FpdLfA333dVi1l2-8a3rGi5cHQ0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL0aG0LwwMYYEBjDSLyBtXzYTvI4ratAQKkYoL1FjmNvlaqkWtv9fu510owymISQIkWKr53YuZaPP-45AG9UZJWNrOSlqjQXQkqutYm4S63UTmbKWuHFJtLRKDs7y8e_RPH70-6rLck2poFYmurF4axyh33gm6CRjNNJdOKnwwnxHdgSOJOhQ11fT3_0qyykwhN6gdU4ETkn-rgucubPxayPTjcg582Tk79tn_pRabj9__XZgYcdImVHrQs9gg1b78J2h05Z1_fnu_Dgc8_wOn8M9ljPlouGDSnKCrP7u19WZF-IzZMN0LWvPKs4axw7bSZTNiZZZTJipMA2ZYOlZVjEtXoI03XFjs69ipenMdiD78OTb8fveSfZwA0in5CXiK9cZoyIqiw0ItZxqhESWqmq3IlEyzQslVWmdGkeZlWiQoN4SOEDK7TJZfIENuumts-AIfSRLhGqTGQubCy1ypyudKatjipMCCBa_arCdHzmJKsxLXomZt-qBbZq4Vu1CAN42-eZtWwet1rvrzyg6Hr2vIhTxNQUriwDeN0nY5-kjRZd22ZJNjjzpy3QOICnrcP0r8Mq51GWJgGka67UGxDf93pKPbnwvN-5EImSmPPdyqGuP-vvtXj-b-av4N54MCw-fRh9fAH349Yl8dqHzcXl0r6Eu-ZqMZlfHviO9hPr5yXx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Caputo+Fractal+Fractional+Order+Derivative+of+Soil+Pollution+Model+Due+to+Industrial+and+Agrochemical&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=Priya%2C+P&rft.au=Sabarmathi%2C+A&rft.date=2022-01-01&rft.issn=2199-5796&rft.eissn=2199-5796&rft.volume=8&rft.issue=5&rft.spage=250&rft_id=info:doi/10.1007%2Fs40819-022-01431-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon