Caputo Fractal Fractional Order Derivative of Soil Pollution Model Due to Industrial and Agrochemical
This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard conditi...
Uloženo v:
| Vydáno v: | International journal of applied and computational mathematics Ročník 8; číslo 5; s. 250 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New Delhi
Springer India
01.01.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 2349-5103, 2199-5796, 2199-5796 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder’s fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders
(
0.5
<
η
<
1
)
and validating the theoretical parameter values of real time data by the support of MATLAB. |
|---|---|
| AbstractList | This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder's fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders ( 0.5 < η < 1 ) and validating the theoretical parameter values of real time data by the support of MATLAB.This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder's fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders ( 0.5 < η < 1 ) and validating the theoretical parameter values of real time data by the support of MATLAB. This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder's fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders and validating the theoretical parameter values of real time data by the support of MATLAB. This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder’s fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders (0.5<η<1) and validating the theoretical parameter values of real time data by the support of MATLAB. This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder’s fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders $$(0.5<\eta <1)$$ (0.5<η<1) and validating the theoretical parameter values of real time data by the support of MATLAB. This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five compartments. The qualitative analysis of solutions such as existence and uniqueness of the model is carried out by using the standard condition of Schauder’s fixed point theorem and Banach Contraction principle. The local and global stability are characterized with the help of basic reproduction number. The Ulam-Hyer stability is analyzed for the small perturbation. The Power law kernel is used to get a reliable result for the soil pollution model. Analytical solution studied by means of Modified Euler method. Numerical simulation of Euler scheme algorithm is performed to show the effects of various fractional orders ( 0.5 < η < 1 ) and validating the theoretical parameter values of real time data by the support of MATLAB. |
| ArticleNumber | 250 |
| Author | Priya, P. Sabarmathi, A. |
| Author_xml | – sequence: 1 givenname: P. orcidid: 0000-0002-6841-909X surname: Priya fullname: Priya, P. email: priyabarath612@gmail.com organization: PG and Research Department of Mathematics, Auxilium College (Autonomous), Thiruvalluvar University – sequence: 2 givenname: A. surname: Sabarmathi fullname: Sabarmathi, A. organization: PG and Research Department of Mathematics, Auxilium College (Autonomous), Thiruvalluvar University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36091873$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtv1DAUhS1URB_0D7BAkdiwCVw_YscbpGpKoVJRkYC15XFupq488WAnI_HvcZqWRxdd-cr-ztHxPcfkYIgDEvKKwjsKoN5nAS3VNTBWAxWc1vCMHDGqdd0oLQ_KzEWZKfBDcprzLQAwKhSw9gU55BI0bRU_Iriyu2mM1UWybrRhOX0cynidOkzVOSa_t6PfYxX76lv0ofoaQ5hmqPoSOwzV-YRVsbgcuimPyRepHbrqbJOiu8Gtdza8JM97GzKe3p8n5MfFx--rz_XV9afL1dlV7XiroV4zKfrWOUG7FpxglikroMFGdroX3DYK1hKlW_dKQ9uVXzitpCwXKKzTDT8hHxbf3bTeYudwGJMNZpf81qZfJlpv_n8Z_I3ZxL3RQnDZ8GLw9t4gxZ8T5tFsfXYYgh0wTtkwRTkHxTUr6JtH6G2cUlncTIHWgms6J3r9b6I_UR4aKEC7AC7FnBP2xvnRztstAX0wFMzct1n6NqVvc9e3gSJlj6QP7k-K-CLKBR42mP7GfkL1G-oBvKQ |
| CitedBy_id | crossref_primary_10_1007_s40819_024_01776_8 crossref_primary_10_1186_s13690_024_01429_8 crossref_primary_10_1016_j_cam_2024_115997 crossref_primary_10_1007_s40808_024_02231_9 crossref_primary_10_1016_j_cnsns_2024_108525 crossref_primary_10_1016_j_sajce_2024_01_003 crossref_primary_10_1007_s40808_025_02473_1 crossref_primary_10_1155_ijmm_9204263 crossref_primary_10_1007_s41939_024_00465_9 crossref_primary_10_3390_electronics14050977 crossref_primary_10_1088_1402_4896_ad1286 crossref_primary_10_3390_fractalfract8080476 crossref_primary_10_1007_s13226_024_00612_5 crossref_primary_10_3390_math11071677 |
| Cites_doi | 10.1016/j.padiff.2021.100164 10.1016/j.physa.2022.127429 10.3301/IJG.2015.10 10.1002/num.22707 10.1016/j.apm.2016.10.054 10.1016/j.aej.2022.01.030 10.1186/s13662-017-1456-z 10.1016/j.chaos.2021.110668 10.1073/pnas.27.4.222 10.1080/03067319.2021.1882449 10.1155/2016/6078298 10.1007/s40819-022-01334-0 10.1016/j.physd.2021.132981 10.12944/CWE.16.2.14 10.1142/S0218348X20400101 10.1016/j.chaos.2019.07.035 10.1007/s40840-019-00744-6 10.1140/epjs/s11734-022-00614-6 10.1016/j.physa.2022.127570 10.1016/j.chaos.2022.111937 10.1016/j.chaos.2005.08.199 10.1016/j.camwa.2009.08.020 10.1016/j.chaos.2018.10.023 10.1016/j.aej.2022.04.030 10.1016/j.aej.2021.04.103 10.1016/j.rinp.2021.105103 10.1016/j.rinp.2022.105189 10.1016/S0378-4371(97)00422-6 10.1016/j.cam.2016.05.019 10.1016/j.rinp.2022.105179 10.1002/num.22577 10.1007/s11270-017-3675-z 10.1016/j.rinp.2021.104823 10.1007/BF00475520 10.1007/s10333-010-0205-7 10.1016/j.jhazmat.2004.10.003 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature India Private Limited 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature India Private Limited 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2022 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2022 |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1007/s40819-022-01431-0 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 2199-5796 |
| ExternalDocumentID | PMC9443653 36091873 10_1007_s40819_022_01431_0 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 203 4.4 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATHPR AUKKA AVWKF AVXWI AXYYD AYFIA AZFZN BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX AFFHD AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PQGLB NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c3890-b264f8cc41d80c42a27a405e56d9f43a570b6e6cbf7908d360c97666cbe4ac953 |
| IEDL.DBID | RSV |
| ISSN | 2349-5103 2199-5796 |
| IngestDate | Tue Sep 30 16:55:47 EDT 2025 Fri Jul 11 16:12:43 EDT 2025 Wed Sep 17 23:57:03 EDT 2025 Mon Jul 21 06:00:48 EDT 2025 Sat Nov 29 08:01:01 EST 2025 Tue Nov 18 22:40:12 EST 2025 Mon Jul 21 06:07:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Ulam Hyer stability Agrochemical Power law kernel Fractal dimension Euler method |
| Language | English |
| License | The Author(s), under exclusive licence to Springer Nature India Private Limited 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3890-b264f8cc41d80c42a27a405e56d9f43a570b6e6cbf7908d360c97666cbe4ac953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6841-909X |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9443653 |
| PMID | 36091873 |
| PQID | 2709943915 |
| PQPubID | 2044256 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9443653 proquest_miscellaneous_2713307392 proquest_journals_2709943915 pubmed_primary_36091873 crossref_citationtrail_10_1007_s40819_022_01431_0 crossref_primary_10_1007_s40819_022_01431_0 springer_journals_10_1007_s40819_022_01431_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 1 year: 2022 text: 20220101 day: 1 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: India – name: Heidelberg |
| PublicationTitle | International journal of applied and computational mathematics |
| PublicationTitleAbbrev | Int. J. Appl. Comput. Math |
| PublicationTitleAlternate | Int J Appl Comput Math |
| PublicationYear | 2022 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | JKK Asamoah (1431_CR20) 2022; 34 M Turkyilmazoglu (1431_CR29) 2022; 600 JH Cushman (1431_CR12) 2010; 59 J-C Zhou (1431_CR19) 2022; 33 Shabir Ahmad and Amanullah (1431_CR43) 2022; 139 R Kanno (1431_CR21) 1998; 248 S Arivoli (1431_CR38) 2021; 16 1431_CR27 CM Pinto (1431_CR10) 2017; 312 1431_CR11 Omar Abu Arqub (1431_CR32) 2022; 8 Omar Abu Arqub (1431_CR35) 2020; 28 Muthyala Sai Chaithanya (1431_CR25) 2021 X-P Li (1431_CR48) 2022; 34 I Ameen (1431_CR5) 2017; 43 1431_CR18 1431_CR14 1431_CR15 1431_CR16 1431_CR44 1431_CR46 1431_CR40 1431_CR42 M Turkyilmazoglu (1431_CR26) 2021; 425 H Mohammadi (1431_CR17) 2021; 144 M Krosshavn (1431_CR22) 1993; 71 M Farman (1431_CR23) 2022; 61 M Turkyilmazoglu (1431_CR28) 2022; 598 Y Nazzal (1431_CR31) 2016; 135 1431_CR33 1431_CR34 1431_CR4 1431_CR3 M Rafej (1431_CR36) 2007; 186 1431_CR2 1431_CR30 1431_CR1 1431_CR8 1431_CR6 C Yu (1431_CR49) 2019; 128 U Skwara (1431_CR47) 2017; 1479 DH Hyers (1431_CR13) 1941; 27 MM El-Dessoky (1431_CR24) 2022; 61 AR Baias (1431_CR9) 2020; 43 Z Zhao (1431_CR50) 2018; 229 T Arora (1431_CR7) 2010; 8 1431_CR37 SM Ulam (1431_CR41) 1960 T Sherene (1431_CR45) 2009; 8 1431_CR39 |
| References_xml | – ident: 1431_CR44 – ident: 1431_CR34 doi: 10.1016/j.padiff.2021.100164 – volume: 598 year: 2022 ident: 1431_CR28 publication-title: Physica A doi: 10.1016/j.physa.2022.127429 – volume: 135 start-page: 210 issue: 2 year: 2016 ident: 1431_CR31 publication-title: Ital J Geosci doi: 10.3301/IJG.2015.10 – ident: 1431_CR40 doi: 10.1002/num.22707 – volume: 43 start-page: 78 year: 2017 ident: 1431_CR5 publication-title: Appl. Math. Model doi: 10.1016/j.apm.2016.10.054 – ident: 1431_CR4 doi: 10.1016/j.aej.2022.01.030 – ident: 1431_CR8 doi: 10.1186/s13662-017-1456-z – volume: 144 year: 2021 ident: 1431_CR17 publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2021.110668 – volume: 27 start-page: 222 issue: 4 year: 1941 ident: 1431_CR13 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.27.4.222 – year: 2021 ident: 1431_CR25 publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/03067319.2021.1882449 – ident: 1431_CR42 doi: 10.1155/2016/6078298 – volume: 8 start-page: 145 year: 2022 ident: 1431_CR32 publication-title: International Journal of Applied and Computational Mathematics doi: 10.1007/s40819-022-01334-0 – volume: 8 start-page: 613 year: 2009 ident: 1431_CR45 publication-title: Nat. Environ. Pollut. Technol. – ident: 1431_CR1 – volume: 425 year: 2021 ident: 1431_CR26 publication-title: Physica D doi: 10.1016/j.physd.2021.132981 – volume: 16 start-page: 477 issue: 2 year: 2021 ident: 1431_CR38 publication-title: Curr. World Environ. doi: 10.12944/CWE.16.2.14 – volume: 139 year: 2022 ident: 1431_CR43 publication-title: Chaos, Solitons Fractals – volume: 28 start-page: 2040010 year: 2020 ident: 1431_CR35 publication-title: Fractals doi: 10.1142/S0218348X20400101 – volume: 128 start-page: 275 year: 2019 ident: 1431_CR49 publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2019.07.035 – volume: 43 start-page: 1357 year: 2020 ident: 1431_CR9 publication-title: Bull. Malaysian Math. Sci. Soc. doi: 10.1007/s40840-019-00744-6 – ident: 1431_CR27 doi: 10.1140/epjs/s11734-022-00614-6 – volume: 600 year: 2022 ident: 1431_CR29 publication-title: Physica A doi: 10.1016/j.physa.2022.127570 – ident: 1431_CR16 doi: 10.1016/j.chaos.2022.111937 – volume: 1479 start-page: 1339 issue: 1 year: 2017 ident: 1431_CR47 publication-title: AIP Conf. Proc. – ident: 1431_CR11 doi: 10.1016/j.chaos.2005.08.199 – volume: 59 start-page: 1754 issue: 5 year: 2010 ident: 1431_CR12 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.08.020 – ident: 1431_CR30 doi: 10.1016/j.chaos.2018.10.023 – ident: 1431_CR46 – volume: 61 start-page: 10965 year: 2022 ident: 1431_CR23 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.04.030 – ident: 1431_CR33 – volume: 61 start-page: 729 year: 2022 ident: 1431_CR24 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.04.103 – volume: 33 year: 2022 ident: 1431_CR19 publication-title: Results Phys. doi: 10.1016/j.rinp.2021.105103 – volume: 34 year: 2022 ident: 1431_CR20 publication-title: Results Phys. doi: 10.1016/j.rinp.2022.105189 – volume: 248 start-page: 165 year: 1998 ident: 1431_CR21 publication-title: Physica A doi: 10.1016/S0378-4371(97)00422-6 – volume: 312 start-page: 240 year: 2017 ident: 1431_CR10 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.05.019 – ident: 1431_CR14 – volume: 34 year: 2022 ident: 1431_CR48 publication-title: Results in Physics doi: 10.1016/j.rinp.2022.105179 – ident: 1431_CR37 – volume-title: A Collection of the Mathematical Problems year: 1960 ident: 1431_CR41 – ident: 1431_CR39 doi: 10.1002/num.22577 – volume: 229 start-page: 23 issue: 1 year: 2018 ident: 1431_CR50 publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-017-3675-z – ident: 1431_CR3 doi: 10.1016/j.rinp.2021.104823 – volume: 71 start-page: 185 year: 1993 ident: 1431_CR22 publication-title: Water Air Soil Pollut. doi: 10.1007/BF00475520 – volume: 8 start-page: 247 issue: 3 year: 2010 ident: 1431_CR7 publication-title: Paddy water Environ. doi: 10.1007/s10333-010-0205-7 – ident: 1431_CR18 doi: 10.1016/j.jhazmat.2004.10.003 – ident: 1431_CR15 – ident: 1431_CR6 – ident: 1431_CR2 – volume: 186 start-page: 1701 year: 2007 ident: 1431_CR36 publication-title: Appl. Math. Comput. |
| SSID | ssj0002147028 |
| Score | 2.1826558 |
| Snippet | This paper narrates a non-linear and non-local Caputo fractal fractional operator of eco epidemic model with the advance of soil pollution considered in five... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 250 |
| SubjectTerms | Agrochemicals Algorithms Applications of Mathematics Applied mathematics Computational mathematics Computational Science and Engineering Exact solutions Fixed points (mathematics) Fractal models Fractional calculus Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Operators (mathematics) Original Paper Perturbation Qualitative analysis Soil analysis Soil pollution Stability analysis Theoretical |
| Title | Caputo Fractal Fractional Order Derivative of Soil Pollution Model Due to Industrial and Agrochemical |
| URI | https://link.springer.com/article/10.1007/s40819-022-01431-0 https://www.ncbi.nlm.nih.gov/pubmed/36091873 https://www.proquest.com/docview/2709943915 https://www.proquest.com/docview/2713307392 https://pubmed.ncbi.nlm.nih.gov/PMC9443653 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2199-5796 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147028 issn: 2349-5103 databaseCode: RSV dateStart: 20150301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6atIf20LTpI27ToEBvjcAPvXwMSZdckgbyYG9GluV2YbFDvJvfnxmt7bBNG2jBYLBGtiWPrE-P-T6Aryrxyide8lJVlgshJbfWJbzWXtpaGuW9CGIT-uzMTKf5eR8U1g273YclyfCnHoPdBPVenHafEycdDoI34Lkkthkao19cjzMrpLwTB1HVNBM5J8q4Plrmz7dZ75EewczHuyV_WzINPdFk6__K8AZe98iTHa5c5S088802bPUolPVtvNuGV6cjk2v3DvyRvVkuWjahaCrMHs5h-pD9INZOdowufBfYw1lbs4t2NmfnJJ9MRoyU1ubseOkZ3uJBJYTZpmKHP4NaV6AreA9Xk--XRye8l2bgDhFOzEvEUbVxTiSViZ1IbaotQj8vVZXXIrNSx6XyypW1zmNTZSp2iHsUXvDCulxmH2CzaRu_AwwhjqwzocpM5sKn0ipT28oa621SYUIEyfB5CtfzlpN8xrwYGZdDrRZYq0Wo1SKO4NuY52bF2vGk9e7w1Yu-BXdFqhE7U1iyjGB_TMa2RwsqtvHtkmxwhE9LnWkEH1dOMj4Oi5wnRmcR6DX3GQ2I13s9pZn9CvzeuRCZkpjzYHCih9f6eyk-_Zv5Z3iZrvwQj13YXNwu_Rd44e4Ws-52Dzb01OyFdnUPjkMbEQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB60CtoHq7VqtOoKvulCfuxuksfSelRsz0Kr9C1sNhM9OJLS3PXv78xeknJWBYVAIDubZDez2W9_zPcBvDcRGoxQy9JUViqltbTWRbJOUdtaZwZRebGJdDrNzs_zkz4orBt2uw9Lkv5PPQa7Ke69JO8-Z046GgTfhXuKZXZ4jH76fZxZ4UuhF1WNE5VLpozro2V-f5v1HukWzLy9W_KXJVPfE022_q8Mj-FRjzzF3spVnsAdbLZhq0ehom_j3TZsHo9Mrt1TwH17sVy0YsLRVJTdn_30ofjKrJ3igFz4yrOHi7YWp-1sLk5YPpmNBCutzcXBEgXd4kYlRNimEns_vFqXpyvYgW-TT2f7h7KXZpCOEE4oS8JRdeaciqosdCq2cWoJ-qE2VV6rxOo0LA0aV9ZpHmZVYkJHuMfQBVTW5Tp5BhtN2-ALEARxdJ0oUyY6Vxhra7LaVjazaKOKEgKIhs9TuJ63nOUz5sXIuOxrtaBaLXytFmEAH8Y8FyvWjr9a7w5fvehbcFfEKWFnDkvWAbwbk6nt8YKKbbBdsg2N8HmpMw7g-cpJxsdRkfMoS5MA0jX3GQ2Y13s9pZn99PzeuVKJ0ZTz4-BEN6_151K8_Dfzt_Dg8Oz4qDj6PP3yCh7GK5-kYxc2FpdLfA333dVi1l2-8a3rGi5cHQ0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL0aG0LwwMYYEBjDSLyBtXzYTvI4ratAQKkYoL1FjmNvlaqkWtv9fu510owymISQIkWKr53YuZaPP-45AG9UZJWNrOSlqjQXQkqutYm4S63UTmbKWuHFJtLRKDs7y8e_RPH70-6rLck2poFYmurF4axyh33gm6CRjNNJdOKnwwnxHdgSOJOhQ11fT3_0qyykwhN6gdU4ETkn-rgucubPxayPTjcg582Tk79tn_pRabj9__XZgYcdImVHrQs9gg1b78J2h05Z1_fnu_Dgc8_wOn8M9ljPlouGDSnKCrP7u19WZF-IzZMN0LWvPKs4axw7bSZTNiZZZTJipMA2ZYOlZVjEtXoI03XFjs69ipenMdiD78OTb8fveSfZwA0in5CXiK9cZoyIqiw0ItZxqhESWqmq3IlEyzQslVWmdGkeZlWiQoN4SOEDK7TJZfIENuumts-AIfSRLhGqTGQubCy1ypyudKatjipMCCBa_arCdHzmJKsxLXomZt-qBbZq4Vu1CAN42-eZtWwet1rvrzyg6Hr2vIhTxNQUriwDeN0nY5-kjRZd22ZJNjjzpy3QOICnrcP0r8Mq51GWJgGka67UGxDf93pKPbnwvN-5EImSmPPdyqGuP-vvtXj-b-av4N54MCw-fRh9fAH349Yl8dqHzcXl0r6Eu-ZqMZlfHviO9hPr5yXx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Caputo+Fractal+Fractional+Order+Derivative+of+Soil+Pollution+Model+Due+to+Industrial+and+Agrochemical&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=Priya%2C+P&rft.au=Sabarmathi%2C+A&rft.date=2022-01-01&rft.issn=2199-5796&rft.eissn=2199-5796&rft.volume=8&rft.issue=5&rft.spage=250&rft_id=info:doi/10.1007%2Fs40819-022-01431-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon |