Automatic Arrival Time Detection for Earthquakes Based on Stacked Denoising Autoencoder
The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio (SNR) of the seismic data is low, such as during microearthquakes. In this letter, a st...
Gespeichert in:
| Veröffentlicht in: | IEEE Geoscience and Remote Sensing Letters Jg. 15; H. 11; S. 1687 - 1691 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch Japanisch |
| Veröffentlicht: |
Piscataway
IEEE
01.11.2018
Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1545-598X, 1558-0571 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio (SNR) of the seismic data is low, such as during microearthquakes. In this letter, a stacked denoising autoencoder (SDAE) is proposed to smooth the background noise. The SDAE acts as a denoising filter for the seismic data. In the proposed algorithm, the SDAE is utilized to reduce background noise such that the onset time becomes more clear and sharp. Afterward, a hard decision with one threshold is used to detect the onset time of the event. The proposed algorithm is evaluated on both synthetic and field seismic data. As a result, the proposed algorithm outperforms the short-time average/long-time average and the Akaike information criterion algorithms. The proposed algorithm accurately picks the onset time of 94.1% for 407 field seismic waveforms with a standard deviation error of 0.10 s. In addition, the results indicate that the proposed algorithm can pick arrival times accurately for weak SNR seismic data with SNR higher than −14 dB. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1545-598X 1558-0571 |
| DOI: | 10.1109/LGRS.2018.2861218 |