Automatic Arrival Time Detection for Earthquakes Based on Stacked Denoising Autoencoder

The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio (SNR) of the seismic data is low, such as during microearthquakes. In this letter, a st...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE Geoscience and Remote Sensing Letters Ročník 15; číslo 11; s. 1687 - 1691
Hlavní autori: Saad, Omar M., Inoue, Koji, Shalaby, Ahmed, Samy, Lotfy, Sayed, Mohammed S.
Médium: Journal Article
Jazyk:English
Japanese
Vydavateľské údaje: Piscataway IEEE 01.11.2018
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1545-598X, 1558-0571
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio (SNR) of the seismic data is low, such as during microearthquakes. In this letter, a stacked denoising autoencoder (SDAE) is proposed to smooth the background noise. The SDAE acts as a denoising filter for the seismic data. In the proposed algorithm, the SDAE is utilized to reduce background noise such that the onset time becomes more clear and sharp. Afterward, a hard decision with one threshold is used to detect the onset time of the event. The proposed algorithm is evaluated on both synthetic and field seismic data. As a result, the proposed algorithm outperforms the short-time average/long-time average and the Akaike information criterion algorithms. The proposed algorithm accurately picks the onset time of 94.1% for 407 field seismic waveforms with a standard deviation error of 0.10 s. In addition, the results indicate that the proposed algorithm can pick arrival times accurately for weak SNR seismic data with SNR higher than −14 dB.
AbstractList The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio (SNR) of the seismic data is low, such as during microearthquakes. In this letter, a stacked denoising autoencoder (SDAE) is proposed to smooth the background noise. The SDAE acts as a denoising filter for the seismic data. In the proposed algorithm, the SDAE is utilized to reduce background noise such that the onset time becomes more clear and sharp. Afterward, a hard decision with one threshold is used to detect the onset time of the event. The proposed algorithm is evaluated on both synthetic and field seismic data. As a result, the proposed algorithm outperforms the short-time average/long-time average and the Akaike information criterion algorithms. The proposed algorithm accurately picks the onset time of 94.1% for 407 field seismic waveforms with a standard deviation error of 0.10 s. In addition, the results indicate that the proposed algorithm can pick arrival times accurately for weak SNR seismic data with SNR higher than −14 dB.
The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio (SNR) of the seismic data is low, such as during microearthquakes. In this letter, a stacked denoising autoencoder (SDAE) is proposed to smooth the background noise. The SDAE acts as a denoising filter for the seismic data. In the proposed algorithm, the SDAE is utilized to reduce background noise such that the onset time becomes more clear and sharp. Afterward, a hard decision with one threshold is used to detect the onset time of the event. The proposed algorithm is evaluated on both synthetic and field seismic data. As a result, the proposed algorithm outperforms the short-time average/long-time average and the Akaike information criterion algorithms. The proposed algorithm accurately picks the onset time of 94.1% for 407 field seismic waveforms with a standard deviation error of 0.10 s. In addition, the results indicate that the proposed algorithm can pick arrival times accurately for weak SNR seismic data with SNR higher than -14 dB.
Author Inoue, Koji
Shalaby, Ahmed
Samy, Lotfy
Sayed, Mohammed S.
Saad, Omar M.
Author_xml – sequence: 1
  givenname: Omar M.
  orcidid: 0000-0002-9989-8070
  surname: Saad
  fullname: Saad, Omar M.
  email: omar.saad@ejust.edu.eg
  organization: Department of Electronics and Communications Engineering, Egypt-Japan University of Science and Technology, Alexandria, Egypt
– sequence: 2
  givenname: Koji
  surname: Inoue
  fullname: Inoue, Koji
  organization: Department of I&E Visionaries, Kyushu University, Fukuoka, Japan
– sequence: 3
  givenname: Ahmed
  orcidid: 0000-0002-7326-2701
  surname: Shalaby
  fullname: Shalaby, Ahmed
  organization: Department of Computer Science, Faculty of Computers and Informatics, Benha University, Benha, Egypt
– sequence: 4
  givenname: Lotfy
  orcidid: 0000-0003-2764-3236
  surname: Samy
  fullname: Samy, Lotfy
  organization: National Research Institute of Astronomy and Geophysics, Helwan, Egypt
– sequence: 5
  givenname: Mohammed S.
  orcidid: 0000-0002-5514-6790
  surname: Sayed
  fullname: Sayed, Mohammed S.
  organization: Department of Electronics and Communications Engineering, Egypt-Japan University of Science and Technology, Alexandria, Egypt
BackLink https://cir.nii.ac.jp/crid/1870583642937216768$$DView record in CiNii
BookMark eNp9kE1LAzEQhoMo-PkDxMuCXrdmkk02OdZvoSD4gd6WNDvRaLtpk1Tw37tLxYMHL8lA3mdm8uySzS50SMgh0BEA1aeT6_uHEaOgRkxJYKA2yA4IoUoqatgc6kqUQquXbbKb0julrFKq3iHP41UOc5O9LcYx-k8zKx79HIsLzGizD13hQiwuTcxvy5X5wFScmYRt0T88ZGM_-vICu-CT716LoRd2NrQY98mWM7OEBz_3Hnm6unw8vyknd9e35-NJablSuXRgtVMSRb8Np0CnpuUGWwdOV0JPqZWMVa21U1FB_zHZ1kYzDbx1RjngjO-R43XfRQzLFabcvIdV7PqRDQNOJYCmtE_BOmVjSCmiaxbRz038aoA2g79m8NcM_poffz1T_2Gsz2ZQkqPxs3_JkzXZed9DwwmqpkJxWTHNawaylkPsaB3ziPi7kKp4DZXk347YiYA
CODEN IGRSBY
CitedBy_id crossref_primary_10_1007_s00521_019_04496_z
crossref_primary_10_1093_gji_ggac290
crossref_primary_10_1190_geo2020_0288_1
crossref_primary_10_1109_TGRS_2021_3089929
crossref_primary_10_1109_LGRS_2021_3066346
crossref_primary_10_1016_j_cageo_2024_105746
crossref_primary_10_1007_s10462_025_11229_3
crossref_primary_10_1109_JIOT_2021_3114420
crossref_primary_10_1016_j_jksus_2020_101263
crossref_primary_10_1109_ACCESS_2021_3073090
crossref_primary_10_1177_14759217231223078
crossref_primary_10_1109_LGRS_2020_2998580
crossref_primary_10_1109_ACCESS_2022_3147242
crossref_primary_10_1109_ACCESS_2025_3582855
crossref_primary_10_1109_TGRS_2020_3019520
crossref_primary_10_1016_j_jappgeo_2021_104428
crossref_primary_10_3390_s24051682
crossref_primary_10_1109_LGRS_2019_2942166
crossref_primary_10_1109_MGRS_2022_3145854
Cites_doi 10.1111/j.1365-246X.1991.tb06724.x
10.1109/TIP.2017.2766358
10.1016/j.cageo.2012.12.002
10.1016/j.cageo.2013.03.018
10.1109/JSTARS.2018.2803198
10.1785/0120090038
10.1785/BSSA0890030733
10.1109/LGRS.2016.2616510
10.1038/nature14539
10.1109/JSTARS.2014.2329330
10.1016/j.patrec.2017.03.021
10.1046/j.1365-246X.2002.01610.x
10.1016/j.neunet.2014.09.003
10.1016/j.neucom.2016.12.038
10.1016/S0031-9201(99)00054-0
10.1785/BSSA0680051521
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
RYH
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2018.2861218
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1691
ExternalDocumentID 10_1109_LGRS_2018_2861218
8437146
Genre orig-research
GrantInformation_xml – fundername: Egyptian Ministry of Higher Education
– fundername: Egypt-Japan University of Science and Technology
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
RYH
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c388t-f1c9f86e54883010bad3aedf1f9459b0c6224dccb5412866d7a92913dfa8f1323
IEDL.DBID RIE
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454208400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 08:26:32 EDT 2025
Sat Nov 29 05:53:56 EST 2025
Tue Nov 18 21:26:41 EST 2025
Mon Nov 10 09:16:21 EST 2025
Wed Aug 27 02:53:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
Japanese
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-f1c9f86e54883010bad3aedf1f9459b0c6224dccb5412866d7a92913dfa8f1323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9989-8070
0000-0003-2764-3236
0000-0002-5514-6790
0000-0002-7326-2701
PQID 2130611900
PQPubID 75725
PageCount 5
ParticipantIDs crossref_primary_10_1109_LGRS_2018_2861218
ieee_primary_8437146
proquest_journals_2130611900
nii_cinii_1870583642937216768
crossref_citationtrail_10_1109_LGRS_2018_2861218
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE Geoscience and Remote Sensing Letters
PublicationTitleAbbrev LGRS
PublicationYear 2018
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref2
ref1
ref17
ref16
vincent (ref9) 2010; 11
ref8
ref7
ref4
ref3
ref6
ref5
wang (ref14) 1999; 89
References_xml – ident: ref16
  doi: 10.1111/j.1365-246X.1991.tb06724.x
– ident: ref11
  doi: 10.1109/TIP.2017.2766358
– ident: ref4
  doi: 10.1016/j.cageo.2012.12.002
– ident: ref17
  doi: 10.1016/j.cageo.2013.03.018
– ident: ref10
  doi: 10.1109/JSTARS.2018.2803198
– ident: ref5
  doi: 10.1785/0120090038
– volume: 89
  start-page: 733
  year: 1999
  ident: ref14
  article-title: A simple orthonormalization method for stable and efficient computation of Green's functions
  publication-title: Bull Seismol Soc Amer
  doi: 10.1785/BSSA0890030733
– ident: ref3
  doi: 10.1109/LGRS.2016.2616510
– ident: ref7
  doi: 10.1038/nature14539
– ident: ref12
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref13
  doi: 10.1016/j.patrec.2017.03.021
– ident: ref15
  doi: 10.1046/j.1365-246X.2002.01610.x
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref9
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref6
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref8
  doi: 10.1016/j.neucom.2016.12.038
– ident: ref2
  doi: 10.1016/S0031-9201(99)00054-0
– ident: ref1
  doi: 10.1785/BSSA0680051521
SSID ssj0024887
ssib009367251
ssib017384843
ssib004845001
ssib053390199
ssib011874926
ssib019020920
ssib020738476
ssib006553000
Score 2.3395922
Snippet The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time...
SourceID proquest
crossref
nii
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1687
SubjectTerms Algorithms
Ambient noise
Animal behavior
Background noise
Decoding
Deep learning
Detection
Earthquakes
Feature extraction
Machine learning
Microearthquakes
Noise
Noise measurement
Noise reduction
P-wave arrival time of earthquakes
Seismic activity
Seismic data
Seismic waves
Seismological data
Signal to noise ratio
stacked denoising autoencoder (SDAE)
Waveforms
Title Automatic Arrival Time Detection for Earthquakes Based on Stacked Denoising Autoencoder
URI https://ieeexplore.ieee.org/document/8437146
https://cir.nii.ac.jp/crid/1870583642937216768
https://www.proquest.com/docview/2130611900
Volume 15
WOSCitedRecordID wos000454208400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQguLbQgtrTIB06ItHEezvhY6INDVSEeYm-RY0_UqCgLu1mk_ntmvOkiBELiEkXKxIk89sw3tucbgJcWKRQuo6SpiJJCp5TY1mVJbigv0JngQqTMv6yurnA6te834PU6F4aI4uEzOpLbuJcfZn4pS2XHWAi_nNmEzaqqVrlav3j1MBbDE0SQlBan4w6mTu3x5cWHj3KIC48yFMIs_M0HxaIq7Fn6rvvDHkcnc77zf7_3CLZHMKlOVtp_DBvU78KDsa759e0u3L-IhXtv9-DLyXKYRXpWFp93PL6UZH-oUxriYaxeMXpVZzyQrr8v3Q0t1Bv2b0HxA8ajPNUDi_azTpYWlLQlBJiB5k_g8_nZp7fvkrGoQuJzxCFptbctGuJIBXlypw0rw1FodWuL0japN-zUg_dNWbDrMiZUjhGUzkPrsOXQNX8KW_2sp2egGK3lmRcD2ZZFY9jqIzZFE7wl50jbCaR33Vz7kXFcCl98rWPkkdpaNFOLZupRMxN4tX7l24pu41_Ce6KEteDY_xM4ZF3yF-Wq2R6VmHOUxTgs04ajqwkc3Gm5Hifsos7YlxvN6Cjd_3urz-GhfHuVhngAW8N8SYdwz_8YusX8RRyLPwH1_dmN
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAiqXAi2oCy34wAmRNk4cr31soQ_EskJQxN4ix56oUats2c0i9d8z400XIRASlyhSJonlz56H7fkG4JU1GJTLMKmGiImSKSa2dlmSa8yVcTq4ECnzR8Px2Ewm9tMavFnlwiBiPHyG-3wb9_LD1C94qezAKOaX03fgbqFUJpfZWr-Y9Uwsh8c-QVJYM-n3MGVqD0ann7_wMS6znxmmzDK_WaFYVoVsS9s0f2jkaGZOHv5fAx_BZu9OisMl_o9hDdst2Ogrm1_cbMH901i692Ybvh0uumkkaCXxWUMjTHD-h3iHXTyO1QryX8UxDaWL7wt3iXNxRBYuCHpAHilN9kCi7bThxQXB32IKzICzJ_D15Pj87VnSl1VIfG5Ml9TS29popFjF0PROK4LDYahlbVVhq9RrMuvB-6pQZLy0DkNHPpTMQ-1MTcFr_hTW22mLOyDIX8szzyqyLlSlSe8bU6kqeIvOobQDSG-7ufQ95ziXvrgqY-yR2pKRKRmZskdmAK9Xr1wvCTf-JbzNIKwE-_4fwB5hSX_kqySNVJic4izyxDKpKb4awO4tymU_ZedlRtZcS_KP0md__-pL2Dg7_zgqR-_HH57DA27HMilxF9a72QL34J7_0TXz2Ys4Ln8CcYfc1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Arrival+Time+Detection+for+Earthquakes+Based+on+Stacked+Denoising+Autoencoder&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Saad%2C+Omar+M.&rft.au=Inoue%2C+Koji&rft.au=Shalaby%2C+Ahmed&rft.au=Samy%2C+Lotfy&rft.date=2018-11-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=15&rft.issue=11&rft.spage=1687&rft.epage=1691&rft_id=info:doi/10.1109%2FLGRS.2018.2861218&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2018_2861218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon