Automatic Arrival Time Detection for Earthquakes Based on Stacked Denoising Autoencoder
The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio (SNR) of the seismic data is low, such as during microearthquakes. In this letter, a st...
Uložené v:
| Vydané v: | IEEE Geoscience and Remote Sensing Letters Ročník 15; číslo 11; s. 1687 - 1691 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English Japanese |
| Vydavateľské údaje: |
Piscataway
IEEE
01.11.2018
Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio (SNR) of the seismic data is low, such as during microearthquakes. In this letter, a stacked denoising autoencoder (SDAE) is proposed to smooth the background noise. The SDAE acts as a denoising filter for the seismic data. In the proposed algorithm, the SDAE is utilized to reduce background noise such that the onset time becomes more clear and sharp. Afterward, a hard decision with one threshold is used to detect the onset time of the event. The proposed algorithm is evaluated on both synthetic and field seismic data. As a result, the proposed algorithm outperforms the short-time average/long-time average and the Akaike information criterion algorithms. The proposed algorithm accurately picks the onset time of 94.1% for 407 field seismic waveforms with a standard deviation error of 0.10 s. In addition, the results indicate that the proposed algorithm can pick arrival times accurately for weak SNR seismic data with SNR higher than −14 dB. |
|---|---|
| AbstractList | The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio (SNR) of the seismic data is low, such as during microearthquakes. In this letter, a stacked denoising autoencoder (SDAE) is proposed to smooth the background noise. The SDAE acts as a denoising filter for the seismic data. In the proposed algorithm, the SDAE is utilized to reduce background noise such that the onset time becomes more clear and sharp. Afterward, a hard decision with one threshold is used to detect the onset time of the event. The proposed algorithm is evaluated on both synthetic and field seismic data. As a result, the proposed algorithm outperforms the short-time average/long-time average and the Akaike information criterion algorithms. The proposed algorithm accurately picks the onset time of 94.1% for 407 field seismic waveforms with a standard deviation error of 0.10 s. In addition, the results indicate that the proposed algorithm can pick arrival times accurately for weak SNR seismic data with SNR higher than −14 dB. The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio (SNR) of the seismic data is low, such as during microearthquakes. In this letter, a stacked denoising autoencoder (SDAE) is proposed to smooth the background noise. The SDAE acts as a denoising filter for the seismic data. In the proposed algorithm, the SDAE is utilized to reduce background noise such that the onset time becomes more clear and sharp. Afterward, a hard decision with one threshold is used to detect the onset time of the event. The proposed algorithm is evaluated on both synthetic and field seismic data. As a result, the proposed algorithm outperforms the short-time average/long-time average and the Akaike information criterion algorithms. The proposed algorithm accurately picks the onset time of 94.1% for 407 field seismic waveforms with a standard deviation error of 0.10 s. In addition, the results indicate that the proposed algorithm can pick arrival times accurately for weak SNR seismic data with SNR higher than -14 dB. |
| Author | Inoue, Koji Shalaby, Ahmed Samy, Lotfy Sayed, Mohammed S. Saad, Omar M. |
| Author_xml | – sequence: 1 givenname: Omar M. orcidid: 0000-0002-9989-8070 surname: Saad fullname: Saad, Omar M. email: omar.saad@ejust.edu.eg organization: Department of Electronics and Communications Engineering, Egypt-Japan University of Science and Technology, Alexandria, Egypt – sequence: 2 givenname: Koji surname: Inoue fullname: Inoue, Koji organization: Department of I&E Visionaries, Kyushu University, Fukuoka, Japan – sequence: 3 givenname: Ahmed orcidid: 0000-0002-7326-2701 surname: Shalaby fullname: Shalaby, Ahmed organization: Department of Computer Science, Faculty of Computers and Informatics, Benha University, Benha, Egypt – sequence: 4 givenname: Lotfy orcidid: 0000-0003-2764-3236 surname: Samy fullname: Samy, Lotfy organization: National Research Institute of Astronomy and Geophysics, Helwan, Egypt – sequence: 5 givenname: Mohammed S. orcidid: 0000-0002-5514-6790 surname: Sayed fullname: Sayed, Mohammed S. organization: Department of Electronics and Communications Engineering, Egypt-Japan University of Science and Technology, Alexandria, Egypt |
| BackLink | https://cir.nii.ac.jp/crid/1870583642937216768$$DView record in CiNii |
| BookMark | eNp9kE1LAzEQhoMo-PkDxMuCXrdmkk02OdZvoSD4gd6WNDvRaLtpk1Tw37tLxYMHL8lA3mdm8uySzS50SMgh0BEA1aeT6_uHEaOgRkxJYKA2yA4IoUoqatgc6kqUQquXbbKb0julrFKq3iHP41UOc5O9LcYx-k8zKx79HIsLzGizD13hQiwuTcxvy5X5wFScmYRt0T88ZGM_-vICu-CT716LoRd2NrQY98mWM7OEBz_3Hnm6unw8vyknd9e35-NJablSuXRgtVMSRb8Np0CnpuUGWwdOV0JPqZWMVa21U1FB_zHZ1kYzDbx1RjngjO-R43XfRQzLFabcvIdV7PqRDQNOJYCmtE_BOmVjSCmiaxbRz038aoA2g79m8NcM_poffz1T_2Gsz2ZQkqPxs3_JkzXZed9DwwmqpkJxWTHNawaylkPsaB3ziPi7kKp4DZXk347YiYA |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_1007_s00521_019_04496_z crossref_primary_10_1093_gji_ggac290 crossref_primary_10_1190_geo2020_0288_1 crossref_primary_10_1109_TGRS_2021_3089929 crossref_primary_10_1109_LGRS_2021_3066346 crossref_primary_10_1016_j_cageo_2024_105746 crossref_primary_10_1007_s10462_025_11229_3 crossref_primary_10_1109_JIOT_2021_3114420 crossref_primary_10_1016_j_jksus_2020_101263 crossref_primary_10_1109_ACCESS_2021_3073090 crossref_primary_10_1177_14759217231223078 crossref_primary_10_1109_LGRS_2020_2998580 crossref_primary_10_1109_ACCESS_2022_3147242 crossref_primary_10_1109_ACCESS_2025_3582855 crossref_primary_10_1109_TGRS_2020_3019520 crossref_primary_10_1016_j_jappgeo_2021_104428 crossref_primary_10_3390_s24051682 crossref_primary_10_1109_LGRS_2019_2942166 crossref_primary_10_1109_MGRS_2022_3145854 |
| Cites_doi | 10.1111/j.1365-246X.1991.tb06724.x 10.1109/TIP.2017.2766358 10.1016/j.cageo.2012.12.002 10.1016/j.cageo.2013.03.018 10.1109/JSTARS.2018.2803198 10.1785/0120090038 10.1785/BSSA0890030733 10.1109/LGRS.2016.2616510 10.1038/nature14539 10.1109/JSTARS.2014.2329330 10.1016/j.patrec.2017.03.021 10.1046/j.1365-246X.2002.01610.x 10.1016/j.neunet.2014.09.003 10.1016/j.neucom.2016.12.038 10.1016/S0031-9201(99)00054-0 10.1785/BSSA0680051521 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE RYH AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2018.2861218 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CiNii Complete CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 1691 |
| ExternalDocumentID | 10_1109_LGRS_2018_2861218 8437146 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Egyptian Ministry of Higher Education – fundername: Egypt-Japan University of Science and Technology |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 RYH AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c388t-f1c9f86e54883010bad3aedf1f9459b0c6224dccb5412866d7a92913dfa8f1323 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454208400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Mon Jun 30 08:26:32 EDT 2025 Sat Nov 29 05:53:56 EST 2025 Tue Nov 18 21:26:41 EST 2025 Mon Nov 10 09:16:21 EST 2025 Wed Aug 27 02:53:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English Japanese |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c388t-f1c9f86e54883010bad3aedf1f9459b0c6224dccb5412866d7a92913dfa8f1323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9989-8070 0000-0003-2764-3236 0000-0002-5514-6790 0000-0002-7326-2701 |
| PQID | 2130611900 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | crossref_primary_10_1109_LGRS_2018_2861218 ieee_primary_8437146 proquest_journals_2130611900 nii_cinii_1870583642937216768 crossref_citationtrail_10_1109_LGRS_2018_2861218 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE Geoscience and Remote Sensing Letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2018 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers (IEEE) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref11 ref10 ref2 ref1 ref17 ref16 vincent (ref9) 2010; 11 ref8 ref7 ref4 ref3 ref6 ref5 wang (ref14) 1999; 89 |
| References_xml | – ident: ref16 doi: 10.1111/j.1365-246X.1991.tb06724.x – ident: ref11 doi: 10.1109/TIP.2017.2766358 – ident: ref4 doi: 10.1016/j.cageo.2012.12.002 – ident: ref17 doi: 10.1016/j.cageo.2013.03.018 – ident: ref10 doi: 10.1109/JSTARS.2018.2803198 – ident: ref5 doi: 10.1785/0120090038 – volume: 89 start-page: 733 year: 1999 ident: ref14 article-title: A simple orthonormalization method for stable and efficient computation of Green's functions publication-title: Bull Seismol Soc Amer doi: 10.1785/BSSA0890030733 – ident: ref3 doi: 10.1109/LGRS.2016.2616510 – ident: ref7 doi: 10.1038/nature14539 – ident: ref12 doi: 10.1109/JSTARS.2014.2329330 – ident: ref13 doi: 10.1016/j.patrec.2017.03.021 – ident: ref15 doi: 10.1046/j.1365-246X.2002.01610.x – volume: 11 start-page: 3371 year: 2010 ident: ref9 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref6 doi: 10.1016/j.neunet.2014.09.003 – ident: ref8 doi: 10.1016/j.neucom.2016.12.038 – ident: ref2 doi: 10.1016/S0031-9201(99)00054-0 – ident: ref1 doi: 10.1785/BSSA0680051521 |
| SSID | ssj0024887 ssib009367251 ssib017384843 ssib004845001 ssib053390199 ssib011874926 ssib019020920 ssib020738476 ssib006553000 |
| Score | 2.3395922 |
| Snippet | The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time... |
| SourceID | proquest crossref nii ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1687 |
| SubjectTerms | Algorithms Ambient noise Animal behavior Background noise Decoding Deep learning Detection Earthquakes Feature extraction Machine learning Microearthquakes Noise Noise measurement Noise reduction P-wave arrival time of earthquakes Seismic activity Seismic data Seismic waves Seismological data Signal to noise ratio stacked denoising autoencoder (SDAE) Waveforms |
| Title | Automatic Arrival Time Detection for Earthquakes Based on Stacked Denoising Autoencoder |
| URI | https://ieeexplore.ieee.org/document/8437146 https://cir.nii.ac.jp/crid/1870583642937216768 https://www.proquest.com/docview/2130611900 |
| Volume | 15 |
| WOSCitedRecordID | wos000454208400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQguLbQgtrTIB06ItHEezvhY6INDVSEeYm-RY0_UqCgLu1mk_ntmvOkiBELiEkXKxIk89sw3tucbgJcWKRQuo6SpiJJCp5TY1mVJbigv0JngQqTMv6yurnA6te834PU6F4aI4uEzOpLbuJcfZn4pS2XHWAi_nNmEzaqqVrlav3j1MBbDE0SQlBan4w6mTu3x5cWHj3KIC48yFMIs_M0HxaIq7Fn6rvvDHkcnc77zf7_3CLZHMKlOVtp_DBvU78KDsa759e0u3L-IhXtv9-DLyXKYRXpWFp93PL6UZH-oUxriYaxeMXpVZzyQrr8v3Q0t1Bv2b0HxA8ajPNUDi_azTpYWlLQlBJiB5k_g8_nZp7fvkrGoQuJzxCFptbctGuJIBXlypw0rw1FodWuL0japN-zUg_dNWbDrMiZUjhGUzkPrsOXQNX8KW_2sp2egGK3lmRcD2ZZFY9jqIzZFE7wl50jbCaR33Vz7kXFcCl98rWPkkdpaNFOLZupRMxN4tX7l24pu41_Ce6KEteDY_xM4ZF3yF-Wq2R6VmHOUxTgs04ajqwkc3Gm5Hifsos7YlxvN6Cjd_3urz-GhfHuVhngAW8N8SYdwz_8YusX8RRyLPwH1_dmN |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAiqXAi2oCy34wAmRNk4cr31soQ_EskJQxN4ix56oUats2c0i9d8z400XIRASlyhSJonlz56H7fkG4JU1GJTLMKmGiImSKSa2dlmSa8yVcTq4ECnzR8Px2Ewm9tMavFnlwiBiPHyG-3wb9_LD1C94qezAKOaX03fgbqFUJpfZWr-Y9Uwsh8c-QVJYM-n3MGVqD0ann7_wMS6znxmmzDK_WaFYVoVsS9s0f2jkaGZOHv5fAx_BZu9OisMl_o9hDdst2Ogrm1_cbMH901i692Ybvh0uumkkaCXxWUMjTHD-h3iHXTyO1QryX8UxDaWL7wt3iXNxRBYuCHpAHilN9kCi7bThxQXB32IKzICzJ_D15Pj87VnSl1VIfG5Ml9TS29popFjF0PROK4LDYahlbVVhq9RrMuvB-6pQZLy0DkNHPpTMQ-1MTcFr_hTW22mLOyDIX8szzyqyLlSlSe8bU6kqeIvOobQDSG-7ufQ95ziXvrgqY-yR2pKRKRmZskdmAK9Xr1wvCTf-JbzNIKwE-_4fwB5hSX_kqySNVJic4izyxDKpKb4awO4tymU_ZedlRtZcS_KP0md__-pL2Dg7_zgqR-_HH57DA27HMilxF9a72QL34J7_0TXz2Ys4Ln8CcYfc1A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Arrival+Time+Detection+for+Earthquakes+Based+on+Stacked+Denoising+Autoencoder&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Saad%2C+Omar+M.&rft.au=Inoue%2C+Koji&rft.au=Shalaby%2C+Ahmed&rft.au=Samy%2C+Lotfy&rft.date=2018-11-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=15&rft.issue=11&rft.spage=1687&rft.epage=1691&rft_id=info:doi/10.1109%2FLGRS.2018.2861218&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2018_2861218 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |