A branch and bound method for the solution of multiparametric mixed integer linear programming problems
In this paper, we present a novel algorithm for the solution of multiparametric mixed integer linear programming (mp-MILP) problems that exhibit uncertain objective function coefficients and uncertain entries in the right-hand side constraint vector. The algorithmic procedure employs a branch and bo...
Saved in:
| Published in: | Journal of global optimization Vol. 59; no. 2-3; pp. 527 - 543 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.07.2014
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0925-5001, 1573-2916 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we present a novel algorithm for the solution of multiparametric mixed integer linear programming (mp-MILP) problems that exhibit uncertain objective function coefficients and uncertain entries in the right-hand side constraint vector. The algorithmic procedure employs a branch and bound strategy that involves the solution of a multiparametric linear programming sub-problem at leaf nodes and appropriate comparison procedures to update the tree. McCormick relaxation procedures are employed to overcome the presence of bilinear terms in the model. The algorithm generates an envelope of parametric profiles, containing the optimal solution of the mp-MILP problem. The parameter space is partitioned into polyhedral convex critical regions. Two examples are presented to illustrate the steps of the proposed algorithm. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-014-0143-9 |