An image processing and machine learning solution to automate Egyptian cotton lint grading
Egyptian cotton is one of the most important commodities for the Egyptian economy and is renowned globally for its quality, which is largely assessed and graded by manual inspection. This grading has several drawbacks, including significant labor requirements, low inspection efficiency, and influenc...
Uloženo v:
| Vydáno v: | Textile research journal Ročník 93; číslo 11-12; s. 2558 - 2575 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London, England
SAGE Publications
01.06.2023
Sage Publications Ltd |
| Témata: | |
| ISSN: | 0040-5175, 1746-7748, 1746-7748 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Egyptian cotton is one of the most important commodities for the Egyptian economy and is renowned globally for its quality, which is largely assessed and graded by manual inspection. This grading has several drawbacks, including significant labor requirements, low inspection efficiency, and influence from inspection conditions such as light and human subjectivity. This work proposes a low-cost solution to replace manual inspection with classification models to grade Egyptian cotton lint using images captured by a charge-coupled device camera. While this method has been evaluated for classifying US and Chinese upland cotton staples, it has not been tested on Egyptian cotton, which has unique characteristics and grading requirements. Furthermore, the methodology to develop these classification models has been expanded to include image processing techniques that remove the influence of trash on color measurements and extract features that capture the intra-sample variance of the cotton samples. Three different supervised machine learning algorithms were evaluated: artificial neural networks; random forest; and support vector machines. The highest accuracy models (82.13–90.21%) used a random forest algorithm. The models’ accuracy was limited by the human error associated with labeling the cotton samples used to develop the classification models. Unsupervised machine learning methods, including k-means clustering, hierarchical clustering, and Gaussian mixture models, were used to indicate where labeling errors occurred. |
|---|---|
| AbstractList | Egyptian cotton is one of the most important commodities for the Egyptian economy and is renowned globally for its quality, which is largely assessed and graded by manual inspection. This grading has several drawbacks, including significant labor requirements, low inspection efficiency, and influence from inspection conditions such as light and human subjectivity. This work proposes a low-cost solution to replace manual inspection with classification models to grade Egyptian cotton lint using images captured by a charge-coupled device camera. While this method has been evaluated for classifying US and Chinese upland cotton staples, it has not been tested on Egyptian cotton, which has unique characteristics and grading requirements. Furthermore, the methodology to develop these classification models has been expanded to include image processing techniques that remove the influence of trash on color measurements and extract features that capture the intra-sample variance of the cotton samples. Three different supervised machine learning algorithms were evaluated: artificial neural networks; random forest; and support vector machines. The highest accuracy models (82.13–90.21%) used a random forest algorithm. The models’ accuracy was limited by the human error associated with labeling the cotton samples used to develop the classification models. Unsupervised machine learning methods, including k-means clustering, hierarchical clustering, and Gaussian mixture models, were used to indicate where labeling errors occurred. |
| Author | Emaish, Haitham H Fisher, Oliver J El-Banna, Aly AA Rady, Ahmed Watson, Nicholas J |
| Author_xml | – sequence: 1 givenname: Oliver J orcidid: 0000-0002-1158-6751 surname: Fisher fullname: Fisher, Oliver J organization: Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, UK – sequence: 2 givenname: Ahmed surname: Rady fullname: Rady, Ahmed organization: Teagasc Food Research Centre, Ireland – sequence: 3 givenname: Aly AA surname: El-Banna fullname: El-Banna, Aly AA organization: Department of Plant Production, Faculty of Agriculture, Saba Basha, Alexandria University, Egypt – sequence: 4 givenname: Nicholas J surname: Watson fullname: Watson, Nicholas J email: nicholas.watson@nottingham.ac.uk organization: Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, UK – sequence: 5 givenname: Haitham H surname: Emaish fullname: Emaish, Haitham H organization: Department of Soils and Agricultural Chemistry, Faculty of Agriculture, Saba Basha, Alexandria University, Egypt |
| BookMark | eNp9kc1KxDAURoMoOKM-gLuAGzfVpE2adDkM4w8MuNCVm3InTWqkk4xJupi3N2UEQdHVhdxzLh9f5ujYeacRuqTkhlIhbglhhFPBy5JSxrmgR2hGBasLIZg8RrNpX0zAKZrH-E4IkVLIGXpdOGy30Gu8C17pGK3rMbgOb0G9WafxoCG46TH6YUzWO5w8hjH5LSSNV_1-lyw4rHxKeTdYl3AfoMvGOToxMER98TXP0PPd6mX5UKyf7h-Xi3WhKilT0fHOGN5UFSfAgVYlU9JoMKWgFKquI1w2ytCyrOWG1rDJrAHCVQdEGFadoevD1Zz_Y9QxtVsblR4GcNqPsS1lxUrCGlJl9OoH-u7H4HK2TFHR1HXDeKbogVLBxxi0aXchNxT2LSXt1HX7q-vsiB-OsgmmtlIAO_xr3hzMmP_gO8_fwiceoJFO |
| CitedBy_id | crossref_primary_10_1177_00405175241265510 crossref_primary_10_3390_s23218671 crossref_primary_10_3390_agriengineering7050127 |
| Cites_doi | 10.1007/978-1-4614-7138-7_10 10.1177/004051750007000508 10.1177/004051750207200905 10.3390/s17030518 10.1016/j.compeleceng.2015.06.022 10.1109/ICIAFS.2012.6419904 10.3390/info12050196 10.1117/12.587334 10.1016/j.procs.2020.06.149 10.2134/cftm2017.07.0048 10.1016/j.knosys.2017.02.014 10.1177/004051759906901202 10.1016/j.ultras.2021.106468 10.1177/0040517513490055 10.1109/ICDM.2010.35 10.1016/j.enbuild.2017.04.038 10.3390/electronics9111795 10.1177/0040517513478481 10.1109/LLS.2016.2615086 10.13031/2013.18307 10.56454/ZELZ3209 10.1016/j.rser.2017.02.023 10.1186/1754-1611-8-29 10.1016/j.ins.2016.04.040 10.13031/2013.32584 10.1371/journal.pone.0260971 10.1016/j.indcrop.2015.11.022 10.1117/3.2524677 10.1088/2053-1591/aba3e4 10.2118/109018-PA 10.1117/12.164326 10.1177/004051759806800505 10.1038/s41598-019-47399-8 10.1177/004051759806801101 10.1007/978-3-319-94478-4_15 10.1109/COMST.2021.3090430 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 |
| Copyright_xml | – notice: The Author(s) 2022 |
| DBID | AFRWT AAYXX CITATION 7SR 8FD F28 FR3 JG9 7S9 L.6 |
| DOI | 10.1177/00405175221145571 |
| DatabaseName | Sage Journals Online Open Access CrossRef Engineered Materials Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Materials Research Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1746-7748 |
| EndPage | 2575 |
| ExternalDocumentID | 10_1177_00405175221145571 10.1177_00405175221145571 |
| GroupedDBID | -ET -TM -~X .-4 .2G .2L .2N .DC 01A 09Z 0R~ 123 18M 1~K 29Q 31S 31V 31W 31X 31Y 31Z 3EH 4.4 54M 56W 5VS 7X2 88I 8AF 8FE 8FG 8FH 8FW 8R4 8R5 AABCJ AABOD AACKU AACTG AADIR AADUE AAGGD AAGLT AAHBH AAJOX AAJPV AAKTJ AAMFR AANSI AAPEO AAQDB AAQXI AARIX AATAA AATBZ AAWLO AAYTG ABAWP ABCCA ABCJG ABDWY ABEIX ABFWQ ABFXH ABHKI ABHQH ABIDT ABJCF ABJNI ABKRH ABLUO ABPNF ABQKF ABQPY ABQXT ABRHV ABUJY ABUWG ABYTW ACAEP ACDXX ACFUR ACFZE ACGBL ACGFO ACGFS ACGOD ACIWK ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUFS ACUIR ACXKE ADDLC ADEBD ADEIA ADFRT ADNMO ADNON ADNWM ADPEE ADRRZ ADSTG ADTBJ ADTOS ADUKL ADVBO ADYCS AEDFJ AEDXQ AEILP AENEX AEOBU AEPTA AEQLS AESMA AESZF AEUHG AEUYN AEVPJ AEWDL AEWHI AEXNY AFEET AFFNX AFKBI AFKRA AFKRG AFMOU AFQAA AFRAH AFRWT AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWFA AGWNL AHDMH AHHFK AHWHD AIZZC AJEFB AJUZI ALMA_UNASSIGNED_HOLDINGS ANDLU ARTOV ATCPS AUTPY AUVAJ AYAKG AYPQM AZFZN AZQEC B8O B8S B8T B8Z B93 B94 BBRGL BCR BCU BDDNI BDZRT BEC BENPR BGLVJ BHPHI BKOMP BLC BMVBW BPACV BPHCQ BYIEH CAG CBRKF CCGJY CCPQU CEADM CFDXU COF CORYS CS3 CZ9 D1I DD0 DD~ DE- DG~ DH. DO- DOPDO DU5 DV7 DV8 DWQXO D~Y E.- EBS EHMNL EJD FEDTE FHBDP GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HF~ HVGLF HZ~ J8X K.F KB. KC. L6V LPU M0K M2P M2Q M7S N9A O9- OFU P.B P2P PDBOC PEA PHGZM PHGZT PQQKQ PROAC PTHSS Q1R Q2X Q7O Q7P Q7X Q82 Q83 ROL RXW S01 S0X SASJQ SAUOL SBI SCNPE SFB SFC SFK SFT SGA SGP SGU SGV SGX SGZ SHB SHF SHM SJFOW SPJ SPK SPP SPV SQCSI SSDHQ STM TAE U5U WH7 XOL ZE2 ZPLXX ZPPRI ZRKOI ~32 ~KM 0SE AAEJI AAPII AAYXX ABUAX ACCVC AFFHD AJGYC AJHME AJVBE AMNSR CITATION PQGLB 7SR 8FD F28 FR3 JG9 7S9 L.6 |
| ID | FETCH-LOGICAL-c388t-d5dff593350a5a1324c8feaf2711a3dd0589cf12268b16abf59fa05cda07f43 |
| IEDL.DBID | AEVPJ |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000901486600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0040-5175 1746-7748 |
| IngestDate | Sat Sep 27 16:40:27 EDT 2025 Mon Nov 10 02:55:35 EST 2025 Tue Nov 18 22:12:11 EST 2025 Sat Nov 29 08:17:40 EST 2025 Tue Jun 17 22:28:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11-12 |
| Keywords | Industry 4.0 cotton lint industrial crop machine learning Digital manufacturing optical imaging |
| Language | English |
| License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c388t-d5dff593350a5a1324c8feaf2711a3dd0589cf12268b16abf59fa05cda07f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1158-6751 |
| OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/00405175221145571?utm_source=summon&utm_medium=discovery-provider |
| PQID | 2817966945 |
| PQPubID | 25116 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2834204903 proquest_journals_2817966945 crossref_primary_10_1177_00405175221145571 crossref_citationtrail_10_1177_00405175221145571 sage_journals_10_1177_00405175221145571 |
| PublicationCentury | 2000 |
| PublicationDate | 20230600 2023-06-00 20230601 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
| PublicationDecade | 2020 |
| PublicationPlace | London, England |
| PublicationPlace_xml | – name: London, England – name: Princeton |
| PublicationTitle | Textile research journal |
| PublicationYear | 2023 |
| Publisher | SAGE Publications Sage Publications Ltd |
| Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
| References | 2013; 3 Bourland, Hogan, Jones 2010; 14 Liu, He, Shankle 2016; 79 Kuzy, Li 2017; 17 Wei, Zhang, Deng 2020; 9 Xu, Su, Dale 2000; 70 He, Wang, Arandjelovíc 2021; 12 Al-Fattah, A Al-Naim, Al-Naim 2009; 12 Eder, Morgan, Agrilife 2018; 4 Thakur, Daigle, Qian 2016; 2 Yildiz, Bilbao, Sproul 2017; 73 Heng, Chen, Shen 2020; 7 Mustafic, Li, Haidekker 2014; 8 Forestier, Wemmert 2016; 361–362 Kang, Kim 2016; 72 Xu, Fang, Watson 2016; 68 Liu, Gamble, Thibodeaux 2010; 53 Sheikh Hassani, Green 2019; 9 Dhehibi, El-Shahat, Frija 2016; 5 Ahmad, Mourshed, Rezgui 2017; 147 Shaheen, Rauf, Taj 2021; 16 Wang, Yang, Li 2015; 46 Matusiak, Walawska 2010; 18 Xu, Fang, Huang 1998; 68 Lieberman, Patil 1994; 33 Ahmed, Delin 2019; 11 Delhom, Martin, Schreiner 2017; 21 Hussein, El-Marakby, Tolb 2020; 28 Thomasson, Shearer, Byler 2005; 48 Lv, Gao, Rigall 2020; 174 Liu, Foulk 2013; 83 Cui, Cai, Rodgers 2014; 84 Levatić, Ceci, Kocev 2017; 123 Bowler, Watson 2021; 115 Cheng, Ghorashi, Duckett 1999; 69 Holst GC (bibr33-00405175221145571) 2011 bibr47-00405175221145571 bibr14-00405175221145571 Matusiak M (bibr15-00405175221145571) 2010; 18 bibr4-00405175221145571 bibr21-00405175221145571 bibr27-00405175221145571 bibr9-00405175221145571 bibr19-00405175221145571 bibr26-00405175221145571 bibr13-00405175221145571 bibr50-00405175221145571 Bourland FM (bibr45-00405175221145571) 2010; 14 bibr30-00405175221145571 Kim S. (bibr41-00405175221145571) 2017 bibr8-00405175221145571 bibr23-00405175221145571 bibr49-00405175221145571 bibr39-00405175221145571 bibr38-00405175221145571 Ahmed YN (bibr3-00405175221145571) 2019; 11 bibr22-00405175221145571 bibr12-00405175221145571 bibr32-00405175221145571 bibr42-00405175221145571 bibr18-00405175221145571 bibr28-00405175221145571 bibr48-00405175221145571 bibr17-00405175221145571 Hussein MG (bibr11-00405175221145571) 2020; 28 bibr37-00405175221145571 Dhehibi B (bibr2-00405175221145571) 2016; 5 bibr31-00405175221145571 bibr7-00405175221145571 bibr24-00405175221145571 Sandbhor S (bibr44-00405175221145571) bibr6-00405175221145571 bibr29-00405175221145571 bibr16-00405175221145571 bibr40-00405175221145571 bibr10-00405175221145571 bibr20-00405175221145571 Yu C. (bibr1-00405175221145571) bibr36-00405175221145571 bibr5-00405175221145571 bibr46-00405175221145571 (bibr43-00405175221145571) 2013; 3 bibr25-00405175221145571 bibr35-00405175221145571 Bishop CM. (bibr34-00405175221145571) 2006 |
| References_xml | – volume: 4 start-page: 1 year: 2018 end-page: 8 article-title: Impact of cotton leaf and bract characteristics on cotton leaf grade publication-title: Crop Forage Turfgrass Manag – volume: 79 start-page: 283 year: 2016 end-page: 286 article-title: Compositional features of cotton plant biomass fractions characterized by attenuated total reflection Fourier transform infrared spectroscopy publication-title: Ind Crops Prod – volume: 174 start-page: 729 year: 2020 end-page: 734 article-title: Cotton appearance grade classification based on machine learning publication-title: Procedia Comput Sci – volume: 68 start-page: 779 year: 2016 end-page: 787 article-title: Investigating new factors in cotton color grading publication-title: Text Res J – volume: 48 start-page: 421 year: 2005 end-page: 438 article-title: Image-processing solution to cotton color measurement problems: Part I. instrument design and construction publication-title: Trans ASAE – volume: 33 start-page: 1642 year: 1994 end-page: 1653 article-title: Clustering and neural networks to categorize cotton trash publication-title: Opt Eng – volume: 147 start-page: 77 year: 2017 end-page: 89 article-title: Trees vs Neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy Build – volume: 3 start-page: 52 year: 2013 end-page: 56 article-title: Exploration of the validity of utilizing different aspects of color attributes to signalize and signify the lint grade of Egyptian cottons publication-title: Indian J Fibre Text Res – volume: 16 start-page: e0260971 year: 2021 article-title: Path analysis based on genetic association of yield components and insects pest in upland cotton varieties publication-title: PLoS One – volume: 68 start-page: 351 year: 1998 end-page: 358 article-title: Cotton color measurements by an imaging colorimeter publication-title: Text Res J – volume: 123 start-page: 41 year: 2017 end-page: 60 article-title: Self-training for multi-target regression with tree ensembles publication-title: Knowl Based Syst – volume: 12 start-page: 196 year: 2021 article-title: Edge detecting method for microscopic image of cotton fiber cross-section using RCF deep neural network publication-title: Information – volume: 53 start-page: 1341 year: 2010 end-page: 1348 article-title: UV/visible/near-infrared reflectance models for the rapid and non-destructive prediction and classification of cotton color and physical indices publication-title: Trans ASABE – volume: 83 start-page: 928 year: 2013 end-page: 936 article-title: Potential of visible and near infrared spectroscopy in the determination of instrumental leaf grade in lint cottons publication-title: Text Res J – volume: 69 start-page: 893 year: 1999 end-page: 903 article-title: Color grading of cotton part II: color grading with an expert system and neural networks publication-title: Text Res J – volume: 361–362 start-page: 48 year: 2016 end-page: 65 article-title: Semi-supervised learning using multiple clusterings with limited labeled data publication-title: Inf Sci (Ny) – volume: 5 start-page: 38 year: 2016 article-title: Growth in total factor productivity in the Egyptian agriculture sector: growth accounting and econometric assessments of sources of growth publication-title: Sustain Agric Res – volume: 14 start-page: 53 year: 2010 end-page: 63 article-title: Development and utility of Q-score for characterizing cotton fiber quality publication-title: J Cotton Sci – volume: 115 start-page: 106468 year: 2021 article-title: Transfer learning for process monitoring using reflection-mode ultrasonic sensing publication-title: Ultrasonics – volume: 84 start-page: 214 year: 2014 end-page: 222 article-title: An investigation into the intra-sample variation in the color of cotton using image analysis publication-title: Text Res J – volume: 28 start-page: 191 year: 2020 end-page: 205 article-title: Relationship between fiber cotton grade and some related characteristics of long and extra-long staple Egyptian cotton varieties (Gossypium barbadense. L). publication-title: Arab Univ J Agric Sci – volume: 17 start-page: 518 year: 2017 article-title: A pulsed thermographic imaging system for detection and identification of cotton foreign matter publication-title: Sensors – volume: 12 start-page: 96 year: 2009 end-page: 108 article-title: Artificial-intelligence technology predicts relative permeability of giant carbonate reservoirs publication-title: SPE Reserv Eval Eng – volume: 7 start-page: 75101 year: 2020 article-title: Study on the measurement and evaluation of cotton color using image analysis publication-title: Mater Res Express – volume: 2 start-page: 43 year: 2016 end-page: 46 article-title: A multimetric evaluation of stratified random sampling for classification: a case study publication-title: IEEE Life Sci Lett – volume: 72 start-page: 776 year: 2016 end-page: 782 article-title: Objective evaluation of the trash and color of raw cotton by image processing and neural network publication-title: Text Res J – volume: 21 start-page: 210 year: 2017 end-page: 219 article-title: Engineering and ginning textile industry needs publication-title: J Cotton Sci – volume: 9 start-page: 1795 year: 2020 article-title: Content estimation of foreign fibers in cotton based on deep learning publication-title: Electronics – volume: 46 start-page: 500 year: 2015 end-page: 510 article-title: A fast image segmentation algorithm for detection of pseudo-foreign fibers in lint cotton publication-title: Comput Electr Eng – volume: 70 start-page: 430 year: 2000 end-page: 436 article-title: Cotton color grading with a neural network publication-title: Text Res J – volume: 8 start-page: 1 year: 2014 end-page: 11 article-title: Blue and UV LED-induced fluorescence in cotton foreign matter publication-title: J Biol Eng – volume: 73 start-page: 1104 year: 2017 end-page: 1122 article-title: A review and analysis of regression and machine learning models on commercial building electricity load forecasting publication-title: Renew Sustain Energy Rev – volume: 11 start-page: 88 year: 2019 end-page: 97 article-title: Current situation of Egyptian cotton: econometrics study using ARDL model publication-title: J Agric Sci – volume: 18 start-page: 17 year: 2010 end-page: 23 article-title: Important aspects of cotton colour measurement publication-title: Fibres Text East Eur – volume: 9 start-page: 1 year: 2019 end-page: 10 article-title: Multi-view co-training for microRNA prediction publication-title: Sci Rep – ident: bibr38-00405175221145571 doi: 10.1007/978-1-4614-7138-7_10 – ident: bibr9-00405175221145571 doi: 10.1177/004051750007000508 – ident: bibr24-00405175221145571 doi: 10.1177/004051750207200905 – start-page: 29 volume-title: Woodhead publishing series in textiles ident: bibr1-00405175221145571 – ident: bibr28-00405175221145571 doi: 10.3390/s17030518 – volume-title: MATLAB Deep learning with machine learning, neural networks and artificial intelligence year: 2017 ident: bibr41-00405175221145571 – ident: bibr12-00405175221145571 doi: 10.1016/j.compeleceng.2015.06.022 – ident: bibr26-00405175221145571 doi: 10.1109/ICIAFS.2012.6419904 – volume: 3 start-page: 52 year: 2013 ident: bibr43-00405175221145571 publication-title: Indian J Fibre Text Res – ident: bibr31-00405175221145571 doi: 10.3390/info12050196 – ident: bibr32-00405175221145571 doi: 10.1117/12.587334 – ident: bibr13-00405175221145571 doi: 10.1016/j.procs.2020.06.149 – ident: bibr8-00405175221145571 doi: 10.2134/cftm2017.07.0048 – volume-title: Pattern recognition and machine learning (information science and statistics) year: 2006 ident: bibr34-00405175221145571 – volume: 18 start-page: 17 year: 2010 ident: bibr15-00405175221145571 publication-title: Fibres Text East Eur – ident: bibr4-00405175221145571 – ident: bibr46-00405175221145571 doi: 10.1016/j.knosys.2017.02.014 – volume: 11 start-page: 88 year: 2019 ident: bibr3-00405175221145571 publication-title: J Agric Sci – ident: bibr20-00405175221145571 doi: 10.1177/004051759906901202 – ident: bibr49-00405175221145571 doi: 10.1016/j.ultras.2021.106468 – ident: bibr21-00405175221145571 doi: 10.1177/0040517513490055 – volume: 5 start-page: 38 year: 2016 ident: bibr2-00405175221145571 publication-title: Sustain Agric Res – ident: bibr42-00405175221145571 doi: 10.1109/ICDM.2010.35 – ident: bibr36-00405175221145571 doi: 10.1016/j.enbuild.2017.04.038 – ident: bibr5-00405175221145571 – ident: bibr14-00405175221145571 doi: 10.3390/electronics9111795 – ident: bibr29-00405175221145571 doi: 10.1177/0040517513478481 – ident: bibr37-00405175221145571 – ident: bibr39-00405175221145571 doi: 10.1109/LLS.2016.2615086 – volume: 14 start-page: 53 year: 2010 ident: bibr45-00405175221145571 publication-title: J Cotton Sci – ident: bibr22-00405175221145571 doi: 10.13031/2013.18307 – ident: bibr7-00405175221145571 doi: 10.56454/ZELZ3209 – ident: bibr35-00405175221145571 doi: 10.1016/j.rser.2017.02.023 – ident: bibr27-00405175221145571 doi: 10.1186/1754-1611-8-29 – ident: bibr47-00405175221145571 doi: 10.1016/j.ins.2016.04.040 – start-page: 481 volume-title: Information systems design and intelligent applications ident: bibr44-00405175221145571 – ident: bibr16-00405175221145571 doi: 10.13031/2013.32584 – ident: bibr10-00405175221145571 doi: 10.1371/journal.pone.0260971 – ident: bibr30-00405175221145571 doi: 10.1016/j.indcrop.2015.11.022 – volume-title: CMOS/CCD sensors and camera systems year: 2011 ident: bibr33-00405175221145571 doi: 10.1117/3.2524677 – ident: bibr23-00405175221145571 doi: 10.1088/2053-1591/aba3e4 – ident: bibr40-00405175221145571 doi: 10.2118/109018-PA – ident: bibr25-00405175221145571 doi: 10.1117/12.164326 – ident: bibr18-00405175221145571 doi: 10.1177/004051759806800505 – ident: bibr48-00405175221145571 doi: 10.1038/s41598-019-47399-8 – ident: bibr19-00405175221145571 doi: 10.1177/004051759806801101 – ident: bibr17-00405175221145571 doi: 10.1007/978-3-319-94478-4_15 – ident: bibr50-00405175221145571 doi: 10.1109/COMST.2021.3090430 – volume: 28 start-page: 191 year: 2020 ident: bibr11-00405175221145571 publication-title: Arab Univ J Agric Sci – ident: bibr6-00405175221145571 |
| SSID | ssj0008878 |
| Score | 2.3877401 |
| Snippet | Egyptian cotton is one of the most important commodities for the Egyptian economy and is renowned globally for its quality, which is largely assessed and... |
| SourceID | proquest crossref sage |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2558 |
| SubjectTerms | Algorithms Artificial neural networks cameras Charge coupled devices Classification Cluster analysis Clustering color Cotton Evaluation fabrics Gossypium hirsutum Human error humans Image processing Inspection Labeling labor Learning algorithms lint cotton Machine learning Model accuracy Neural networks Probabilistic models Quality assessment Sample variance Staples Supervised learning Support vector machines Unsupervised learning variance Vector quantization |
| Title | An image processing and machine learning solution to automate Egyptian cotton lint grading |
| URI | https://journals.sagepub.com/doi/full/10.1177/00405175221145571 https://www.proquest.com/docview/2817966945 https://www.proquest.com/docview/2834204903 |
| Volume | 93 |
| WOSCitedRecordID | wos000901486600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVSPB databaseName: SAGE HSS Package 2015 customDbUrl: eissn: 1746-7748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008878 issn: 0040-5175 databaseCode: AEVPJ dateStart: 19990101 isFulltext: true titleUrlDefault: http://journals.sagepub.com/ providerName: SAGE Publications |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1La9wwEB7STaDtIa-2ZPMoCgQCATeSZXnlU1jCLqGHEEgoIRcjP7QEsnbYtQv5952xrc02NCWnXPVAsjQjfdbMfANw5Cfc-rk0ntZKeYEREaoU_rXKwHCSjyAZmCbZxODyUt_eRlcrULpYmG4F5z_IrQpn1BzWpN30Gn3aGRmJkYe4pRA7CCLaHoizuprG7XO3y6pBJWSfrqdk2k7JIfLJc-FtH2AVsbhQPVgdjn5d_Vwc3qhz2jna0QidIfSfg_59lT3j0yWXsOaWGm-8-_dtwnoHaNmwlcAtWMmLbfjo4p3n2_B5ifLwC9wNC3Y_xVmxxzZEAUuZKTI2bbw6c9alsZgwpxSsKpmpqxKhdc5GlDUNJZoRpQTWIUiu2GTWBAJ8hevx6Ob8wuvyO3ip1LryMpVZqyIpFTfK4G9xkGqbG-sPhDAyyyjjYWoFAkSdiNAk2NYartIMxcgG8hv0irLId4CFPNEhcfMlWgfS8MSmXHFiwsdyE8k-cLdRcdpRn1MGjodYOLbzlwveh5NFl8eW9-N_jffd7sdug2Nf41kXhlGg-nC4qEblJYuMKfKypjYy8Mn2ilM8Jol47v7qYLtvbrkHn3yEZK1j2z70qlmdH8Ba-ru6n8--d5L_B9xBE20 |
| linkProvider | SAGE Publications |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS8MwED9EhekH3-J8RhAEoZI2SZd-HDLxOQSHiF9K-sgYuE62zr_fu66dD1QEvyaXJuTukiv53e8AjryIWy8VxtFaKUcaN0CXwr9WIQ0n-5BRwxTFJhrttn58DO5KVCXlwpQ7ODolWBWuqDisp97dKMh4iFYKwwaXOLYpfXxOykCjjc81Ww93V9NzGN1HV5g5GlG-aX77kc-30nuo-QHdVVw458v_WeoKLJVhJmtO7GIVZtJsDWpVFvJoDRY_EBGuw1MzY70-TsBeJokD2MpMlrB-gbVMWVlcossqU2X5gJlxPsCAN2UtqmWGdsaI6AH7MHTNWXdYwPM34P681Tm7cMqqC04stM6dRCXWqkAIxY0y-LMqY21TY72G6xqRJFSHMLYuhm06cn0Toaw1XMUJKtdKsQmz2SBLt4D5PNI-MeZFWktheGRjrjjx02O7CUQdeLXnYVwSklNdjOfQrTjIv25gHU6mQ14mbBy_Ce9WigwrXYWexhPI9wOp6nA47UaXoncSk6WDMckI6dGLKC7xmJT7PvzHybb_LHkAtYvO7U14c9m-3oEFKl8_gZ7twmw-HKd7MB-_5r3RcL806Df_2OtS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSyMxEB-OKqc-6PmF1Z4XQTg4WM1ukm32sWiLekcp3CFyL0v2I0XQbWm3_v3ObLOtJ3oc3Gsy2YTMTDLZmfkNwGmQcBvkwnhaK-VJ40eoUvhqFdJwkg-ZtE1VbKLd7-u7u2jgfrhRLozbwekZhVXhiqrDmrR7nNlz52MkQB6ClkLTwSecbUohX5FSRaoBK53u7eBmcRajCuk6bo5GOL_mmx_582ZampsvIryqS6e39b_L_QSbztxknbl8bMOHvNiBtTobeboDGy8ACXfhd6dg9484CRvPEwiwlZkiY49VzGXOXJGJIatFlpUjZmblCA3fnHWpphnKGyPAB-xDE7Zkw0kVpr8HP3vdXxdXnqu-4KVC69LLVGatioRQ3CiDj1aZapsbG7R934gso3qEqfXRfNOJH5oEaa3hKs2QyVaKfWgUoyI_ABbyRIeEnJdoLYXhiU254oRTj-0mEk3g9b7HqQMmp_oYD7FfY5G_3sAmfFsMGc9ROf5G3KqZGdf8igONJ1EYRlI14WTRjapF_hJT5KMZ0QgZkGcUl_iVGLwc_u5kh_9M-QU-Di578Y_r_vcjWKcq9vMItBY0ysks_wyr6VN5P50cO5l-BgHQ7c8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+image+processing+and+machine+learning+solution+to+automate+Egyptian+cotton+lint+grading&rft.jtitle=Textile+research+journal&rft.au=Fisher%2C+Oliver+J&rft.au=Rady%2C+Ahmed&rft.au=El-Banna%2C+Aly+AA&rft.au=Watson%2C+Nicholas+J&rft.date=2023-06-01&rft.pub=SAGE+Publications&rft.issn=0040-5175&rft.eissn=1746-7748&rft.volume=93&rft.issue=11-12&rft.spage=2558&rft.epage=2575&rft_id=info:doi/10.1177%2F00405175221145571&rft.externalDocID=10.1177_00405175221145571 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5175&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5175&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5175&client=summon |