An image processing and machine learning solution to automate Egyptian cotton lint grading

Egyptian cotton is one of the most important commodities for the Egyptian economy and is renowned globally for its quality, which is largely assessed and graded by manual inspection. This grading has several drawbacks, including significant labor requirements, low inspection efficiency, and influenc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Textile research journal Ročník 93; číslo 11-12; s. 2558 - 2575
Hlavní autoři: Fisher, Oliver J, Rady, Ahmed, El-Banna, Aly AA, Watson, Nicholas J, Emaish, Haitham H
Médium: Journal Article
Jazyk:angličtina
Vydáno: London, England SAGE Publications 01.06.2023
Sage Publications Ltd
Témata:
ISSN:0040-5175, 1746-7748, 1746-7748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Egyptian cotton is one of the most important commodities for the Egyptian economy and is renowned globally for its quality, which is largely assessed and graded by manual inspection. This grading has several drawbacks, including significant labor requirements, low inspection efficiency, and influence from inspection conditions such as light and human subjectivity. This work proposes a low-cost solution to replace manual inspection with classification models to grade Egyptian cotton lint using images captured by a charge-coupled device camera. While this method has been evaluated for classifying US and Chinese upland cotton staples, it has not been tested on Egyptian cotton, which has unique characteristics and grading requirements. Furthermore, the methodology to develop these classification models has been expanded to include image processing techniques that remove the influence of trash on color measurements and extract features that capture the intra-sample variance of the cotton samples. Three different supervised machine learning algorithms were evaluated: artificial neural networks; random forest; and support vector machines. The highest accuracy models (82.13–90.21%) used a random forest algorithm. The models’ accuracy was limited by the human error associated with labeling the cotton samples used to develop the classification models. Unsupervised machine learning methods, including k-means clustering, hierarchical clustering, and Gaussian mixture models, were used to indicate where labeling errors occurred.
AbstractList Egyptian cotton is one of the most important commodities for the Egyptian economy and is renowned globally for its quality, which is largely assessed and graded by manual inspection. This grading has several drawbacks, including significant labor requirements, low inspection efficiency, and influence from inspection conditions such as light and human subjectivity. This work proposes a low-cost solution to replace manual inspection with classification models to grade Egyptian cotton lint using images captured by a charge-coupled device camera. While this method has been evaluated for classifying US and Chinese upland cotton staples, it has not been tested on Egyptian cotton, which has unique characteristics and grading requirements. Furthermore, the methodology to develop these classification models has been expanded to include image processing techniques that remove the influence of trash on color measurements and extract features that capture the intra-sample variance of the cotton samples. Three different supervised machine learning algorithms were evaluated: artificial neural networks; random forest; and support vector machines. The highest accuracy models (82.13–90.21%) used a random forest algorithm. The models’ accuracy was limited by the human error associated with labeling the cotton samples used to develop the classification models. Unsupervised machine learning methods, including k-means clustering, hierarchical clustering, and Gaussian mixture models, were used to indicate where labeling errors occurred.
Author Emaish, Haitham H
Fisher, Oliver J
El-Banna, Aly AA
Rady, Ahmed
Watson, Nicholas J
Author_xml – sequence: 1
  givenname: Oliver J
  orcidid: 0000-0002-1158-6751
  surname: Fisher
  fullname: Fisher, Oliver J
  organization: Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, UK
– sequence: 2
  givenname: Ahmed
  surname: Rady
  fullname: Rady, Ahmed
  organization: Teagasc Food Research Centre, Ireland
– sequence: 3
  givenname: Aly AA
  surname: El-Banna
  fullname: El-Banna, Aly AA
  organization: Department of Plant Production, Faculty of Agriculture, Saba Basha, Alexandria University, Egypt
– sequence: 4
  givenname: Nicholas J
  surname: Watson
  fullname: Watson, Nicholas J
  email: nicholas.watson@nottingham.ac.uk
  organization: Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, UK
– sequence: 5
  givenname: Haitham H
  surname: Emaish
  fullname: Emaish, Haitham H
  organization: Department of Soils and Agricultural Chemistry, Faculty of Agriculture, Saba Basha, Alexandria University, Egypt
BookMark eNp9kc1KxDAURoMoOKM-gLuAGzfVpE2adDkM4w8MuNCVm3InTWqkk4xJupi3N2UEQdHVhdxzLh9f5ujYeacRuqTkhlIhbglhhFPBy5JSxrmgR2hGBasLIZg8RrNpX0zAKZrH-E4IkVLIGXpdOGy30Gu8C17pGK3rMbgOb0G9WafxoCG46TH6YUzWO5w8hjH5LSSNV_1-lyw4rHxKeTdYl3AfoMvGOToxMER98TXP0PPd6mX5UKyf7h-Xi3WhKilT0fHOGN5UFSfAgVYlU9JoMKWgFKquI1w2ytCyrOWG1rDJrAHCVQdEGFadoevD1Zz_Y9QxtVsblR4GcNqPsS1lxUrCGlJl9OoH-u7H4HK2TFHR1HXDeKbogVLBxxi0aXchNxT2LSXt1HX7q-vsiB-OsgmmtlIAO_xr3hzMmP_gO8_fwiceoJFO
CitedBy_id crossref_primary_10_1177_00405175241265510
crossref_primary_10_3390_s23218671
crossref_primary_10_3390_agriengineering7050127
Cites_doi 10.1007/978-1-4614-7138-7_10
10.1177/004051750007000508
10.1177/004051750207200905
10.3390/s17030518
10.1016/j.compeleceng.2015.06.022
10.1109/ICIAFS.2012.6419904
10.3390/info12050196
10.1117/12.587334
10.1016/j.procs.2020.06.149
10.2134/cftm2017.07.0048
10.1016/j.knosys.2017.02.014
10.1177/004051759906901202
10.1016/j.ultras.2021.106468
10.1177/0040517513490055
10.1109/ICDM.2010.35
10.1016/j.enbuild.2017.04.038
10.3390/electronics9111795
10.1177/0040517513478481
10.1109/LLS.2016.2615086
10.13031/2013.18307
10.56454/ZELZ3209
10.1016/j.rser.2017.02.023
10.1186/1754-1611-8-29
10.1016/j.ins.2016.04.040
10.13031/2013.32584
10.1371/journal.pone.0260971
10.1016/j.indcrop.2015.11.022
10.1117/3.2524677
10.1088/2053-1591/aba3e4
10.2118/109018-PA
10.1117/12.164326
10.1177/004051759806800505
10.1038/s41598-019-47399-8
10.1177/004051759806801101
10.1007/978-3-319-94478-4_15
10.1109/COMST.2021.3090430
ContentType Journal Article
Copyright The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022
DBID AFRWT
AAYXX
CITATION
7SR
8FD
F28
FR3
JG9
7S9
L.6
DOI 10.1177/00405175221145571
DatabaseName Sage Journals Online Open Access
CrossRef
Engineered Materials Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1746-7748
EndPage 2575
ExternalDocumentID 10_1177_00405175221145571
10.1177_00405175221145571
GroupedDBID -ET
-TM
-~X
.-4
.2G
.2L
.2N
.DC
01A
09Z
0R~
123
18M
1~K
29Q
31S
31V
31W
31X
31Y
31Z
3EH
4.4
54M
56W
5VS
7X2
88I
8AF
8FE
8FG
8FH
8FW
8R4
8R5
AABCJ
AABOD
AACKU
AACTG
AADIR
AADUE
AAGGD
AAGLT
AAHBH
AAJOX
AAJPV
AAKTJ
AAMFR
AANSI
AAPEO
AAQDB
AAQXI
AARIX
AATAA
AATBZ
AAWLO
AAYTG
ABAWP
ABCCA
ABCJG
ABDWY
ABEIX
ABFWQ
ABFXH
ABHKI
ABHQH
ABIDT
ABJCF
ABJNI
ABKRH
ABLUO
ABPNF
ABQKF
ABQPY
ABQXT
ABRHV
ABUJY
ABUWG
ABYTW
ACAEP
ACDXX
ACFUR
ACFZE
ACGBL
ACGFO
ACGFS
ACGOD
ACIWK
ACJER
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUFS
ACUIR
ACXKE
ADDLC
ADEBD
ADEIA
ADFRT
ADNMO
ADNON
ADNWM
ADPEE
ADRRZ
ADSTG
ADTBJ
ADTOS
ADUKL
ADVBO
ADYCS
AEDFJ
AEDXQ
AEILP
AENEX
AEOBU
AEPTA
AEQLS
AESMA
AESZF
AEUHG
AEUYN
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFFNX
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFRAH
AFRWT
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGWFA
AGWNL
AHDMH
AHHFK
AHWHD
AIZZC
AJEFB
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARTOV
ATCPS
AUTPY
AUVAJ
AYAKG
AYPQM
AZFZN
AZQEC
B8O
B8S
B8T
B8Z
B93
B94
BBRGL
BCR
BCU
BDDNI
BDZRT
BEC
BENPR
BGLVJ
BHPHI
BKOMP
BLC
BMVBW
BPACV
BPHCQ
BYIEH
CAG
CBRKF
CCGJY
CCPQU
CEADM
CFDXU
COF
CORYS
CS3
CZ9
D1I
DD0
DD~
DE-
DG~
DH.
DO-
DOPDO
DU5
DV7
DV8
DWQXO
D~Y
E.-
EBS
EHMNL
EJD
FEDTE
FHBDP
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HF~
HVGLF
HZ~
J8X
K.F
KB.
KC.
L6V
LPU
M0K
M2P
M2Q
M7S
N9A
O9-
OFU
P.B
P2P
PDBOC
PEA
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
Q1R
Q2X
Q7O
Q7P
Q7X
Q82
Q83
ROL
RXW
S01
S0X
SASJQ
SAUOL
SBI
SCNPE
SFB
SFC
SFK
SFT
SGA
SGP
SGU
SGV
SGX
SGZ
SHB
SHF
SHM
SJFOW
SPJ
SPK
SPP
SPV
SQCSI
SSDHQ
STM
TAE
U5U
WH7
XOL
ZE2
ZPLXX
ZPPRI
ZRKOI
~32
~KM
0SE
AAEJI
AAPII
AAYXX
ABUAX
ACCVC
AFFHD
AJGYC
AJHME
AJVBE
AMNSR
CITATION
PQGLB
7SR
8FD
F28
FR3
JG9
7S9
L.6
ID FETCH-LOGICAL-c388t-d5dff593350a5a1324c8feaf2711a3dd0589cf12268b16abf59fa05cda07f43
IEDL.DBID AEVPJ
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000901486600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0040-5175
1746-7748
IngestDate Sat Sep 27 16:40:27 EDT 2025
Mon Nov 10 02:55:35 EST 2025
Tue Nov 18 22:12:11 EST 2025
Sat Nov 29 08:17:40 EST 2025
Tue Jun 17 22:28:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11-12
Keywords Industry 4.0
cotton lint
industrial crop
machine learning
Digital manufacturing
optical imaging
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-d5dff593350a5a1324c8feaf2711a3dd0589cf12268b16abf59fa05cda07f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1158-6751
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/00405175221145571?utm_source=summon&utm_medium=discovery-provider
PQID 2817966945
PQPubID 25116
PageCount 18
ParticipantIDs proquest_miscellaneous_2834204903
proquest_journals_2817966945
crossref_primary_10_1177_00405175221145571
crossref_citationtrail_10_1177_00405175221145571
sage_journals_10_1177_00405175221145571
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: Princeton
PublicationTitle Textile research journal
PublicationYear 2023
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References 2013; 3
Bourland, Hogan, Jones 2010; 14
Liu, He, Shankle 2016; 79
Kuzy, Li 2017; 17
Wei, Zhang, Deng 2020; 9
Xu, Su, Dale 2000; 70
He, Wang, Arandjelovíc 2021; 12
Al-Fattah, A Al-Naim, Al-Naim 2009; 12
Eder, Morgan, Agrilife 2018; 4
Thakur, Daigle, Qian 2016; 2
Yildiz, Bilbao, Sproul 2017; 73
Heng, Chen, Shen 2020; 7
Mustafic, Li, Haidekker 2014; 8
Forestier, Wemmert 2016; 361–362
Kang, Kim 2016; 72
Xu, Fang, Watson 2016; 68
Liu, Gamble, Thibodeaux 2010; 53
Sheikh Hassani, Green 2019; 9
Dhehibi, El-Shahat, Frija 2016; 5
Ahmad, Mourshed, Rezgui 2017; 147
Shaheen, Rauf, Taj 2021; 16
Wang, Yang, Li 2015; 46
Matusiak, Walawska 2010; 18
Xu, Fang, Huang 1998; 68
Lieberman, Patil 1994; 33
Ahmed, Delin 2019; 11
Delhom, Martin, Schreiner 2017; 21
Hussein, El-Marakby, Tolb 2020; 28
Thomasson, Shearer, Byler 2005; 48
Lv, Gao, Rigall 2020; 174
Liu, Foulk 2013; 83
Cui, Cai, Rodgers 2014; 84
Levatić, Ceci, Kocev 2017; 123
Bowler, Watson 2021; 115
Cheng, Ghorashi, Duckett 1999; 69
Holst GC (bibr33-00405175221145571) 2011
bibr47-00405175221145571
bibr14-00405175221145571
Matusiak M (bibr15-00405175221145571) 2010; 18
bibr4-00405175221145571
bibr21-00405175221145571
bibr27-00405175221145571
bibr9-00405175221145571
bibr19-00405175221145571
bibr26-00405175221145571
bibr13-00405175221145571
bibr50-00405175221145571
Bourland FM (bibr45-00405175221145571) 2010; 14
bibr30-00405175221145571
Kim S. (bibr41-00405175221145571) 2017
bibr8-00405175221145571
bibr23-00405175221145571
bibr49-00405175221145571
bibr39-00405175221145571
bibr38-00405175221145571
Ahmed YN (bibr3-00405175221145571) 2019; 11
bibr22-00405175221145571
bibr12-00405175221145571
bibr32-00405175221145571
bibr42-00405175221145571
bibr18-00405175221145571
bibr28-00405175221145571
bibr48-00405175221145571
bibr17-00405175221145571
Hussein MG (bibr11-00405175221145571) 2020; 28
bibr37-00405175221145571
Dhehibi B (bibr2-00405175221145571) 2016; 5
bibr31-00405175221145571
bibr7-00405175221145571
bibr24-00405175221145571
Sandbhor S (bibr44-00405175221145571)
bibr6-00405175221145571
bibr29-00405175221145571
bibr16-00405175221145571
bibr40-00405175221145571
bibr10-00405175221145571
bibr20-00405175221145571
Yu C. (bibr1-00405175221145571)
bibr36-00405175221145571
bibr5-00405175221145571
bibr46-00405175221145571
(bibr43-00405175221145571) 2013; 3
bibr25-00405175221145571
bibr35-00405175221145571
Bishop CM. (bibr34-00405175221145571) 2006
References_xml – volume: 4
  start-page: 1
  year: 2018
  end-page: 8
  article-title: Impact of cotton leaf and bract characteristics on cotton leaf grade
  publication-title: Crop Forage Turfgrass Manag
– volume: 79
  start-page: 283
  year: 2016
  end-page: 286
  article-title: Compositional features of cotton plant biomass fractions characterized by attenuated total reflection Fourier transform infrared spectroscopy
  publication-title: Ind Crops Prod
– volume: 174
  start-page: 729
  year: 2020
  end-page: 734
  article-title: Cotton appearance grade classification based on machine learning
  publication-title: Procedia Comput Sci
– volume: 68
  start-page: 779
  year: 2016
  end-page: 787
  article-title: Investigating new factors in cotton color grading
  publication-title: Text Res J
– volume: 48
  start-page: 421
  year: 2005
  end-page: 438
  article-title: Image-processing solution to cotton color measurement problems: Part I. instrument design and construction
  publication-title: Trans ASAE
– volume: 33
  start-page: 1642
  year: 1994
  end-page: 1653
  article-title: Clustering and neural networks to categorize cotton trash
  publication-title: Opt Eng
– volume: 147
  start-page: 77
  year: 2017
  end-page: 89
  article-title: Trees vs Neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption
  publication-title: Energy Build
– volume: 3
  start-page: 52
  year: 2013
  end-page: 56
  article-title: Exploration of the validity of utilizing different aspects of color attributes to signalize and signify the lint grade of Egyptian cottons
  publication-title: Indian J Fibre Text Res
– volume: 16
  start-page: e0260971
  year: 2021
  article-title: Path analysis based on genetic association of yield components and insects pest in upland cotton varieties
  publication-title: PLoS One
– volume: 68
  start-page: 351
  year: 1998
  end-page: 358
  article-title: Cotton color measurements by an imaging colorimeter
  publication-title: Text Res J
– volume: 123
  start-page: 41
  year: 2017
  end-page: 60
  article-title: Self-training for multi-target regression with tree ensembles
  publication-title: Knowl Based Syst
– volume: 12
  start-page: 196
  year: 2021
  article-title: Edge detecting method for microscopic image of cotton fiber cross-section using RCF deep neural network
  publication-title: Information
– volume: 53
  start-page: 1341
  year: 2010
  end-page: 1348
  article-title: UV/visible/near-infrared reflectance models for the rapid and non-destructive prediction and classification of cotton color and physical indices
  publication-title: Trans ASABE
– volume: 83
  start-page: 928
  year: 2013
  end-page: 936
  article-title: Potential of visible and near infrared spectroscopy in the determination of instrumental leaf grade in lint cottons
  publication-title: Text Res J
– volume: 69
  start-page: 893
  year: 1999
  end-page: 903
  article-title: Color grading of cotton part II: color grading with an expert system and neural networks
  publication-title: Text Res J
– volume: 361–362
  start-page: 48
  year: 2016
  end-page: 65
  article-title: Semi-supervised learning using multiple clusterings with limited labeled data
  publication-title: Inf Sci (Ny)
– volume: 5
  start-page: 38
  year: 2016
  article-title: Growth in total factor productivity in the Egyptian agriculture sector: growth accounting and econometric assessments of sources of growth
  publication-title: Sustain Agric Res
– volume: 14
  start-page: 53
  year: 2010
  end-page: 63
  article-title: Development and utility of Q-score for characterizing cotton fiber quality
  publication-title: J Cotton Sci
– volume: 115
  start-page: 106468
  year: 2021
  article-title: Transfer learning for process monitoring using reflection-mode ultrasonic sensing
  publication-title: Ultrasonics
– volume: 84
  start-page: 214
  year: 2014
  end-page: 222
  article-title: An investigation into the intra-sample variation in the color of cotton using image analysis
  publication-title: Text Res J
– volume: 28
  start-page: 191
  year: 2020
  end-page: 205
  article-title: Relationship between fiber cotton grade and some related characteristics of long and extra-long staple Egyptian cotton varieties (Gossypium barbadense. L).
  publication-title: Arab Univ J Agric Sci
– volume: 17
  start-page: 518
  year: 2017
  article-title: A pulsed thermographic imaging system for detection and identification of cotton foreign matter
  publication-title: Sensors
– volume: 12
  start-page: 96
  year: 2009
  end-page: 108
  article-title: Artificial-intelligence technology predicts relative permeability of giant carbonate reservoirs
  publication-title: SPE Reserv Eval Eng
– volume: 7
  start-page: 75101
  year: 2020
  article-title: Study on the measurement and evaluation of cotton color using image analysis
  publication-title: Mater Res Express
– volume: 2
  start-page: 43
  year: 2016
  end-page: 46
  article-title: A multimetric evaluation of stratified random sampling for classification: a case study
  publication-title: IEEE Life Sci Lett
– volume: 72
  start-page: 776
  year: 2016
  end-page: 782
  article-title: Objective evaluation of the trash and color of raw cotton by image processing and neural network
  publication-title: Text Res J
– volume: 21
  start-page: 210
  year: 2017
  end-page: 219
  article-title: Engineering and ginning textile industry needs
  publication-title: J Cotton Sci
– volume: 9
  start-page: 1795
  year: 2020
  article-title: Content estimation of foreign fibers in cotton based on deep learning
  publication-title: Electronics
– volume: 46
  start-page: 500
  year: 2015
  end-page: 510
  article-title: A fast image segmentation algorithm for detection of pseudo-foreign fibers in lint cotton
  publication-title: Comput Electr Eng
– volume: 70
  start-page: 430
  year: 2000
  end-page: 436
  article-title: Cotton color grading with a neural network
  publication-title: Text Res J
– volume: 8
  start-page: 1
  year: 2014
  end-page: 11
  article-title: Blue and UV LED-induced fluorescence in cotton foreign matter
  publication-title: J Biol Eng
– volume: 73
  start-page: 1104
  year: 2017
  end-page: 1122
  article-title: A review and analysis of regression and machine learning models on commercial building electricity load forecasting
  publication-title: Renew Sustain Energy Rev
– volume: 11
  start-page: 88
  year: 2019
  end-page: 97
  article-title: Current situation of Egyptian cotton: econometrics study using ARDL model
  publication-title: J Agric Sci
– volume: 18
  start-page: 17
  year: 2010
  end-page: 23
  article-title: Important aspects of cotton colour measurement
  publication-title: Fibres Text East Eur
– volume: 9
  start-page: 1
  year: 2019
  end-page: 10
  article-title: Multi-view co-training for microRNA prediction
  publication-title: Sci Rep
– ident: bibr38-00405175221145571
  doi: 10.1007/978-1-4614-7138-7_10
– ident: bibr9-00405175221145571
  doi: 10.1177/004051750007000508
– ident: bibr24-00405175221145571
  doi: 10.1177/004051750207200905
– start-page: 29
  volume-title: Woodhead publishing series in textiles
  ident: bibr1-00405175221145571
– ident: bibr28-00405175221145571
  doi: 10.3390/s17030518
– volume-title: MATLAB Deep learning with machine learning, neural networks and artificial intelligence
  year: 2017
  ident: bibr41-00405175221145571
– ident: bibr12-00405175221145571
  doi: 10.1016/j.compeleceng.2015.06.022
– ident: bibr26-00405175221145571
  doi: 10.1109/ICIAFS.2012.6419904
– volume: 3
  start-page: 52
  year: 2013
  ident: bibr43-00405175221145571
  publication-title: Indian J Fibre Text Res
– ident: bibr31-00405175221145571
  doi: 10.3390/info12050196
– ident: bibr32-00405175221145571
  doi: 10.1117/12.587334
– ident: bibr13-00405175221145571
  doi: 10.1016/j.procs.2020.06.149
– ident: bibr8-00405175221145571
  doi: 10.2134/cftm2017.07.0048
– volume-title: Pattern recognition and machine learning (information science and statistics)
  year: 2006
  ident: bibr34-00405175221145571
– volume: 18
  start-page: 17
  year: 2010
  ident: bibr15-00405175221145571
  publication-title: Fibres Text East Eur
– ident: bibr4-00405175221145571
– ident: bibr46-00405175221145571
  doi: 10.1016/j.knosys.2017.02.014
– volume: 11
  start-page: 88
  year: 2019
  ident: bibr3-00405175221145571
  publication-title: J Agric Sci
– ident: bibr20-00405175221145571
  doi: 10.1177/004051759906901202
– ident: bibr49-00405175221145571
  doi: 10.1016/j.ultras.2021.106468
– ident: bibr21-00405175221145571
  doi: 10.1177/0040517513490055
– volume: 5
  start-page: 38
  year: 2016
  ident: bibr2-00405175221145571
  publication-title: Sustain Agric Res
– ident: bibr42-00405175221145571
  doi: 10.1109/ICDM.2010.35
– ident: bibr36-00405175221145571
  doi: 10.1016/j.enbuild.2017.04.038
– ident: bibr5-00405175221145571
– ident: bibr14-00405175221145571
  doi: 10.3390/electronics9111795
– ident: bibr29-00405175221145571
  doi: 10.1177/0040517513478481
– ident: bibr37-00405175221145571
– ident: bibr39-00405175221145571
  doi: 10.1109/LLS.2016.2615086
– volume: 14
  start-page: 53
  year: 2010
  ident: bibr45-00405175221145571
  publication-title: J Cotton Sci
– ident: bibr22-00405175221145571
  doi: 10.13031/2013.18307
– ident: bibr7-00405175221145571
  doi: 10.56454/ZELZ3209
– ident: bibr35-00405175221145571
  doi: 10.1016/j.rser.2017.02.023
– ident: bibr27-00405175221145571
  doi: 10.1186/1754-1611-8-29
– ident: bibr47-00405175221145571
  doi: 10.1016/j.ins.2016.04.040
– start-page: 481
  volume-title: Information systems design and intelligent applications
  ident: bibr44-00405175221145571
– ident: bibr16-00405175221145571
  doi: 10.13031/2013.32584
– ident: bibr10-00405175221145571
  doi: 10.1371/journal.pone.0260971
– ident: bibr30-00405175221145571
  doi: 10.1016/j.indcrop.2015.11.022
– volume-title: CMOS/CCD sensors and camera systems
  year: 2011
  ident: bibr33-00405175221145571
  doi: 10.1117/3.2524677
– ident: bibr23-00405175221145571
  doi: 10.1088/2053-1591/aba3e4
– ident: bibr40-00405175221145571
  doi: 10.2118/109018-PA
– ident: bibr25-00405175221145571
  doi: 10.1117/12.164326
– ident: bibr18-00405175221145571
  doi: 10.1177/004051759806800505
– ident: bibr48-00405175221145571
  doi: 10.1038/s41598-019-47399-8
– ident: bibr19-00405175221145571
  doi: 10.1177/004051759806801101
– ident: bibr17-00405175221145571
  doi: 10.1007/978-3-319-94478-4_15
– ident: bibr50-00405175221145571
  doi: 10.1109/COMST.2021.3090430
– volume: 28
  start-page: 191
  year: 2020
  ident: bibr11-00405175221145571
  publication-title: Arab Univ J Agric Sci
– ident: bibr6-00405175221145571
SSID ssj0008878
Score 2.3877401
Snippet Egyptian cotton is one of the most important commodities for the Egyptian economy and is renowned globally for its quality, which is largely assessed and...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2558
SubjectTerms Algorithms
Artificial neural networks
cameras
Charge coupled devices
Classification
Cluster analysis
Clustering
color
Cotton
Evaluation
fabrics
Gossypium hirsutum
Human error
humans
Image processing
Inspection
Labeling
labor
Learning algorithms
lint cotton
Machine learning
Model accuracy
Neural networks
Probabilistic models
Quality assessment
Sample variance
Staples
Supervised learning
Support vector machines
Unsupervised learning
variance
Vector quantization
Title An image processing and machine learning solution to automate Egyptian cotton lint grading
URI https://journals.sagepub.com/doi/full/10.1177/00405175221145571
https://www.proquest.com/docview/2817966945
https://www.proquest.com/docview/2834204903
Volume 93
WOSCitedRecordID wos000901486600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVSPB
  databaseName: SAGE HSS Package 2015
  customDbUrl:
  eissn: 1746-7748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008878
  issn: 0040-5175
  databaseCode: AEVPJ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://journals.sagepub.com/
  providerName: SAGE Publications
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1La9wwEB7STaDtIa-2ZPMoCgQCATeSZXnlU1jCLqGHEEgoIRcjP7QEsnbYtQv5952xrc02NCWnXPVAsjQjfdbMfANw5Cfc-rk0ntZKeYEREaoU_rXKwHCSjyAZmCbZxODyUt_eRlcrULpYmG4F5z_IrQpn1BzWpN30Gn3aGRmJkYe4pRA7CCLaHoizuprG7XO3y6pBJWSfrqdk2k7JIfLJc-FtH2AVsbhQPVgdjn5d_Vwc3qhz2jna0QidIfSfg_59lT3j0yWXsOaWGm-8-_dtwnoHaNmwlcAtWMmLbfjo4p3n2_B5ifLwC9wNC3Y_xVmxxzZEAUuZKTI2bbw6c9alsZgwpxSsKpmpqxKhdc5GlDUNJZoRpQTWIUiu2GTWBAJ8hevx6Ob8wuvyO3ip1LryMpVZqyIpFTfK4G9xkGqbG-sPhDAyyyjjYWoFAkSdiNAk2NYartIMxcgG8hv0irLId4CFPNEhcfMlWgfS8MSmXHFiwsdyE8k-cLdRcdpRn1MGjodYOLbzlwveh5NFl8eW9-N_jffd7sdug2Nf41kXhlGg-nC4qEblJYuMKfKypjYy8Mn2ilM8Jol47v7qYLtvbrkHn3yEZK1j2z70qlmdH8Ba-ru6n8--d5L_B9xBE20
linkProvider SAGE Publications
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS8MwED9EhekH3-J8RhAEoZI2SZd-HDLxOQSHiF9K-sgYuE62zr_fu66dD1QEvyaXJuTukiv53e8AjryIWy8VxtFaKUcaN0CXwr9WIQ0n-5BRwxTFJhrttn58DO5KVCXlwpQ7ODolWBWuqDisp97dKMh4iFYKwwaXOLYpfXxOykCjjc81Ww93V9NzGN1HV5g5GlG-aX77kc-30nuo-QHdVVw458v_WeoKLJVhJmtO7GIVZtJsDWpVFvJoDRY_EBGuw1MzY70-TsBeJokD2MpMlrB-gbVMWVlcossqU2X5gJlxPsCAN2UtqmWGdsaI6AH7MHTNWXdYwPM34P681Tm7cMqqC04stM6dRCXWqkAIxY0y-LMqY21TY72G6xqRJFSHMLYuhm06cn0Toaw1XMUJKtdKsQmz2SBLt4D5PNI-MeZFWktheGRjrjjx02O7CUQdeLXnYVwSklNdjOfQrTjIv25gHU6mQ14mbBy_Ce9WigwrXYWexhPI9wOp6nA47UaXoncSk6WDMckI6dGLKC7xmJT7PvzHybb_LHkAtYvO7U14c9m-3oEFKl8_gZ7twmw-HKd7MB-_5r3RcL806Df_2OtS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSyMxEB-OKqc-6PmF1Z4XQTg4WM1ukm32sWiLekcp3CFyL0v2I0XQbWm3_v3ObLOtJ3oc3Gsy2YTMTDLZmfkNwGmQcBvkwnhaK-VJ40eoUvhqFdJwkg-ZtE1VbKLd7-u7u2jgfrhRLozbwekZhVXhiqrDmrR7nNlz52MkQB6ClkLTwSecbUohX5FSRaoBK53u7eBmcRajCuk6bo5GOL_mmx_582ZampsvIryqS6e39b_L_QSbztxknbl8bMOHvNiBtTobeboDGy8ACXfhd6dg9484CRvPEwiwlZkiY49VzGXOXJGJIatFlpUjZmblCA3fnHWpphnKGyPAB-xDE7Zkw0kVpr8HP3vdXxdXnqu-4KVC69LLVGatioRQ3CiDj1aZapsbG7R934gso3qEqfXRfNOJH5oEaa3hKs2QyVaKfWgUoyI_ABbyRIeEnJdoLYXhiU254oRTj-0mEk3g9b7HqQMmp_oYD7FfY5G_3sAmfFsMGc9ROf5G3KqZGdf8igONJ1EYRlI14WTRjapF_hJT5KMZ0QgZkGcUl_iVGLwc_u5kh_9M-QU-Di578Y_r_vcjWKcq9vMItBY0ysks_wyr6VN5P50cO5l-BgHQ7c8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+image+processing+and+machine+learning+solution+to+automate+Egyptian+cotton+lint+grading&rft.jtitle=Textile+research+journal&rft.au=Fisher%2C+Oliver+J&rft.au=Rady%2C+Ahmed&rft.au=El-Banna%2C+Aly+AA&rft.au=Watson%2C+Nicholas+J&rft.date=2023-06-01&rft.pub=SAGE+Publications&rft.issn=0040-5175&rft.eissn=1746-7748&rft.volume=93&rft.issue=11-12&rft.spage=2558&rft.epage=2575&rft_id=info:doi/10.1177%2F00405175221145571&rft.externalDocID=10.1177_00405175221145571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5175&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5175&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5175&client=summon