The mechanism of the modified Ullmann reaction

The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols) ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry Jg. 39; H. 43; S. 10338
Hauptverfasser: Sperotto, Elena, van Klink, Gerard P M, van Koten, Gerard, de Vries, Johannes G
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 21.11.2010
Schlagworte:
ISSN:1477-9234, 1477-9234
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols) made these reactions truly catalytic, with catalyst amounts as low as 1 mol% or even lower. Since these catalysts are homogeneous, it has opened up the possibility to investigate the mechanism of these modified Ullmann reactions. Most authors agree that Cu(I) is the true catalyst even though Cu(0) and Cu(II) catalysts have also shown to be active. It should be noted however that Cu(I) is capable of reversible disproportionation into Cu(0) and Cu(II). In the first step, the nucleophile displaces the halide in the LnCu(I)X complex forming LnCu(I)ZR (Z = O, NR′, S). Quite a number of mechanisms have been proposed for the actual reaction of this complex with the aryl halide: 1. Oxidative addition of ArX forming a Cu(III) intermediate followed by reductive elimination; 2. Sigma bond metathesis; in this mechanism copper remains in the Cu(II) oxidation state; 3. Single electron transfer (SET) in which a radical anion of the aryl halide is formed (Cu(I)/Cu(II)); 4. Iodine atom transfer (IAT) to give the aryl radical (Cu(I)/Cu(II)); 5. π-complexation of the aryl halide with the Cu(I) complex, which is thought to enable the nucleophilic substitution reaction. Initially, the radical type mechanisms 3 and 4 where discounted based on the fact that radical clock-type experiments with ortho-allyl aryl halides failed to give the cyclised products. However, a recent DFT study by Houk, Buchwald and co-workers shows that the modified Ullmann reaction between aryl iodide and amines or primary alcohols proceeds either via an SET or an IAT mechanism. Van Koten has shown that stalled aminations can be rejuvenated by the addition of Cu(0), which serves to reduce the formed Cu(II) to Cu(I); this also corroborates a Cu(I)/Cu(II) mechanism. Thus the use of radical clock type experiments in these metal catalysed reactions is not reliable. DFT calculations from Hartwig seem to confirm a Cu(I)/Cu(III) type mechanism for the amidation (Goldberg) reaction, although not all possible mechanisms were calculated.
AbstractList The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols) made these reactions truly catalytic, with catalyst amounts as low as 1 mol% or even lower. Since these catalysts are homogeneous, it has opened up the possibility to investigate the mechanism of these modified Ullmann reactions. Most authors agree that Cu(I) is the true catalyst even though Cu(0) and Cu(II) catalysts have also shown to be active. It should be noted however that Cu(I) is capable of reversible disproportionation into Cu(0) and Cu(II). In the first step, the nucleophile displaces the halide in the LnCu(I)X complex forming LnCu(I)ZR (Z = O, NR′, S). Quite a number of mechanisms have been proposed for the actual reaction of this complex with the aryl halide: 1. Oxidative addition of ArX forming a Cu(III) intermediate followed by reductive elimination; 2. Sigma bond metathesis; in this mechanism copper remains in the Cu(II) oxidation state; 3. Single electron transfer (SET) in which a radical anion of the aryl halide is formed (Cu(I)/Cu(II)); 4. Iodine atom transfer (IAT) to give the aryl radical (Cu(I)/Cu(II)); 5. π-complexation of the aryl halide with the Cu(I) complex, which is thought to enable the nucleophilic substitution reaction. Initially, the radical type mechanisms 3 and 4 where discounted based on the fact that radical clock-type experiments with ortho-allyl aryl halides failed to give the cyclised products. However, a recent DFT study by Houk, Buchwald and co-workers shows that the modified Ullmann reaction between aryl iodide and amines or primary alcohols proceeds either via an SET or an IAT mechanism. Van Koten has shown that stalled aminations can be rejuvenated by the addition of Cu(0), which serves to reduce the formed Cu(II) to Cu(I); this also corroborates a Cu(I)/Cu(II) mechanism. Thus the use of radical clock type experiments in these metal catalysed reactions is not reliable. DFT calculations from Hartwig seem to confirm a Cu(I)/Cu(III) type mechanism for the amidation (Goldberg) reaction, although not all possible mechanisms were calculated.
The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols) made these reactions truly catalytic, with catalyst amounts as low as 1 mol% or even lower. Since these catalysts are homogeneous, it has opened up the possibility to investigate the mechanism of these modified Ullmann reactions. Most authors agree that Cu(I) is the true catalyst even though Cu(0) and Cu(II) catalysts have also shown to be active. It should be noted however that Cu(I) is capable of reversible disproportionation into Cu(0) and Cu(II). In the first step, the nucleophile displaces the halide in the LnCu(I)X complex forming LnCu(I)ZR (Z = O, NR′, S). Quite a number of mechanisms have been proposed for the actual reaction of this complex with the aryl halide: 1. Oxidative addition of ArX forming a Cu(III) intermediate followed by reductive elimination; 2. Sigma bond metathesis; in this mechanism copper remains in the Cu(II) oxidation state; 3. Single electron transfer (SET) in which a radical anion of the aryl halide is formed (Cu(I)/Cu(II)); 4. Iodine atom transfer (IAT) to give the aryl radical (Cu(I)/Cu(II)); 5. π-complexation of the aryl halide with the Cu(I) complex, which is thought to enable the nucleophilic substitution reaction. Initially, the radical type mechanisms 3 and 4 where discounted based on the fact that radical clock-type experiments with ortho-allyl aryl halides failed to give the cyclised products. However, a recent DFT study by Houk, Buchwald and co-workers shows that the modified Ullmann reaction between aryl iodide and amines or primary alcohols proceeds either via an SET or an IAT mechanism. Van Koten has shown that stalled aminations can be rejuvenated by the addition of Cu(0), which serves to reduce the formed Cu(II) to Cu(I); this also corroborates a Cu(I)/Cu(II) mechanism. Thus the use of radical clock type experiments in these metal catalysed reactions is not reliable. DFT calculations from Hartwig seem to confirm a Cu(I)/Cu(III) type mechanism for the amidation (Goldberg) reaction, although not all possible mechanisms were calculated.The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols) made these reactions truly catalytic, with catalyst amounts as low as 1 mol% or even lower. Since these catalysts are homogeneous, it has opened up the possibility to investigate the mechanism of these modified Ullmann reactions. Most authors agree that Cu(I) is the true catalyst even though Cu(0) and Cu(II) catalysts have also shown to be active. It should be noted however that Cu(I) is capable of reversible disproportionation into Cu(0) and Cu(II). In the first step, the nucleophile displaces the halide in the LnCu(I)X complex forming LnCu(I)ZR (Z = O, NR′, S). Quite a number of mechanisms have been proposed for the actual reaction of this complex with the aryl halide: 1. Oxidative addition of ArX forming a Cu(III) intermediate followed by reductive elimination; 2. Sigma bond metathesis; in this mechanism copper remains in the Cu(II) oxidation state; 3. Single electron transfer (SET) in which a radical anion of the aryl halide is formed (Cu(I)/Cu(II)); 4. Iodine atom transfer (IAT) to give the aryl radical (Cu(I)/Cu(II)); 5. π-complexation of the aryl halide with the Cu(I) complex, which is thought to enable the nucleophilic substitution reaction. Initially, the radical type mechanisms 3 and 4 where discounted based on the fact that radical clock-type experiments with ortho-allyl aryl halides failed to give the cyclised products. However, a recent DFT study by Houk, Buchwald and co-workers shows that the modified Ullmann reaction between aryl iodide and amines or primary alcohols proceeds either via an SET or an IAT mechanism. Van Koten has shown that stalled aminations can be rejuvenated by the addition of Cu(0), which serves to reduce the formed Cu(II) to Cu(I); this also corroborates a Cu(I)/Cu(II) mechanism. Thus the use of radical clock type experiments in these metal catalysed reactions is not reliable. DFT calculations from Hartwig seem to confirm a Cu(I)/Cu(III) type mechanism for the amidation (Goldberg) reaction, although not all possible mechanisms were calculated.
Author Sperotto, Elena
van Klink, Gerard P M
van Koten, Gerard
de Vries, Johannes G
Author_xml – sequence: 1
  givenname: Elena
  surname: Sperotto
  fullname: Sperotto, Elena
  organization: Organic Chemistry & Catalysis, Utrecht University, Padualaan 8, 3584, CH, Utrecht, NL
– sequence: 2
  givenname: Gerard P M
  surname: van Klink
  fullname: van Klink, Gerard P M
– sequence: 3
  givenname: Gerard
  surname: van Koten
  fullname: van Koten, Gerard
– sequence: 4
  givenname: Johannes G
  surname: de Vries
  fullname: de Vries, Johannes G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21049595$$D View this record in MEDLINE/PubMed
BookMark eNpNj81Kw0AYRQep2B_d-ACSnavUmW_-l1KsCgU37Tp8mZnQSGZSM8nCt1exgqt7uBwu3CWZpT4FQm4ZXTPK7YOjfqRUaVFfkAUTWpcWuJj94zlZ5vxOKQCVcEXmwKiw0soFWe-PoYjBHTG1ORZ9U4w_Re_bpg2-OHRdxJSKIaAb2z5dk8sGuxxuzrkih-3TfvNS7t6eXzePu9JxY8aydpZqUMzVjZEySO049dILbjS4hjOD1gCg0iA5cB6cqtEgCg4emUIOK3L_u3sa-o8p5LGKbXah6zCFfsqVViA045Z-m3dnc6pj8NVpaCMOn9XfRfgCs9ZSRw
CitedBy_id crossref_primary_10_1039_c3cs60386e
crossref_primary_10_1021_jacs_7b08803
crossref_primary_10_1016_j_tet_2016_08_085
crossref_primary_10_1016_j_tetlet_2018_03_092
crossref_primary_10_1002_ejoc_201901689
crossref_primary_10_1186_1556_276X_8_390
crossref_primary_10_1002_app_47597
crossref_primary_10_1039_D0QI00831A
crossref_primary_10_1039_c1cs15236j
crossref_primary_10_1021_jacs_5b00222
crossref_primary_10_1039_D3RA01965A
crossref_primary_10_1126_science_1226458
crossref_primary_10_1002_cctc_201100255
crossref_primary_10_1002_ange_202311100
crossref_primary_10_1002_chem_201403093
crossref_primary_10_1016_j_tetlet_2014_01_001
crossref_primary_10_1002_ejoc_201900475
crossref_primary_10_1007_s11426_015_5385_y
crossref_primary_10_1134_S1070363213090132
crossref_primary_10_1002_chem_201601338
crossref_primary_10_1016_j_ejmech_2022_114527
crossref_primary_10_1002_chem_202200457
crossref_primary_10_1002_advs_201801368
crossref_primary_10_3390_nano9111619
crossref_primary_10_1002_chem_201503822
crossref_primary_10_1016_j_catcom_2013_07_019
crossref_primary_10_1080_17415993_2015_1031135
crossref_primary_10_1021_ja507564p
crossref_primary_10_1002_anie_201301843
crossref_primary_10_1016_j_tetlet_2012_10_016
crossref_primary_10_1002_cssc_201200504
crossref_primary_10_1002_ejoc_201301868
crossref_primary_10_1016_j_tet_2012_11_001
crossref_primary_10_1039_D2RA05272E
crossref_primary_10_1107_S2053229615019919
crossref_primary_10_1002_ajoc_201600113
crossref_primary_10_1016_j_molstruc_2023_137165
crossref_primary_10_1016_j_catcom_2014_06_025
crossref_primary_10_1016_j_cclet_2022_06_058
crossref_primary_10_1039_D3CY00083D
crossref_primary_10_1055_s_0040_1707224
crossref_primary_10_1016_j_tet_2019_05_067
crossref_primary_10_1002_pola_24595
crossref_primary_10_1155_2013_725265
crossref_primary_10_1002_chem_201404275
crossref_primary_10_1021_jacs_8b12632
crossref_primary_10_1039_C3CS60289C
crossref_primary_10_13005_ojc_400514
crossref_primary_10_1016_j_jorganchem_2018_01_006
crossref_primary_10_1002_ange_202413122
crossref_primary_10_1002_ajoc_202300282
crossref_primary_10_1016_j_tetlet_2013_05_057
crossref_primary_10_1134_S1070363215100096
crossref_primary_10_1002_adsc_201800161
crossref_primary_10_1002_ceur_202500094
crossref_primary_10_1002_adsc_202400909
crossref_primary_10_1002_ejoc_201402654
crossref_primary_10_1002_aoc_7318
crossref_primary_10_1002_cssc_202002830
crossref_primary_10_1039_D3SC01337E
crossref_primary_10_1002_ejoc_201600891
crossref_primary_10_1002_chem_201405699
crossref_primary_10_1016_j_molstruc_2023_135044
crossref_primary_10_1002_ange_201701690
crossref_primary_10_1002_anie_201914876
crossref_primary_10_1002_aoc_3074
crossref_primary_10_1002_cctc_201902180
crossref_primary_10_1016_j_ejmech_2021_113581
crossref_primary_10_1002_slct_202400334
crossref_primary_10_1016_j_tetlet_2015_12_085
crossref_primary_10_1126_science_1237175
crossref_primary_10_1002_ejoc_202300733
crossref_primary_10_1002_aoc_5144
crossref_primary_10_1002_ejoc_201301158
crossref_primary_10_1016_j_jfluchem_2016_11_009
crossref_primary_10_1016_j_chemosphere_2013_04_042
crossref_primary_10_1002_cssc_202102211
crossref_primary_10_1002_chem_201100608
crossref_primary_10_1016_j_tet_2017_09_027
crossref_primary_10_1016_j_tetlet_2014_02_023
crossref_primary_10_1039_D1RE00054C
crossref_primary_10_1002_ejoc_201101521
crossref_primary_10_3390_reactions3020022
crossref_primary_10_1002_chem_201704408
crossref_primary_10_1021_ol202721h
crossref_primary_10_1002_chem_201804061
crossref_primary_10_1002_adsc_201200296
crossref_primary_10_1002_cjoc_201400787
crossref_primary_10_1039_C7CC02901B
crossref_primary_10_1002_chem_201202307
crossref_primary_10_1039_D2QO01522F
crossref_primary_10_1002_ejoc_202401467
crossref_primary_10_1002_jhet_3060
crossref_primary_10_1002_ajoc_202300158
crossref_primary_10_1016_j_jorganchem_2014_11_018
crossref_primary_10_1039_D4RA00001C
crossref_primary_10_1016_j_ijhydene_2019_12_123
crossref_primary_10_1021_jacs_5b08411
crossref_primary_10_3390_molecules28062657
crossref_primary_10_1002_ejoc_201501132
crossref_primary_10_1016_j_tetlet_2013_11_089
crossref_primary_10_1080_00397911_2013_828077
crossref_primary_10_1016_j_tetlet_2013_02_048
crossref_primary_10_1016_j_tetlet_2014_11_120
crossref_primary_10_1002_cctc_201301088
crossref_primary_10_1016_j_tet_2013_07_039
crossref_primary_10_1039_c4cc01580k
crossref_primary_10_1002_aoc_5570
crossref_primary_10_1016_j_molcata_2013_08_013
crossref_primary_10_1002_aoc_6421
crossref_primary_10_1002_anie_202413122
crossref_primary_10_1039_C3CC47002D
crossref_primary_10_1016_j_jorganchem_2022_122397
crossref_primary_10_1016_j_xcrp_2024_101991
crossref_primary_10_1002_ejoc_201100483
crossref_primary_10_1016_j_tetlet_2014_11_133
crossref_primary_10_1039_D5DT01716E
crossref_primary_10_1002_aoc_3847
crossref_primary_10_1002_ejoc_202400199
crossref_primary_10_1002_anie_201701690
crossref_primary_10_3389_fchem_2019_00723
crossref_primary_10_3390_molecules26195806
crossref_primary_10_1080_00958972_2021_1881066
crossref_primary_10_1038_s41557_023_01393_w
crossref_primary_10_3390_molecules201219756
crossref_primary_10_1038_nature11008
crossref_primary_10_1002_ange_201301843
crossref_primary_10_1002_ange_201914876
crossref_primary_10_1016_j_tet_2020_131021
crossref_primary_10_1002_cctc_201000230
crossref_primary_10_1002_slct_201903359
crossref_primary_10_1016_j_apcatb_2016_04_053
crossref_primary_10_1002_anie_202311100
crossref_primary_10_3390_ijms242115694
crossref_primary_10_1021_jacs_4c03543
crossref_primary_10_1039_C4RA04921G
crossref_primary_10_1039_D3NH00586K
crossref_primary_10_1016_j_jorganchem_2017_05_035
crossref_primary_10_1016_j_mcat_2017_12_016
crossref_primary_10_1016_j_tet_2020_131826
crossref_primary_10_1002_anie_201206024
crossref_primary_10_3390_molecules28041769
crossref_primary_10_1038_ncomms12641
crossref_primary_10_1002_ejoc_201300917
crossref_primary_10_1039_c2cc36800e
crossref_primary_10_1002_slct_202003455
crossref_primary_10_1016_j_scitotenv_2019_134872
crossref_primary_10_1016_j_ccr_2022_214667
crossref_primary_10_1007_s10600_013_0773_z
crossref_primary_10_1016_j_comptc_2014_12_008
crossref_primary_10_1016_j_tetlet_2014_07_118
crossref_primary_10_1039_D5GC00924C
crossref_primary_10_3390_polym9070266
crossref_primary_10_1002_ange_201206024
crossref_primary_10_1002_asia_202400557
crossref_primary_10_1002_ejoc_202400328
crossref_primary_10_1016_j_tet_2011_05_101
crossref_primary_10_1039_D2SC06738B
crossref_primary_10_1039_D3CY00090G
crossref_primary_10_1002_cctc_201801111
crossref_primary_10_1021_ja306446m
crossref_primary_10_1002_ejic_201701479
crossref_primary_10_3390_catal13050831
crossref_primary_10_3390_surfaces7030035
crossref_primary_10_1016_j_tetlet_2014_04_005
crossref_primary_10_3390_molecules29081770
crossref_primary_10_1002_slct_202500724
crossref_primary_10_3390_molecules19055876
crossref_primary_10_1039_D4SC02458C
crossref_primary_10_3762_bjoc_16_169
crossref_primary_10_1002_cctc_201601174
crossref_primary_10_1002_chem_201102151
crossref_primary_10_1080_00304948_2013_816208
crossref_primary_10_1021_ja511236d
crossref_primary_10_1002_ajoc_201402136
crossref_primary_10_1016_j_tetlet_2014_11_064
crossref_primary_10_1039_C6CC01413E
crossref_primary_10_1021_jacs_7b11853
crossref_primary_10_1002_aoc_3933
crossref_primary_10_1016_j_ica_2013_11_019
crossref_primary_10_1021_ja502174d
crossref_primary_10_1039_D3CY00809F
crossref_primary_10_1016_j_molcata_2013_05_012
crossref_primary_10_1039_C7CC04491G
crossref_primary_10_1021_ja310111p
crossref_primary_10_1016_j_mcat_2017_05_013
crossref_primary_10_1080_15421406_2017_1302042
crossref_primary_10_1016_j_jfluchem_2019_04_006
crossref_primary_10_1002_chem_201404982
crossref_primary_10_1016_j_scp_2021_100518
crossref_primary_10_3762_bjoc_12_272
crossref_primary_10_1007_s11696_018_0450_6
crossref_primary_10_3390_molecules26165079
crossref_primary_10_1002_cctc_202301475
crossref_primary_10_1002_ajoc_201500062
crossref_primary_10_3390_molecules29235620
crossref_primary_10_1002_slct_201601128
crossref_primary_10_1016_j_dyepig_2016_03_023
crossref_primary_10_1016_j_tetlet_2023_154586
crossref_primary_10_1002_jccs_201190140
crossref_primary_10_1002_aoc_5449
crossref_primary_10_1021_ja4032677
crossref_primary_10_1002_adsc_201100925
crossref_primary_10_1002_ajoc_202100249
crossref_primary_10_1016_j_cplett_2014_04_043
crossref_primary_10_1246_cl_190128
crossref_primary_10_1039_D3CY00767G
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1039/c0dt00674b
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
ExternalDocumentID 21049595
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-~X
0-7
0R~
29F
2WC
4.4
53G
5GY
6TJ
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
ADXHL
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CGR
COF
CS3
CUY
CVF
D0L
DU5
EBS
ECGLT
ECM
EE0
EF-
EIF
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDZ
J3G
J3H
J3I
L-8
M4U
NPM
O9-
R56
R7B
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UPT
VH6
WH7
XJT
XOL
ZCG
7X8
ID FETCH-LOGICAL-c388t-bc907261cbf855e57c30d5d43872cf318a9822a67253233ec6ba8aa432da16a32
IEDL.DBID 7X8
ISICitedReferencesCount 352
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283601900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1477-9234
IngestDate Fri Jul 11 14:26:01 EDT 2025
Mon Jul 21 05:37:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-bc907261cbf855e57c30d5d43872cf318a9822a67253233ec6ba8aa432da16a32
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pure.rug.nl/ws/files/14537587/2010DaltonTransSperotto.pdf
PMID 21049595
PQID 762471390
PQPubID 23479
ParticipantIDs proquest_miscellaneous_762471390
pubmed_primary_21049595
PublicationCentury 2000
PublicationDate 2010-11-21
PublicationDateYYYYMMDD 2010-11-21
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2010
SSID ssj0022052
Score 2.497286
SecondaryResourceType review_article
Snippet The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 10338
SubjectTerms Catalysis
Copper - chemistry
Electron Transport
Hydrocarbons, Aromatic - chemistry
Title The mechanism of the modified Ullmann reaction
URI https://www.ncbi.nlm.nih.gov/pubmed/21049595
https://www.proquest.com/docview/762471390
Volume 39
WOSCitedRecordID wos000283601900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN6oNdGL70d9hYNXLOyy7O7JmMbGgzY92KQ3MuwjadJCFfT3O0uhN-PBCwcICczODPPx7cxHyD2LpDJS0RAMenBiLGAe5CrkIJjIscTWrhni-irGYzmbqUm7N6dqt1V2ObFJ1KbU_h_5AIMW8ygi9MfVR-hFozy52ipobJMew0veqcVsQyL4FtKG7Ew8S0lZ0k0nZWqgI1P7RJ3kv1eWzRdmdPjPZzsiB21pGTytfeGYbNnihOwNO0W3U_KAPhEsre_1nVfLoHRB7U-UZu6wEA2mi8USiiLAMrJpdjgj09Hz-_AlbPUSQs2krMNcI9JFRKRzJzm3XGgWGW4SJgXVDoMX_LA-SAXljDJmdZqDBEgYNRCnwOg52SnKwl6SgIGNhAInUyu8RpmElDoOmvEElHKqT4LOEhm-hCcZoLDlV5VtbNEnF2trZqv13IwM0SXCMcWv_r75muw3NH0chzS-IT2HsWhvya7-rufV512zzngcT95-AIH0sPs
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanism+of+the+modified+Ullmann+reaction&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Sperotto%2C+Elena&rft.au=van+Klink%2C+Gerard+P+M&rft.au=van+Koten%2C+Gerard&rft.au=de+Vries%2C+Johannes+G&rft.date=2010-11-21&rft.eissn=1477-9234&rft.volume=39&rft.issue=43&rft.spage=10338&rft_id=info:doi/10.1039%2Fc0dt00674b&rft_id=info%3Apmid%2F21049595&rft_id=info%3Apmid%2F21049595&rft.externalDocID=21049595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9234&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9234&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9234&client=summon