The mechanism of the modified Ullmann reaction
The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols) ma...
Gespeichert in:
| Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry Jg. 39; H. 43; S. 10338 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
21.11.2010
|
| Schlagworte: | |
| ISSN: | 1477-9234, 1477-9234 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols) made these reactions truly catalytic, with catalyst amounts as low as 1 mol% or even lower. Since these catalysts are homogeneous, it has opened up the possibility to investigate the mechanism of these modified Ullmann reactions. Most authors agree that Cu(I) is the true catalyst even though Cu(0) and Cu(II) catalysts have also shown to be active. It should be noted however that Cu(I) is capable of reversible disproportionation into Cu(0) and Cu(II). In the first step, the nucleophile displaces the halide in the LnCu(I)X complex forming LnCu(I)ZR (Z = O, NR′, S). Quite a number of mechanisms have been proposed for the actual reaction of this complex with the aryl halide: 1. Oxidative addition of ArX forming a Cu(III) intermediate followed by reductive elimination; 2. Sigma bond metathesis; in this mechanism copper remains in the Cu(II) oxidation state; 3. Single electron transfer (SET) in which a radical anion of the aryl halide is formed (Cu(I)/Cu(II)); 4. Iodine atom transfer (IAT) to give the aryl radical (Cu(I)/Cu(II)); 5. π-complexation of the aryl halide with the Cu(I) complex, which is thought to enable the nucleophilic substitution reaction. Initially, the radical type mechanisms 3 and 4 where discounted based on the fact that radical clock-type experiments with ortho-allyl aryl halides failed to give the cyclised products. However, a recent DFT study by Houk, Buchwald and co-workers shows that the modified Ullmann reaction between aryl iodide and amines or primary alcohols proceeds either via an SET or an IAT mechanism. Van Koten has shown that stalled aminations can be rejuvenated by the addition of Cu(0), which serves to reduce the formed Cu(II) to Cu(I); this also corroborates a Cu(I)/Cu(II) mechanism. Thus the use of radical clock type experiments in these metal catalysed reactions is not reliable. DFT calculations from Hartwig seem to confirm a Cu(I)/Cu(III) type mechanism for the amidation (Goldberg) reaction, although not all possible mechanisms were calculated. |
|---|---|
| AbstractList | The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols) made these reactions truly catalytic, with catalyst amounts as low as 1 mol% or even lower. Since these catalysts are homogeneous, it has opened up the possibility to investigate the mechanism of these modified Ullmann reactions. Most authors agree that Cu(I) is the true catalyst even though Cu(0) and Cu(II) catalysts have also shown to be active. It should be noted however that Cu(I) is capable of reversible disproportionation into Cu(0) and Cu(II). In the first step, the nucleophile displaces the halide in the LnCu(I)X complex forming LnCu(I)ZR (Z = O, NR′, S). Quite a number of mechanisms have been proposed for the actual reaction of this complex with the aryl halide: 1. Oxidative addition of ArX forming a Cu(III) intermediate followed by reductive elimination; 2. Sigma bond metathesis; in this mechanism copper remains in the Cu(II) oxidation state; 3. Single electron transfer (SET) in which a radical anion of the aryl halide is formed (Cu(I)/Cu(II)); 4. Iodine atom transfer (IAT) to give the aryl radical (Cu(I)/Cu(II)); 5. π-complexation of the aryl halide with the Cu(I) complex, which is thought to enable the nucleophilic substitution reaction. Initially, the radical type mechanisms 3 and 4 where discounted based on the fact that radical clock-type experiments with ortho-allyl aryl halides failed to give the cyclised products. However, a recent DFT study by Houk, Buchwald and co-workers shows that the modified Ullmann reaction between aryl iodide and amines or primary alcohols proceeds either via an SET or an IAT mechanism. Van Koten has shown that stalled aminations can be rejuvenated by the addition of Cu(0), which serves to reduce the formed Cu(II) to Cu(I); this also corroborates a Cu(I)/Cu(II) mechanism. Thus the use of radical clock type experiments in these metal catalysed reactions is not reliable. DFT calculations from Hartwig seem to confirm a Cu(I)/Cu(III) type mechanism for the amidation (Goldberg) reaction, although not all possible mechanisms were calculated. The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols) made these reactions truly catalytic, with catalyst amounts as low as 1 mol% or even lower. Since these catalysts are homogeneous, it has opened up the possibility to investigate the mechanism of these modified Ullmann reactions. Most authors agree that Cu(I) is the true catalyst even though Cu(0) and Cu(II) catalysts have also shown to be active. It should be noted however that Cu(I) is capable of reversible disproportionation into Cu(0) and Cu(II). In the first step, the nucleophile displaces the halide in the LnCu(I)X complex forming LnCu(I)ZR (Z = O, NR′, S). Quite a number of mechanisms have been proposed for the actual reaction of this complex with the aryl halide: 1. Oxidative addition of ArX forming a Cu(III) intermediate followed by reductive elimination; 2. Sigma bond metathesis; in this mechanism copper remains in the Cu(II) oxidation state; 3. Single electron transfer (SET) in which a radical anion of the aryl halide is formed (Cu(I)/Cu(II)); 4. Iodine atom transfer (IAT) to give the aryl radical (Cu(I)/Cu(II)); 5. π-complexation of the aryl halide with the Cu(I) complex, which is thought to enable the nucleophilic substitution reaction. Initially, the radical type mechanisms 3 and 4 where discounted based on the fact that radical clock-type experiments with ortho-allyl aryl halides failed to give the cyclised products. However, a recent DFT study by Houk, Buchwald and co-workers shows that the modified Ullmann reaction between aryl iodide and amines or primary alcohols proceeds either via an SET or an IAT mechanism. Van Koten has shown that stalled aminations can be rejuvenated by the addition of Cu(0), which serves to reduce the formed Cu(II) to Cu(I); this also corroborates a Cu(I)/Cu(II) mechanism. Thus the use of radical clock type experiments in these metal catalysed reactions is not reliable. DFT calculations from Hartwig seem to confirm a Cu(I)/Cu(III) type mechanism for the amidation (Goldberg) reaction, although not all possible mechanisms were calculated.The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols) made these reactions truly catalytic, with catalyst amounts as low as 1 mol% or even lower. Since these catalysts are homogeneous, it has opened up the possibility to investigate the mechanism of these modified Ullmann reactions. Most authors agree that Cu(I) is the true catalyst even though Cu(0) and Cu(II) catalysts have also shown to be active. It should be noted however that Cu(I) is capable of reversible disproportionation into Cu(0) and Cu(II). In the first step, the nucleophile displaces the halide in the LnCu(I)X complex forming LnCu(I)ZR (Z = O, NR′, S). Quite a number of mechanisms have been proposed for the actual reaction of this complex with the aryl halide: 1. Oxidative addition of ArX forming a Cu(III) intermediate followed by reductive elimination; 2. Sigma bond metathesis; in this mechanism copper remains in the Cu(II) oxidation state; 3. Single electron transfer (SET) in which a radical anion of the aryl halide is formed (Cu(I)/Cu(II)); 4. Iodine atom transfer (IAT) to give the aryl radical (Cu(I)/Cu(II)); 5. π-complexation of the aryl halide with the Cu(I) complex, which is thought to enable the nucleophilic substitution reaction. Initially, the radical type mechanisms 3 and 4 where discounted based on the fact that radical clock-type experiments with ortho-allyl aryl halides failed to give the cyclised products. However, a recent DFT study by Houk, Buchwald and co-workers shows that the modified Ullmann reaction between aryl iodide and amines or primary alcohols proceeds either via an SET or an IAT mechanism. Van Koten has shown that stalled aminations can be rejuvenated by the addition of Cu(0), which serves to reduce the formed Cu(II) to Cu(I); this also corroborates a Cu(I)/Cu(II) mechanism. Thus the use of radical clock type experiments in these metal catalysed reactions is not reliable. DFT calculations from Hartwig seem to confirm a Cu(I)/Cu(III) type mechanism for the amidation (Goldberg) reaction, although not all possible mechanisms were calculated. |
| Author | Sperotto, Elena van Klink, Gerard P M van Koten, Gerard de Vries, Johannes G |
| Author_xml | – sequence: 1 givenname: Elena surname: Sperotto fullname: Sperotto, Elena organization: Organic Chemistry & Catalysis, Utrecht University, Padualaan 8, 3584, CH, Utrecht, NL – sequence: 2 givenname: Gerard P M surname: van Klink fullname: van Klink, Gerard P M – sequence: 3 givenname: Gerard surname: van Koten fullname: van Koten, Gerard – sequence: 4 givenname: Johannes G surname: de Vries fullname: de Vries, Johannes G |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21049595$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj81Kw0AYRQep2B_d-ACSnavUmW_-l1KsCgU37Tp8mZnQSGZSM8nCt1exgqt7uBwu3CWZpT4FQm4ZXTPK7YOjfqRUaVFfkAUTWpcWuJj94zlZ5vxOKQCVcEXmwKiw0soFWe-PoYjBHTG1ORZ9U4w_Re_bpg2-OHRdxJSKIaAb2z5dk8sGuxxuzrkih-3TfvNS7t6eXzePu9JxY8aydpZqUMzVjZEySO049dILbjS4hjOD1gCg0iA5cB6cqtEgCg4emUIOK3L_u3sa-o8p5LGKbXah6zCFfsqVViA045Z-m3dnc6pj8NVpaCMOn9XfRfgCs9ZSRw |
| CitedBy_id | crossref_primary_10_1039_c3cs60386e crossref_primary_10_1021_jacs_7b08803 crossref_primary_10_1016_j_tet_2016_08_085 crossref_primary_10_1016_j_tetlet_2018_03_092 crossref_primary_10_1002_ejoc_201901689 crossref_primary_10_1186_1556_276X_8_390 crossref_primary_10_1002_app_47597 crossref_primary_10_1039_D0QI00831A crossref_primary_10_1039_c1cs15236j crossref_primary_10_1021_jacs_5b00222 crossref_primary_10_1039_D3RA01965A crossref_primary_10_1126_science_1226458 crossref_primary_10_1002_cctc_201100255 crossref_primary_10_1002_ange_202311100 crossref_primary_10_1002_chem_201403093 crossref_primary_10_1016_j_tetlet_2014_01_001 crossref_primary_10_1002_ejoc_201900475 crossref_primary_10_1007_s11426_015_5385_y crossref_primary_10_1134_S1070363213090132 crossref_primary_10_1002_chem_201601338 crossref_primary_10_1016_j_ejmech_2022_114527 crossref_primary_10_1002_chem_202200457 crossref_primary_10_1002_advs_201801368 crossref_primary_10_3390_nano9111619 crossref_primary_10_1002_chem_201503822 crossref_primary_10_1016_j_catcom_2013_07_019 crossref_primary_10_1080_17415993_2015_1031135 crossref_primary_10_1021_ja507564p crossref_primary_10_1002_anie_201301843 crossref_primary_10_1016_j_tetlet_2012_10_016 crossref_primary_10_1002_cssc_201200504 crossref_primary_10_1002_ejoc_201301868 crossref_primary_10_1016_j_tet_2012_11_001 crossref_primary_10_1039_D2RA05272E crossref_primary_10_1107_S2053229615019919 crossref_primary_10_1002_ajoc_201600113 crossref_primary_10_1016_j_molstruc_2023_137165 crossref_primary_10_1016_j_catcom_2014_06_025 crossref_primary_10_1016_j_cclet_2022_06_058 crossref_primary_10_1039_D3CY00083D crossref_primary_10_1055_s_0040_1707224 crossref_primary_10_1016_j_tet_2019_05_067 crossref_primary_10_1002_pola_24595 crossref_primary_10_1155_2013_725265 crossref_primary_10_1002_chem_201404275 crossref_primary_10_1021_jacs_8b12632 crossref_primary_10_1039_C3CS60289C crossref_primary_10_13005_ojc_400514 crossref_primary_10_1016_j_jorganchem_2018_01_006 crossref_primary_10_1002_ange_202413122 crossref_primary_10_1002_ajoc_202300282 crossref_primary_10_1016_j_tetlet_2013_05_057 crossref_primary_10_1134_S1070363215100096 crossref_primary_10_1002_adsc_201800161 crossref_primary_10_1002_ceur_202500094 crossref_primary_10_1002_adsc_202400909 crossref_primary_10_1002_ejoc_201402654 crossref_primary_10_1002_aoc_7318 crossref_primary_10_1002_cssc_202002830 crossref_primary_10_1039_D3SC01337E crossref_primary_10_1002_ejoc_201600891 crossref_primary_10_1002_chem_201405699 crossref_primary_10_1016_j_molstruc_2023_135044 crossref_primary_10_1002_ange_201701690 crossref_primary_10_1002_anie_201914876 crossref_primary_10_1002_aoc_3074 crossref_primary_10_1002_cctc_201902180 crossref_primary_10_1016_j_ejmech_2021_113581 crossref_primary_10_1002_slct_202400334 crossref_primary_10_1016_j_tetlet_2015_12_085 crossref_primary_10_1126_science_1237175 crossref_primary_10_1002_ejoc_202300733 crossref_primary_10_1002_aoc_5144 crossref_primary_10_1002_ejoc_201301158 crossref_primary_10_1016_j_jfluchem_2016_11_009 crossref_primary_10_1016_j_chemosphere_2013_04_042 crossref_primary_10_1002_cssc_202102211 crossref_primary_10_1002_chem_201100608 crossref_primary_10_1016_j_tet_2017_09_027 crossref_primary_10_1016_j_tetlet_2014_02_023 crossref_primary_10_1039_D1RE00054C crossref_primary_10_1002_ejoc_201101521 crossref_primary_10_3390_reactions3020022 crossref_primary_10_1002_chem_201704408 crossref_primary_10_1021_ol202721h crossref_primary_10_1002_chem_201804061 crossref_primary_10_1002_adsc_201200296 crossref_primary_10_1002_cjoc_201400787 crossref_primary_10_1039_C7CC02901B crossref_primary_10_1002_chem_201202307 crossref_primary_10_1039_D2QO01522F crossref_primary_10_1002_ejoc_202401467 crossref_primary_10_1002_jhet_3060 crossref_primary_10_1002_ajoc_202300158 crossref_primary_10_1016_j_jorganchem_2014_11_018 crossref_primary_10_1039_D4RA00001C crossref_primary_10_1016_j_ijhydene_2019_12_123 crossref_primary_10_1021_jacs_5b08411 crossref_primary_10_3390_molecules28062657 crossref_primary_10_1002_ejoc_201501132 crossref_primary_10_1016_j_tetlet_2013_11_089 crossref_primary_10_1080_00397911_2013_828077 crossref_primary_10_1016_j_tetlet_2013_02_048 crossref_primary_10_1016_j_tetlet_2014_11_120 crossref_primary_10_1002_cctc_201301088 crossref_primary_10_1016_j_tet_2013_07_039 crossref_primary_10_1039_c4cc01580k crossref_primary_10_1002_aoc_5570 crossref_primary_10_1016_j_molcata_2013_08_013 crossref_primary_10_1002_aoc_6421 crossref_primary_10_1002_anie_202413122 crossref_primary_10_1039_C3CC47002D crossref_primary_10_1016_j_jorganchem_2022_122397 crossref_primary_10_1016_j_xcrp_2024_101991 crossref_primary_10_1002_ejoc_201100483 crossref_primary_10_1016_j_tetlet_2014_11_133 crossref_primary_10_1039_D5DT01716E crossref_primary_10_1002_aoc_3847 crossref_primary_10_1002_ejoc_202400199 crossref_primary_10_1002_anie_201701690 crossref_primary_10_3389_fchem_2019_00723 crossref_primary_10_3390_molecules26195806 crossref_primary_10_1080_00958972_2021_1881066 crossref_primary_10_1038_s41557_023_01393_w crossref_primary_10_3390_molecules201219756 crossref_primary_10_1038_nature11008 crossref_primary_10_1002_ange_201301843 crossref_primary_10_1002_ange_201914876 crossref_primary_10_1016_j_tet_2020_131021 crossref_primary_10_1002_cctc_201000230 crossref_primary_10_1002_slct_201903359 crossref_primary_10_1016_j_apcatb_2016_04_053 crossref_primary_10_1002_anie_202311100 crossref_primary_10_3390_ijms242115694 crossref_primary_10_1021_jacs_4c03543 crossref_primary_10_1039_C4RA04921G crossref_primary_10_1039_D3NH00586K crossref_primary_10_1016_j_jorganchem_2017_05_035 crossref_primary_10_1016_j_mcat_2017_12_016 crossref_primary_10_1016_j_tet_2020_131826 crossref_primary_10_1002_anie_201206024 crossref_primary_10_3390_molecules28041769 crossref_primary_10_1038_ncomms12641 crossref_primary_10_1002_ejoc_201300917 crossref_primary_10_1039_c2cc36800e crossref_primary_10_1002_slct_202003455 crossref_primary_10_1016_j_scitotenv_2019_134872 crossref_primary_10_1016_j_ccr_2022_214667 crossref_primary_10_1007_s10600_013_0773_z crossref_primary_10_1016_j_comptc_2014_12_008 crossref_primary_10_1016_j_tetlet_2014_07_118 crossref_primary_10_1039_D5GC00924C crossref_primary_10_3390_polym9070266 crossref_primary_10_1002_ange_201206024 crossref_primary_10_1002_asia_202400557 crossref_primary_10_1002_ejoc_202400328 crossref_primary_10_1016_j_tet_2011_05_101 crossref_primary_10_1039_D2SC06738B crossref_primary_10_1039_D3CY00090G crossref_primary_10_1002_cctc_201801111 crossref_primary_10_1021_ja306446m crossref_primary_10_1002_ejic_201701479 crossref_primary_10_3390_catal13050831 crossref_primary_10_3390_surfaces7030035 crossref_primary_10_1016_j_tetlet_2014_04_005 crossref_primary_10_3390_molecules29081770 crossref_primary_10_1002_slct_202500724 crossref_primary_10_3390_molecules19055876 crossref_primary_10_1039_D4SC02458C crossref_primary_10_3762_bjoc_16_169 crossref_primary_10_1002_cctc_201601174 crossref_primary_10_1002_chem_201102151 crossref_primary_10_1080_00304948_2013_816208 crossref_primary_10_1021_ja511236d crossref_primary_10_1002_ajoc_201402136 crossref_primary_10_1016_j_tetlet_2014_11_064 crossref_primary_10_1039_C6CC01413E crossref_primary_10_1021_jacs_7b11853 crossref_primary_10_1002_aoc_3933 crossref_primary_10_1016_j_ica_2013_11_019 crossref_primary_10_1021_ja502174d crossref_primary_10_1039_D3CY00809F crossref_primary_10_1016_j_molcata_2013_05_012 crossref_primary_10_1039_C7CC04491G crossref_primary_10_1021_ja310111p crossref_primary_10_1016_j_mcat_2017_05_013 crossref_primary_10_1080_15421406_2017_1302042 crossref_primary_10_1016_j_jfluchem_2019_04_006 crossref_primary_10_1002_chem_201404982 crossref_primary_10_1016_j_scp_2021_100518 crossref_primary_10_3762_bjoc_12_272 crossref_primary_10_1007_s11696_018_0450_6 crossref_primary_10_3390_molecules26165079 crossref_primary_10_1002_cctc_202301475 crossref_primary_10_1002_ajoc_201500062 crossref_primary_10_3390_molecules29235620 crossref_primary_10_1002_slct_201601128 crossref_primary_10_1016_j_dyepig_2016_03_023 crossref_primary_10_1016_j_tetlet_2023_154586 crossref_primary_10_1002_jccs_201190140 crossref_primary_10_1002_aoc_5449 crossref_primary_10_1021_ja4032677 crossref_primary_10_1002_adsc_201100925 crossref_primary_10_1002_ajoc_202100249 crossref_primary_10_1016_j_cplett_2014_04_043 crossref_primary_10_1246_cl_190128 crossref_primary_10_1039_D3CY00767G |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1039/c0dt00674b |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1477-9234 |
| ExternalDocumentID | 21049595 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- -DZ -~X 0-7 0R~ 29F 2WC 4.4 53G 5GY 6TJ 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN ADXHL AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CGR COF CS3 CUY CVF D0L DU5 EBS ECGLT ECM EE0 EF- EIF EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDZ J3G J3H J3I L-8 M4U NPM O9- R56 R7B R7C RAOCF RCNCU RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UPT VH6 WH7 XJT XOL ZCG 7X8 |
| ID | FETCH-LOGICAL-c388t-bc907261cbf855e57c30d5d43872cf318a9822a67253233ec6ba8aa432da16a32 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 352 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283601900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1477-9234 |
| IngestDate | Fri Jul 11 14:26:01 EDT 2025 Mon Jul 21 05:37:36 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 43 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c388t-bc907261cbf855e57c30d5d43872cf318a9822a67253233ec6ba8aa432da16a32 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://pure.rug.nl/ws/files/14537587/2010DaltonTransSperotto.pdf |
| PMID | 21049595 |
| PQID | 762471390 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_762471390 pubmed_primary_21049595 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-11-21 |
| PublicationDateYYYYMMDD | 2010-11-21 |
| PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
| PublicationTitleAlternate | Dalton Trans |
| PublicationYear | 2010 |
| SSID | ssj0022052 |
| Score | 2.497286 |
| SecondaryResourceType | review_article |
| Snippet | The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 10338 |
| SubjectTerms | Catalysis Copper - chemistry Electron Transport Hydrocarbons, Aromatic - chemistry |
| Title | The mechanism of the modified Ullmann reaction |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21049595 https://www.proquest.com/docview/762471390 |
| Volume | 39 |
| WOSCitedRecordID | wos000283601900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN6oNdGL70d9hYNXLOyy7O7JmMbGgzY92KQ3MuwjadJCFfT3O0uhN-PBCwcICczODPPx7cxHyD2LpDJS0RAMenBiLGAe5CrkIJjIscTWrhni-irGYzmbqUm7N6dqt1V2ObFJ1KbU_h_5AIMW8ygi9MfVR-hFozy52ipobJMew0veqcVsQyL4FtKG7Ew8S0lZ0k0nZWqgI1P7RJ3kv1eWzRdmdPjPZzsiB21pGTytfeGYbNnihOwNO0W3U_KAPhEsre_1nVfLoHRB7U-UZu6wEA2mi8USiiLAMrJpdjgj09Hz-_AlbPUSQs2krMNcI9JFRKRzJzm3XGgWGW4SJgXVDoMX_LA-SAXljDJmdZqDBEgYNRCnwOg52SnKwl6SgIGNhAInUyu8RpmElDoOmvEElHKqT4LOEhm-hCcZoLDlV5VtbNEnF2trZqv13IwM0SXCMcWv_r75muw3NH0chzS-IT2HsWhvya7-rufV512zzngcT95-AIH0sPs |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+mechanism+of+the+modified+Ullmann+reaction&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Sperotto%2C+Elena&rft.au=van+Klink%2C+Gerard+P+M&rft.au=van+Koten%2C+Gerard&rft.au=de+Vries%2C+Johannes+G&rft.date=2010-11-21&rft.eissn=1477-9234&rft.volume=39&rft.issue=43&rft.spage=10338&rft_id=info:doi/10.1039%2Fc0dt00674b&rft_id=info%3Apmid%2F21049595&rft_id=info%3Apmid%2F21049595&rft.externalDocID=21049595 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9234&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9234&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9234&client=summon |