Premium control with reinforcement learning
We consider a premium control problem in discrete time, formulated in terms of a Markov decision process. In a simplified setting, the optimal premium rule can be derived with dynamic programming methods. However, these classical methods are not feasible in a more realistic setting due to the dimens...
Uloženo v:
| Vydáno v: | ASTIN Bulletin : The Journal of the IAA Ročník 53; číslo 2; s. 233 - 257 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, USA
Cambridge University Press
01.05.2023
|
| Témata: | |
| ISSN: | 0515-0361, 1783-1350, 1783-1350 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider a premium control problem in discrete time, formulated in terms of a Markov decision process. In a simplified setting, the optimal premium rule can be derived with dynamic programming methods. However, these classical methods are not feasible in a more realistic setting due to the dimension of the state space and lack of explicit expressions for transition probabilities. We explore reinforcement learning techniques, using function approximation, to solve the premium control problem for realistic stochastic models. We illustrate the appropriateness of the approximate optimal premium rule compared with the true optimal premium rule in a simplified setting and further demonstrate that the approximate optimal premium rule outperforms benchmark rules in more realistic settings where classical approaches fail. |
|---|---|
| AbstractList | We consider a premium control problem in discrete time, formulated in terms of a Markov decision process. In a simplified setting, the optimal premium rule can be derived with dynamic programming methods. However, these classical methods are not feasible in a more realistic setting due to the dimension of the state space and lack of explicit expressions for transition probabilities. We explore reinforcement learning techniques, using function approximation, to solve the premium control problem for realistic stochastic models. We illustrate the appropriateness of the approximate optimal premium rule compared with the true optimal premium rule in a simplified setting and further demonstrate that the approximate optimal premium rule outperforms benchmark rules in more realistic settings where classical approaches fail. |
| Author | Lindskog, Filip Palmborg, Lina |
| Author_xml | – sequence: 1 givenname: Lina orcidid: 0000-0001-6338-3692 surname: Palmborg fullname: Palmborg, Lina email: lina.palmborg@math.su.se organization: Department of Mathematics Stockholm University Stockholm 106 91, Sweden – sequence: 2 givenname: Filip surname: Lindskog fullname: Lindskog, Filip organization: Department of Mathematics Stockholm University Stockholm 106 91, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-217014$$DView record from Swedish Publication Index (Stockholms universitet) |
| BookMark | eNpt0EtLAzEUhuEgCrbVlX-g4LJOzUlmmpllqVco6ELdhlzO1JROUpMZiv_eKS26cXU2Dx-Hd0hOffBIyBXQKVAQtyrpKaOMT4GfkAGIkmfAC3pKBrSAIqN8BudkmNKaUg4lYwMyeY3YuK4Zm-DbGDbjnWs_xxGdr0M02KBvxxtU0Tu_uiBntdokvDzeEXl_uH9bPGXLl8fnxXyZGV6WbVbWimlEY5TNNVaWcywExVmFxgJYY43OjVYlr7CohLCCqYpaW-eKVZhbzUfk5rCbdrjttNxG16j4LYNy8s59zGWIK5k6yUBQyHt-feDbGL46TK1chy76_kPJSmA5FXkJvZoclIkhpYj17yxQuY8n-3hyH08C73V21KrR0dkV_o3-538A7Ulzug |
| Cites_doi | 10.1007/BF00992701 10.1609/aaai.v25i1.7903 10.1080/03461238.1994.10413927 10.1109/ICASSP.2012.6288330 10.1023/A:1007678930559 10.1080/03461238.1983.10408686 10.2143/AST.23.2.2005092 10.1080/14697688.2019.1571683 10.1007/BF00992696 10.1145/1390156.1390240 10.1109/9.580874 10.1016/j.engappai.2019.01.010 10.1287/mnsc.2013.1788 |
| ContentType | Journal Article |
| Copyright | The Author(s), 2023. Published by Cambridge University Press on behalf of The International Actuarial Association The Author(s), 2023. Published by Cambridge University Press on behalf of The International Actuarial Association. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s), 2023. Published by Cambridge University Press on behalf of The International Actuarial Association – notice: The Author(s), 2023. Published by Cambridge University Press on behalf of The International Actuarial Association. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | IKXGN AAYXX CITATION 3V. 7X1 7XB 8A9 8FK ABUWG AFKRA ANIOZ BENPR BEZIV CCPQU DWQXO FRAZJ FRNLG K60 K6~ PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI Q9U ABAVF ADTPV AOWAS D8T DG7 ZZAVC |
| DOI | 10.1017/asb.2023.13 |
| DatabaseName | Cambridge University Press Gold Open Access Journals CrossRef ProQuest Central (Corporate) Accounting & Tax Database ProQuest Central (purchase pre-March 2016) Accounting & Tax Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Accounting, Tax & Banking Collection ProQuest Central Business Premium Collection ProQuest One ProQuest Central Accounting, Tax & Banking Collection (Alumni) Business Premium Collection (Alumni) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic SWEPUB Stockholms universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Stockholms universitet SwePub Articles full text |
| DatabaseTitle | CrossRef Business Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central Basic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Business Collection Accounting & Tax ProQuest Central Accounting, Tax & Banking Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Business (Alumni) Accounting, Tax & Banking Collection (Alumni) Accounting & Tax (Alumni Edition) ProQuest One Academic ProQuest Central (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Business Premium Collection |
| Database_xml | – sequence: 1 dbid: IKXGN name: Cambridge University Press Wholly Gold Open Access Journals url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 1783-1350 |
| EndPage | 257 |
| ExternalDocumentID | oai_DiVA_org_su_217014 10_1017_asb_2023_13 |
| GroupedDBID | 09C 09D 09E 0E1 0R~ 23N 4.4 5GY 5VS 8I0 AAAZR AABES AABWE AACJH AADNG AAFWJ AAGFV AAKTX AALKF AANRG AAOIO AAPYI AARAB AASVR AAUKB ABBXD ABBZL ABGDZ ABJNI ABJWI ABKKG ABMWE ABMYL ABQTM ABROB ABTND ABUWG ABXAU ABYPY ABZCX ACABY ACBMC ACCHT ACETC ACFCP ACGFS ACHQT ACIMK ACQFJ ACREK ACUIJ ACUYZ ACYZP ACZBM ACZBN ACZUX ACZWT ADBZK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADTCA ADVJH AEBAK AEBPU AEFOJ AEHGV AENCP AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKRZ AFLOS AFLVW AGABE AGHGI AGJUD AGLWM AGOOT AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO ANFVQ ANIOZ AOWSX AQJOH ARZZG ATUCA AUXHV AVDNQ AWRMI AWSUU AYIQA BBLKV BBQHK BCGOX BENPR BESQT BEZIV BGHMG BJBOZ BLZWO BMAJL C0O CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CFLAC CGMFO CGQII CHEAL CJCSC DOHLZ DWQXO EBS ED0 EGQIC EJD FRNLG GDOGT HG- HOVLH HZ~ I.5 I.6 I.7 IH6 IKXGN IOEEP IOO IS6 I~P JHPGK JOSPZ JPPIE JQKCU JRMXA KAFGG KCGVB KFECR LHUNA LW7 M-V M7~ MS~ NIKVX NZEOI O9- OK1 PQBIZ RAMDC RCA ROL RR0 RWP S6- S6U SAAAG SJN T9M TR2 UT1 WFFJZ ZJOSE ZMEZD ZYDXJ ~A4 AAXMD AAYXX ABVKB ABVZP ABXHF ACDLN AFFHD AFZFC AGTDA AKMAY AMVHM CITATION PHGZM PHGZT PQBZA 3V. 7X1 7XB 8A9 8FK K60 K6~ PKEHL PQEST PQQKQ PQUKI Q9U ABAVF ADTPV AOWAS D8T DG7 ZZAVC |
| ID | FETCH-LOGICAL-c388t-8fa2beeccad4be9d33e570e69ecd11dcdcb4cba839e5977d72a90ddf4a29e4db3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000969164700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0515-0361 1783-1350 |
| IngestDate | Tue Nov 04 16:28:07 EST 2025 Mon Jun 30 13:42:43 EDT 2025 Sat Nov 29 01:43:22 EST 2025 Wed Mar 13 05:50:33 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Markov decision process Premium control C60 G22 reinforcement learning |
| Language | English |
| License | This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c388t-8fa2beeccad4be9d33e570e69ecd11dcdcb4cba839e5977d72a90ddf4a29e4db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6338-3692 |
| OpenAccessLink | https://www.cambridge.org/core/product/identifier/S0515036123000132/type/journal_article |
| PQID | 2812407481 |
| PQPubID | 5514772 |
| PageCount | 25 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_su_217014 proquest_journals_2812407481 crossref_primary_10_1017_asb_2023_13 cambridge_journals_10_1017_asb_2023_13 |
| PublicationCentury | 2000 |
| PublicationDate | 20230501 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 20230501 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York, USA |
| PublicationPlace_xml | – name: New York, USA – name: Cambridge |
| PublicationTitle | ASTIN Bulletin : The Journal of the IAA |
| PublicationTitleAlternate | ASTIN Bull |
| PublicationYear | 2023 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | 1994; 1994 2019; 19 1992; 8 2019; 80 1993; 23 2000; 38 2021; 99 1983; 1983 1997; 42 2014; 60 1957 2012; 42 De Finetti (S0515036123000132_ref6) 1957 Martin-Löf (S0515036123000132_ref16) 1983; 1983 Bertsekas (S0515036123000132_ref1) 1996 S0515036123000132_ref20 Puterman (S0515036123000132_ref21) 2005 S0515036123000132_ref22 Miranda (S0515036123000132_ref19) 2012; 42 S0515036123000132_ref2 Carbonneau (S0515036123000132_ref3) 2021; 99 Martin-Löf (S0515036123000132_ref17) 1994; 1994 S0515036123000132_ref4 S0515036123000132_ref7 S0515036123000132_ref24 S0515036123000132_ref8 S0515036123000132_ref9 S0515036123000132_ref26 S0515036123000132_ref28 S0515036123000132_ref29 Mack (S0515036123000132_ref14) 1993; 23 Schmidli (S0515036123000132_ref23) 2008 S0515036123000132_ref30 S0515036123000132_ref31 S0515036123000132_ref10 S0515036123000132_ref11 Sutton (S0515036123000132_ref27) 2018 S0515036123000132_ref12 S0515036123000132_ref13 S0515036123000132_ref15 Dayan (S0515036123000132_ref5) 1992; 8 S0515036123000132_ref18 Sutton (S0515036123000132_ref25) 1992 |
| References_xml | – volume: 80 start-page: 8 year: 2019 end-page: 19 article-title: Reinforcement learning for pricing strategy optimization in the insurance industry publication-title: Engineering Applications of Artificial Intelligence – volume: 1983 start-page: 1 issue: 1 year: 1983 end-page: 27 article-title: Premium control in an insurance system, an approach using linear control theory publication-title: Scandinavian Actuarial Journal – volume: 99 start-page: 327 year: 2021 end-page: 340 article-title: Deep hedging of long-term financial derivatives publication-title: Insurance: Mathematics and Economics – volume: 8 start-page: 341 issue: 3–4 year: 1992 end-page: 362 article-title: The convergence of TD( publication-title: Machine Learning – volume: 42 start-page: 674 issue: 5 year: 1997 end-page: 690 article-title: An analysis of temporal-difference learning with function approximation publication-title: IEEE Transactions on Automatic Control – volume: 19 start-page: 1271 issue: 8 year: 2019 end-page: 1291 article-title: Deep hedging publication-title: Quantitative Finance – volume: 8 start-page: 229 year: 1992 end-page: 256 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Machine Learning – volume: 38 start-page: 287 issue: 3 year: 2000 end-page: 308 article-title: Convergence results for single-step on-policy reinforcement-learning algorithms publication-title: Machine Learning – volume: 1994 start-page: 1 issue: 1 year: 1994 end-page: 25 article-title: Lectures on the use of control theory in insurance publication-title: Scandinavian Actuarial Journal – volume: 42 start-page: 59 issue: 1 year: 2012 end-page: 76 article-title: Double chain ladder publication-title: ASTIN Bulletin: The Journal of the IAA – start-page: 433 year: 1957 end-page: 443 article-title: Su un’ impostazione alternativa della teoria collettivadel rischio publication-title: Transactions of the XVth International Congress of Actuaries – volume: 60 start-page: 770 issue: 3 year: 2014 article-title: Simultaneously learning and optimizing using controlled variance pricing publication-title: Management Science – volume: 23 start-page: 213 issue: 2 year: 1993 end-page: 225 article-title: Distribution-free calculation of the standard error of chain ladder reserve estimates publication-title: ASTIN Bulletin: The Journal of the IAA – ident: S0515036123000132_ref10 – volume-title: Stochastic Control in Insurance year: 2008 ident: S0515036123000132_ref23 – volume: 8 start-page: 341 year: 1992 ident: S0515036123000132_ref5 article-title: The convergence of TD( publication-title: Machine Learning doi: 10.1007/BF00992701 – ident: S0515036123000132_ref12 doi: 10.1609/aaai.v25i1.7903 – volume: 1994 start-page: 1 year: 1994 ident: S0515036123000132_ref17 article-title: Lectures on the use of control theory in insurance publication-title: Scandinavian Actuarial Journal doi: 10.1080/03461238.1994.10413927 – ident: S0515036123000132_ref15 doi: 10.1109/ICASSP.2012.6288330 – ident: S0515036123000132_ref24 doi: 10.1023/A:1007678930559 – start-page: 171 year: 1992 ident: S0515036123000132_ref25 – volume: 99 start-page: 327 year: 2021 ident: S0515036123000132_ref3 article-title: Deep hedging of long-term financial derivatives publication-title: Insurance: Mathematics and Economics – ident: S0515036123000132_ref22 – ident: S0515036123000132_ref26 – volume-title: Neuro-dynamic Programming year: 1996 ident: S0515036123000132_ref1 – volume: 1983 start-page: 1 year: 1983 ident: S0515036123000132_ref16 article-title: Premium control in an insurance system, an approach using linear control theory publication-title: Scandinavian Actuarial Journal doi: 10.1080/03461238.1983.10408686 – ident: S0515036123000132_ref28 – ident: S0515036123000132_ref9 – volume: 23 start-page: 213 year: 1993 ident: S0515036123000132_ref14 article-title: Distribution-free calculation of the standard error of chain ladder reserve estimates publication-title: ASTIN Bulletin: The Journal of the IAA doi: 10.2143/AST.23.2.2005092 – volume-title: Markov Decision Processes: Discrete Stochastic Dynamic Programming year: 2005 ident: S0515036123000132_ref21 – ident: S0515036123000132_ref20 – ident: S0515036123000132_ref11 – ident: S0515036123000132_ref2 doi: 10.1080/14697688.2019.1571683 – volume: 42 start-page: 59 year: 2012 ident: S0515036123000132_ref19 article-title: Double chain ladder publication-title: ASTIN Bulletin: The Journal of the IAA – start-page: 433 year: 1957 ident: S0515036123000132_ref6 article-title: Su un’ impostazione alternativa della teoria collettivadel rischio publication-title: Transactions of the XVth International Congress of Actuaries – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: S0515036123000132_ref27 – ident: S0515036123000132_ref30 – ident: S0515036123000132_ref31 doi: 10.1007/BF00992696 – ident: S0515036123000132_ref4 – ident: S0515036123000132_ref18 doi: 10.1145/1390156.1390240 – ident: S0515036123000132_ref29 doi: 10.1109/9.580874 – ident: S0515036123000132_ref13 doi: 10.1016/j.engappai.2019.01.010 – ident: S0515036123000132_ref7 doi: 10.1287/mnsc.2013.1788 – ident: S0515036123000132_ref8 |
| SSID | ssj0031822 |
| Score | 2.2740796 |
| Snippet | We consider a premium control problem in discrete time, formulated in terms of a Markov decision process. In a simplified setting, the optimal premium rule can... |
| SourceID | swepub proquest crossref cambridge |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 233 |
| SubjectTerms | Actuarial science Approximation Control algorithms Deep learning Dividends Dynamical systems Hedging Insurance premiums Markov analysis Markov decision process matematisk statistik Mathematical Statistics Mutual insurance companies Premium control Present value Probability reinforcement learning Stochastic control theory Stochastic models Teaching methods |
| SummonAdditionalLinks | – databaseName: Cambridge University Press Gold Open Access Journals dbid: IKXGN link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZKixALb0ShoAyFzbR5J2MFFBCoQgKqbJZfQRlaqqTl93OXOG2RGFjYkii6xP4S3-fz-TtCun4QcvB6gkoexdQLRUCjSMQ0hVOYtHAhy4Db-DkcjaIkiV8aJKn3wmBa5VLjoFzJL-ujzSr5016mqhwanfdesToJjL8w9JZExulh0LJnIGCm4zdICxiMA79s6_EpuR_VozR8ytUKAxihaMXs3UM5aV6Ia6wqfo01D1aKCz891xodXZcYLd3ScPf_GrRHdgxVtQbVlX3S0NMDslVnyh8STN-YZIuJZdLdLYzpWrkutVhlGXa0TFGKjyPyPrx7u3mgpvYClW4UzWmUckdoxFd5QsfKdbUf9nUQa6lsW0klhScFB3qlUcFOhQ6P-0qlHndi7SnhHpPm9HOqT4gVcOWDp8QFUJgLapjfSan6Mky58Liv7Ta5WnYQM60tWJV9FjIAgyEYzHbbpFsDwGaVFsfvt3VqcFbmHCQyQJcieNxlBdjSBips32bjAQN0WLFgDmrUe6d_fa0zso1HVRZkhzTn-UKfk035Nc-K_MJ8d98Jier1 priority: 102 providerName: Cambridge University Press |
| Title | Premium control with reinforcement learning |
| URI | https://www.cambridge.org/core/product/identifier/S0515036123000132/type/journal_article https://www.proquest.com/docview/2812407481 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-217014 |
| Volume | 53 |
| WOSCitedRecordID | wos000969164700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Accounting, Tax & Banking Collection customDbUrl: eissn: 1783-1350 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0031822 issn: 1783-1350 databaseCode: ANIOZ dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/accountingtaxbanking providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: eissn: 1783-1350 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0031822 issn: 1783-1350 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oGOPFtxFF0gN6W6QPaHsyqKBEU4lRQrxs9gXhwEMK_n532i1gYrx4apo002Z2Ot_szOw3AOVa3Wca9TgRLAiJ5_M6CQIekr6-1ZsWxkWScOs--1EU9HphxyTcYtNWmfnExFHLicAc-bWDSKTxLrBvpp8Ep0ZhddWM0NiEPDKVaTvP3zajzmvmi7XBpnUEjdpE-2rbnNBD0mgW8wrODq_gZIMVr8JPfFoLOteJRBPwae3997P3YdeEnVYjtZMD2FDjQ9jOut6PAFsxRsPFyDKt6xbmZ62ZSnhVRZJCtMyAicExvLeab3ePxMxRIMINgjkJ-szhCtdKelyF0nVVza-qeqiEtG0ppOCe4EyHSgrZ6KTvsLAqZd9jTqg8yd0TyI0nY3UKVp3JmkY9LGbqfZ3SezUhZFX4fcY9VlN2Aa6WmqTmb4hp2knmU61yiiqntluAcqZmOk15NX5_rJipdSVupdMCXKbLspSBbNn3w26DTmYDGi-og3zz3tnfYs5hB9-X9jEWITefLdQFbImv-TCelSDfiNovHyVjW_rafuo9RN_2NNmf |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gGPXi24ii9iDeVukD2h6MISKRiOgBifGy7gvCgYcUNP4pf6M7fQAmxhsHj02a6abfzM5jZ78BOC2WXKa9HieCeT5xXF4insd90taPOmlhXIQFt1bdbTS852f_MQVfyV0YbKtM9sRwo5YDgTXyCws9kfZ3nnk1fCM4NQpPV5MRGpFa3KnPD52yBZe1isY3b1nVm-b1LYmnChBhe96YeG1mcYUrlw5XvrRtVXQLquQrIU1TCim4IzjTgYNCbjbpWswvSNl2mOUrR3Jby12CjGPrzCgNmXKj9vCS7P3aQKJzCx0lEO0bzPhGIJJUs4Cf46zyc5ykMONx-OkP54LceeLS0NlVN_7bb9qE9TisNsqRHWxBSvW3YSXp6t8BbDXpdSc9I27NN7D-bIxUyBsrwhKpEQ_Q6OzC00KWugfp_qCv9sEoMVnUXh0Pa3XeqnQuKoQsCLfNuMOKyszC2RQ5Glt7QKNOOZdqiClCTE07C6cJrHQY8Yb8_lougXEmboZhFvKRGkxlIBt4pdsq08GoQ4MJtZBP3zn4W8wJrN427-u0XmvcHcIafjvq2cxBejyaqCNYFu_jbjA6jvXZgNdF68Y3s1I5cQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTgJBEK0gGOLF3YjrHMBbC7PAzByMISKRaJCDEuOl7W0IBxYZ0Phrfp1ds4AmxhsHj5NMapaq7ldbvwIoVmsu06jHiWCeTxyX14jncZ8E-lIHLYyLKOHWvXPbbe_pye9k4DM9C4NtlemeGG3UciQwR162EIk03nlmOUjaIjqN5uX4leAEKay0puM0YhO5VR_vOnwLL1oNreuSZTWvH65uSDJhgAjb86bEC5jFFX6FdLjypW2rqltRNV8JaZpSSMEdwZl2IhTytEnXYn5FysBhlq8cyW0tdwVyyAjjZCFXb7fun1Mc0IslrmFoj4FonDCT04FIWM1Cfo5zy89xqsKC0-EnNn5zeL-TmEbA19z4z79sE9YTd9uox-tjCzJquA35tNt_B7AFZdCfDYykZd_AvLQxURGfrIhSp0YyWKO3C49LedU9yA5HQ7UPRo3JqkZ7LOLqeFbpGFUIWRFuwLjDqsoswNlcizTZBUIad9C5VKuborqpaRegmKqYjmM-kd9vO0pVuhC30GcBSrFJzGUgS3ij363T0aRHwxm1kGffOfhbzCnktUHQu1b79hDW8NFxK-cRZKeTmTqGVfE27YeTk8S0DXhZtml8AYX7QjY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Premium+control+with+reinforcement+learning&rft.jtitle=ASTIN+Bulletin+%3A+The+Journal+of+the+IAA&rft.au=Palmborg%2C+Lina&rft.au=Lindskog%2C+Filip&rft.date=2023-05-01&rft.pub=Cambridge+University+Press&rft.issn=0515-0361&rft.eissn=1783-1350&rft.volume=53&rft.issue=2&rft.spage=233&rft.epage=257&rft_id=info:doi/10.1017%2Fasb.2023.13&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0515-0361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0515-0361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0515-0361&client=summon |