The effects of pore widening and calcination on anodized aluminum oxide prepared from Al6082

In this study, semi-organized anodized aluminum oxide (AAO) is prepared by two-step anodization in oxalic acid using a low-purity aluminum (Al) alloy (Al6082) as the source material. Obtaining ideally ordered AAO layers from Al alloys is confounded by the presence of impurities and requires speciali...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Surface & coatings technology Ročník 383; s. 125234
Hlavní autoři: Kozhukhova, A.E., du Preez, S.P., Bessarabov, D.G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lausanne Elsevier B.V 15.02.2020
Elsevier BV
Témata:
ISSN:0257-8972, 1879-3347
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this study, semi-organized anodized aluminum oxide (AAO) is prepared by two-step anodization in oxalic acid using a low-purity aluminum (Al) alloy (Al6082) as the source material. Obtaining ideally ordered AAO layers from Al alloys is confounded by the presence of impurities and requires specialized post-anodization treatment. Here, a process is proposed for obtaining an AAO layer with a semi-ordered pore arrangement by means of calcination and pore-widening procedures. Calcination temperatures of 400–600 °C and pore–widening times of 15–120 min were explored. It was found that calcination improved the pore order of AAO layers from disordered to semi-ordered (defined as being near ideally ordered—one pore surrounded by six neighboring pores). In addition, it was found that calcination at 600 °C resulted in suitable pore widening of the AAO layer. The morphology of the AAO layers was characterized using scanning electron microscopy, which was applied to determine pore diameter, inter-pore distance, pore density, and AAO layer thickness. We found that calcinated and pore-widened AAO layers with pore diameters of 48.7 nm, inter-pore distances of 80.6 nm, and pore densities of 178 pores/μm2 could be prepared. The AAO preparation method proposed here is an economically attractive process suitable for the preparation of AAO layers due to the utilization of an inexpensive Al source. •AAO layer preparation from low cost Al sources is economically attractive.•Non-Al elements present in Al alloys perplexes AAO layer preparation.•Pore arrangement of AAO layers prepared from Al alloys is generally disordered.•AAO layer calcination and pore widening improves pore arrangement.
AbstractList In this study, semi-organized anodized aluminum oxide (AAO) is prepared by two-step anodization in oxalic acid using a low-purity aluminum (Al) alloy (Al6082) as the source material. Obtaining ideally ordered AAO layers from Al alloys is confounded by the presence of impurities and requires specialized post-anodization treatment. Here, a process is proposed for obtaining an AAO layer with a semi-ordered pore arrangement by means of calcination and pore-widening procedures. Calcination temperatures of 400–600 °C and pore–widening times of 15–120 min were explored. It was found that calcination improved the pore order of AAO layers from disordered to semi-ordered (defined as being near ideally ordered-one pore surrounded by six neighboring pores). In addition, it was found that calcination at 600 °C resulted in suitable pore widening of the AAO layer. The morphology of the AAO layers was characterized using scanning electron microscopy, which was applied to determine pore diameter, inter-pore distance, pore density, and AAO layer thickness. We found that calcinated and pore-widened AAO layers with pore diameters of 48.7 nm, inter-pore distances of 80.6 nm, and pore densities of 178 pores/μm2 could be prepared. The AAO preparation method proposed here is an economically attractive process suitable for the preparation of AAO layers due to the utilization of an inexpensive Al source.
In this study, semi-organized anodized aluminum oxide (AAO) is prepared by two-step anodization in oxalic acid using a low-purity aluminum (Al) alloy (Al6082) as the source material. Obtaining ideally ordered AAO layers from Al alloys is confounded by the presence of impurities and requires specialized post-anodization treatment. Here, a process is proposed for obtaining an AAO layer with a semi-ordered pore arrangement by means of calcination and pore-widening procedures. Calcination temperatures of 400–600 °C and pore–widening times of 15–120 min were explored. It was found that calcination improved the pore order of AAO layers from disordered to semi-ordered (defined as being near ideally ordered—one pore surrounded by six neighboring pores). In addition, it was found that calcination at 600 °C resulted in suitable pore widening of the AAO layer. The morphology of the AAO layers was characterized using scanning electron microscopy, which was applied to determine pore diameter, inter-pore distance, pore density, and AAO layer thickness. We found that calcinated and pore-widened AAO layers with pore diameters of 48.7 nm, inter-pore distances of 80.6 nm, and pore densities of 178 pores/μm2 could be prepared. The AAO preparation method proposed here is an economically attractive process suitable for the preparation of AAO layers due to the utilization of an inexpensive Al source. •AAO layer preparation from low cost Al sources is economically attractive.•Non-Al elements present in Al alloys perplexes AAO layer preparation.•Pore arrangement of AAO layers prepared from Al alloys is generally disordered.•AAO layer calcination and pore widening improves pore arrangement.
ArticleNumber 125234
Author du Preez, S.P.
Bessarabov, D.G.
Kozhukhova, A.E.
Author_xml – sequence: 1
  givenname: A.E.
  surname: Kozhukhova
  fullname: Kozhukhova, A.E.
– sequence: 2
  givenname: S.P.
  surname: du Preez
  fullname: du Preez, S.P.
  email: Faan.duPreez@nwu.ac.za
– sequence: 3
  givenname: D.G.
  surname: Bessarabov
  fullname: Bessarabov, D.G.
  email: Dmitri.Bessarabov@nwu.ac.za
BookMark eNqFkEtLAzEQx4Mo2Fa_ggQ8b81jH1nwYCm-oOCl3oSQJhNN2SZrsuvr07u1evFSGBgY_r8Z5jdGhz54QOiMkikltLxYT1MfrQ6qmzJC6yllBeP5ARpRUdUZ53l1iEaEFVUm6oodo3FKa0IIrep8hJ6WL4DBWtBdwsHiNkTA786Ad_4ZK2-wVo12XnUueDyU8sG4LzBYNf3G-X6Dw8cQx22EVsVhbmPY4FlTEsFO0JFVTYLT3z5BjzfXy_ldtni4vZ_PFpnmQnRZUZsC8rzUrKRgmK1UvQJRaWbyFVjNOSOW10oDF7riwKEQ2iqqBV8JVQrKJ-h8t7eN4bWH1Ml16KMfTkrGC15SUbN8SF3uUjqGlCJYqV3381cXlWskJXLrU67ln0-59Sl3Pge8_Ie30W1U_NwPXu1AGBS8OYgyaQdeg3Fx0C5NcPtWfAPbx5bE
CitedBy_id crossref_primary_10_1021_acsami_4c22543
crossref_primary_10_3390_nano12030444
crossref_primary_10_1016_j_jallcom_2023_170464
crossref_primary_10_1016_j_electacta_2024_144380
crossref_primary_10_1016_j_surfcoat_2021_127674
crossref_primary_10_1016_j_ijhydene_2022_01_246
crossref_primary_10_1016_j_surfcoat_2020_126483
crossref_primary_10_1016_j_nucengdes_2024_113481
crossref_primary_10_3390_catal11040491
Cites_doi 10.1186/1556-276X-6-596
10.1016/j.memsci.2008.09.003
10.1016/j.cap.2007.10.037
10.1016/j.electacta.2009.12.054
10.1016/j.electacta.2007.09.039
10.2320/matertrans.MRA2008216
10.1016/j.surfcoat.2010.09.038
10.17159/2411-9717/2019/v119n2a13
10.1016/j.electacta.2009.10.075
10.1038/nmeth.2089
10.1108/00035591111148885
10.1016/j.micromeso.2010.07.022
10.1007/BF02697158
10.1016/j.memsci.2009.07.027
10.1016/S0167-9317(03)00042-X
10.1016/j.tsf.2013.12.023
10.1016/0013-4686(94)00347-4
10.1080/00202967.1997.11871137
10.1016/S0257-8972(02)00144-5
10.1016/j.jelechem.2015.05.024
10.1063/1.124911
10.1126/science.268.5216.1466
10.1016/j.matdes.2005.02.018
10.1002/smll.200600582
10.1016/j.jcat.2004.06.016
10.1016/j.memsci.2006.10.045
10.1134/S1027451011100090
10.1049/mnl.2011.0599
10.1007/s100080000176
10.1063/1.1846137
10.1149/1.1767838
10.1021/cm980163a
10.1016/j.electacta.2013.04.160
10.1016/j.surfcoat.2006.12.003
10.1007/s10008-011-1471-z
10.1016/j.msec.2012.08.038
10.1007/s10008-006-0259-z
10.1016/j.cjche.2014.06.011
10.3390/coatings9020115
10.1016/j.jlumin.2005.12.057
10.1016/S0010-938X(78)80041-9
10.1134/S1063739718010080
10.1016/j.apsusc.2019.02.005
10.1016/j.tsf.2010.07.017
10.1016/0040-6090(83)90099-8
10.1016/j.talanta.2008.12.001
10.1021/nl025758q
10.1080/00202967.1990.11870860
10.1038/nmat1717
10.1143/JJAP.44.1529
10.1016/j.electacta.2003.10.024
10.1063/1.121004
10.1023/A:1026714218522
10.1016/j.surfcoat.2019.124970
10.1007/BF01911405
10.1007/BF02699038
10.1088/0022-3727/25/8/017
10.1016/j.apsusc.2012.01.099
10.1016/j.corsci.2010.03.029
10.1016/0376-7388(94)00185-2
10.3390/ma12050695
10.1016/j.electacta.2004.02.030
10.1002/adma.200501500
10.1016/j.jmatprotec.2005.02.115
10.1007/s10934-012-9568-z
10.1016/0376-7388(94)00184-Z
10.1016/j.elecom.2008.11.016
10.1016/j.electacta.2009.01.046
10.1252/jcej.39.889
10.1166/jbn.2016.2192
10.1016/j.electacta.2011.03.126
10.1111/j.1151-2916.2001.tb00671.x
10.1021/am502882d
10.1039/f19767202248
10.1016/j.msea.2008.05.015
10.1016/S0040-6090(96)09440-0
10.1016/j.spmi.2007.10.005
10.1016/j.electacta.2010.01.048
10.1016/S1003-6326(08)60398-2
10.1016/j.pmatsci.2013.01.002
10.1098/rspa.1970.0129
10.1016/j.jeurceramsoc.2008.09.011
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Feb 15, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 15, 2020
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
DOI 10.1016/j.surfcoat.2019.125234
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
ExternalDocumentID 10_1016_j_surfcoat_2019_125234
S0257897219312241
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
~HD
7QQ
7SR
8BQ
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JG9
SSH
ID FETCH-LOGICAL-c388t-59d5e446c261ed2f7a9be87c2d4befc3320f39ace38c73e3e58cfa1c83b8a6813
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509617000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0257-8972
IngestDate Mon Jul 14 10:28:16 EDT 2025
Sat Nov 29 07:21:22 EST 2025
Tue Nov 18 22:33:25 EST 2025
Fri Feb 23 02:48:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Anodized aluminum
Al6082
Calcination
Oxalic acid
Pore–widening
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c388t-59d5e446c261ed2f7a9be87c2d4befc3320f39ace38c73e3e58cfa1c83b8a6813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0257897219312241
PQID 2353618924
PQPubID 2045394
ParticipantIDs proquest_journals_2353618924
crossref_citationtrail_10_1016_j_surfcoat_2019_125234
crossref_primary_10_1016_j_surfcoat_2019_125234
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2019_125234
PublicationCentury 2000
PublicationDate 2020-02-15
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Vorob’eva, Shimanovich, Sycheva (bb0315) 2018; 47
Ono (bb0420) 2004; 151
Zaraska, Sulka, Jaskuła (bb0250) 2010; 205
Dollimore, Griffiths (bb0305) 1970; 2
Vojkuvka (bb0140) 2008; 44
Yang (bb0260) 2006; 18
Wang, Han (bb0270) 2003; 66
Lee (bb0320) 2000; 17
Yu (bb0230) 2019; 479
Chung (bb0090) 2011; 6
Bara, Niedźwiedź, Skoneczny (bb0095) 2019; 12
Na (bb0100) 2009; 19
Chen, Chen, Chao (bb0105) 2005; 44
Mardilovich (bb0325) 1995; 98
Mrówka-Nowotnik, Sieniawski (bb0395) 2005; 162-163
Wang (bb0035) 2006; 39
Norek, Dopierała, Stępniowski (bb0130) 2015; 750
Wang, Huang, Yang (bb0275) 2009; 29
Montero-Moreno, Sarret, Müller (bb0085) 2010; 136
Liu (bb0135) 2014; 552
Totten, MacKenzie (bb0360) 2003
Schacht, Boukis, Dinjus (bb0410) 2000; 35
du Preez (bb0400) 2019; 119
Wang (bb0015) 2009; 78
Patermarakis, Moussoutzanis (bb0180) 1995; 40
Kumeria (bb0010) 2014; 6
Zaraska (bb0070) 2010; 55
Gasenkova, Mazurenko, Ostapenko (bb0310) 2011; 5
Mardilovich (bb0330) 1995; 98
Zaraska, Sulka, Jaskuła (bb0245) 2011; 15
Suh, Lee (bb0165) 1999; 75
Jariyaboon (bb0380) 2011; 58
Saenz de Miera (bb0365) 2010; 52
Fratila-Apachitei (bb0390) 2004; 49
Park (bb0265) 2016; 12
Cui (bb0235) 2012; 258
Kirchner (bb0290) 2008; 8
Akeret (bb0375) 1990; 68
Sulka, Brzózka, Liu (bb0060) 2011; 56
Montero-Moreno, Sarret, Müller (bb0195) 2007; 201
Sullivan, Wood, Mott Nevill (bb0175) 1970; 317
Ni (bb0125) 2013; 33
Sun (bb0300) 2006; 121
Shimura (bb0345) 1976; 72
Thompson (bb0355) 1997; 297
Bruera (bb0080) 2019; 9
Fratila-Apachitei (bb0225) 2004; 49
Jessensky, Müller, Gösele (bb0190) 1998; 72
Rui (bb0425) 2014; 22
Patermarakis, Chandrinos, Masavetas (bb0200) 2007; 11
Mata-Zamora, Saniger (bb0285) 2005; 51
Choudhari, Sudheendra, Udayashankar (bb0295) 2012; 19
Xiao (bb0210) 2002; 2
Yamamoto, Baba (bb0340) 1983; 101
Patermarakis, Moussoutzanis, Chandrinos (bb0335) 2001; 6
Shi (bb0020) 2008; 325
Ganley (bb0110) 2004; 227
Sulka (bb0240) 2010; 55
Fratila-Apachitei, Duszczyk, Katgerman (bb0220) 2002; 157
Son (bb0370) 2008; 49
Osmanbeyoglu, Hur, Kim (bb0025) 2009; 343
Sabzi, Kant, Losic (bb0040) 2010; 55
Md Jani, Losic, Voelcker (bb0160) 2013; 58
Thompson, Furneaux, Wood (bb0350) 1978; 18
Ghorbani (bb0170) 2006; 27
Sulka (bb0150) 2008
Bai (bb0005) 2008; 53
Li, Zhang, Metzger (bb0155) 1998; 10
Wong-ek (bb0065) 2010; 518
Mei (bb0205) 2005; 97
Michalska-Domańska (bb0075) 2013; 105
Kirchner (bb0280) 2007; 287
Parkhutik, Shershulsky (bb0185) 1992; 25
Rahimi (bb0255) 2012; 7
Hwang (bb0415) 2002; 19
Sulka, Stępniowski (bb0055) 2009; 54
Kozhukhova, du Preez, Bessarabov (bb0115) 2019; 378
Habazaki (bb0215) 1997; 75
Greskovich, Brewer (bb0405) 2001; 84
Zhang (bb0045) 2009; 11
Lee (bb0120) 2006; 5
Schneider, Rasband, Eliceiri (bb0145) 2012; 9
Masuda, Fukuda (bb0050) 1995; 268
Thormann (bb0030) 2007; 3
Cepeda-Jiménez (bb0385) 2008; 496
Patermarakis (10.1016/j.surfcoat.2019.125234_bb0180) 1995; 40
Yang (10.1016/j.surfcoat.2019.125234_bb0260) 2006; 18
Fratila-Apachitei (10.1016/j.surfcoat.2019.125234_bb0220) 2002; 157
Kirchner (10.1016/j.surfcoat.2019.125234_bb0290) 2008; 8
Kozhukhova (10.1016/j.surfcoat.2019.125234_bb0115) 2019; 378
Masuda (10.1016/j.surfcoat.2019.125234_bb0050) 1995; 268
Wong-ek (10.1016/j.surfcoat.2019.125234_bb0065) 2010; 518
Lee (10.1016/j.surfcoat.2019.125234_bb0120) 2006; 5
Suh (10.1016/j.surfcoat.2019.125234_bb0165) 1999; 75
Mrówka-Nowotnik (10.1016/j.surfcoat.2019.125234_bb0395) 2005; 162-163
Wang (10.1016/j.surfcoat.2019.125234_bb0015) 2009; 78
Ganley (10.1016/j.surfcoat.2019.125234_bb0110) 2004; 227
Son (10.1016/j.surfcoat.2019.125234_bb0370) 2008; 49
Kumeria (10.1016/j.surfcoat.2019.125234_bb0010) 2014; 6
Na (10.1016/j.surfcoat.2019.125234_bb0100) 2009; 19
Wang (10.1016/j.surfcoat.2019.125234_bb0035) 2006; 39
Montero-Moreno (10.1016/j.surfcoat.2019.125234_bb0085) 2010; 136
Md Jani (10.1016/j.surfcoat.2019.125234_bb0160) 2013; 58
Xiao (10.1016/j.surfcoat.2019.125234_bb0210) 2002; 2
Park (10.1016/j.surfcoat.2019.125234_bb0265) 2016; 12
Liu (10.1016/j.surfcoat.2019.125234_bb0135) 2014; 552
Thompson (10.1016/j.surfcoat.2019.125234_bb0350) 1978; 18
Gasenkova (10.1016/j.surfcoat.2019.125234_bb0310) 2011; 5
Cui (10.1016/j.surfcoat.2019.125234_bb0235) 2012; 258
Thormann (10.1016/j.surfcoat.2019.125234_bb0030) 2007; 3
Sulka (10.1016/j.surfcoat.2019.125234_bb0055) 2009; 54
Michalska-Domańska (10.1016/j.surfcoat.2019.125234_bb0075) 2013; 105
Sullivan (10.1016/j.surfcoat.2019.125234_bb0175) 1970; 317
Thompson (10.1016/j.surfcoat.2019.125234_bb0355) 1997; 297
Hwang (10.1016/j.surfcoat.2019.125234_bb0415) 2002; 19
Osmanbeyoglu (10.1016/j.surfcoat.2019.125234_bb0025) 2009; 343
Sulka (10.1016/j.surfcoat.2019.125234_bb0240) 2010; 55
Fratila-Apachitei (10.1016/j.surfcoat.2019.125234_bb0390) 2004; 49
Bai (10.1016/j.surfcoat.2019.125234_bb0005) 2008; 53
Jessensky (10.1016/j.surfcoat.2019.125234_bb0190) 1998; 72
Ghorbani (10.1016/j.surfcoat.2019.125234_bb0170) 2006; 27
Schneider (10.1016/j.surfcoat.2019.125234_bb0145) 2012; 9
Wang (10.1016/j.surfcoat.2019.125234_bb0275) 2009; 29
Yu (10.1016/j.surfcoat.2019.125234_bb0230) 2019; 479
Rui (10.1016/j.surfcoat.2019.125234_bb0425) 2014; 22
Jariyaboon (10.1016/j.surfcoat.2019.125234_bb0380) 2011; 58
Montero-Moreno (10.1016/j.surfcoat.2019.125234_bb0195) 2007; 201
Cepeda-Jiménez (10.1016/j.surfcoat.2019.125234_bb0385) 2008; 496
Schacht (10.1016/j.surfcoat.2019.125234_bb0410) 2000; 35
Lee (10.1016/j.surfcoat.2019.125234_bb0320) 2000; 17
Parkhutik (10.1016/j.surfcoat.2019.125234_bb0185) 1992; 25
Ni (10.1016/j.surfcoat.2019.125234_bb0125) 2013; 33
Patermarakis (10.1016/j.surfcoat.2019.125234_bb0200) 2007; 11
Zaraska (10.1016/j.surfcoat.2019.125234_bb0070) 2010; 55
Sulka (10.1016/j.surfcoat.2019.125234_bb0150) 2008
Mei (10.1016/j.surfcoat.2019.125234_bb0205) 2005; 97
Kirchner (10.1016/j.surfcoat.2019.125234_bb0280) 2007; 287
Saenz de Miera (10.1016/j.surfcoat.2019.125234_bb0365) 2010; 52
Zaraska (10.1016/j.surfcoat.2019.125234_bb0250) 2010; 205
Mardilovich (10.1016/j.surfcoat.2019.125234_bb0330) 1995; 98
Mata-Zamora (10.1016/j.surfcoat.2019.125234_bb0285) 2005; 51
Chung (10.1016/j.surfcoat.2019.125234_bb0090) 2011; 6
Bara (10.1016/j.surfcoat.2019.125234_bb0095) 2019; 12
Patermarakis (10.1016/j.surfcoat.2019.125234_bb0335) 2001; 6
Akeret (10.1016/j.surfcoat.2019.125234_bb0375) 1990; 68
Sulka (10.1016/j.surfcoat.2019.125234_bb0060) 2011; 56
Wang (10.1016/j.surfcoat.2019.125234_bb0270) 2003; 66
Zhang (10.1016/j.surfcoat.2019.125234_bb0045) 2009; 11
du Preez (10.1016/j.surfcoat.2019.125234_bb0400) 2019; 119
Greskovich (10.1016/j.surfcoat.2019.125234_bb0405) 2001; 84
Zaraska (10.1016/j.surfcoat.2019.125234_bb0245) 2011; 15
Dollimore (10.1016/j.surfcoat.2019.125234_bb0305) 1970; 2
Yamamoto (10.1016/j.surfcoat.2019.125234_bb0340) 1983; 101
Mardilovich (10.1016/j.surfcoat.2019.125234_bb0325) 1995; 98
Shimura (10.1016/j.surfcoat.2019.125234_bb0345) 1976; 72
Fratila-Apachitei (10.1016/j.surfcoat.2019.125234_bb0225) 2004; 49
Totten (10.1016/j.surfcoat.2019.125234_bb0360) 2003
Ono (10.1016/j.surfcoat.2019.125234_bb0420) 2004; 151
Chen (10.1016/j.surfcoat.2019.125234_bb0105) 2005; 44
Sabzi (10.1016/j.surfcoat.2019.125234_bb0040) 2010; 55
Choudhari (10.1016/j.surfcoat.2019.125234_bb0295) 2012; 19
Shi (10.1016/j.surfcoat.2019.125234_bb0020) 2008; 325
Habazaki (10.1016/j.surfcoat.2019.125234_bb0215) 1997; 75
Rahimi (10.1016/j.surfcoat.2019.125234_bb0255) 2012; 7
Bruera (10.1016/j.surfcoat.2019.125234_bb0080) 2019; 9
Li (10.1016/j.surfcoat.2019.125234_bb0155) 1998; 10
Vorob’eva (10.1016/j.surfcoat.2019.125234_bb0315) 2018; 47
Norek (10.1016/j.surfcoat.2019.125234_bb0130) 2015; 750
Vojkuvka (10.1016/j.surfcoat.2019.125234_bb0140) 2008; 44
Sun (10.1016/j.surfcoat.2019.125234_bb0300) 2006; 121
References_xml – volume: 49
  start-page: 3169
  year: 2004
  end-page: 3177
  ident: bb0225
  article-title: A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys
  publication-title: Electrochim. Acta
– volume: 343
  start-page: 1
  year: 2009
  end-page: 6
  ident: bb0025
  article-title: Thin alumina nanoporous membranes for similar size biomolecule separation
  publication-title: J. Membr. Sci.
– volume: 157
  start-page: 80
  year: 2002
  end-page: 94
  ident: bb0220
  article-title: Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H
  publication-title: Surf. Coat. Technol.
– volume: 317
  start-page: 511
  year: 1970
  end-page: 543
  ident: bb0175
  article-title: The morphology and mechanism of formation of porous anodic films on aluminium
  publication-title: Proc. R. Soc. Lond. A
– volume: 84
  start-page: 420
  year: 2001
  end-page: 425
  ident: bb0405
  article-title: Solubility of magnesia in polycrystalline alumina at high temperatures
  publication-title: J. Am. Ceram. Soc.
– volume: 72
  start-page: 1173
  year: 1998
  end-page: 1175
  ident: bb0190
  article-title: Self-organized formation of hexagonal pore arrays in anodic alumina
  publication-title: Appl. Phys. Lett.
– volume: 55
  start-page: 4377
  year: 2010
  end-page: 4386
  ident: bb0070
  article-title: Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum
  publication-title: Electrochim. Acta
– volume: 105
  start-page: 424
  year: 2013
  end-page: 432
  ident: bb0075
  article-title: Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—a comparative study with the AAO produced on high purity aluminum
  publication-title: Electrochim. Acta
– volume: 136
  start-page: 68
  year: 2010
  end-page: 74
  ident: bb0085
  article-title: Self-ordered porous alumina by two-step anodizing at constant current: behaviour and evolution of the structure
  publication-title: Microporous Mesoporous Mater.
– volume: 6
  start-page: 596
  year: 2011
  ident: bb0090
  article-title: Anodization of nanoporous alumina on impurity-induced hemisphere curved surface of aluminum at room temperature
  publication-title: Nanoscale Res. Lett.
– volume: 6
  start-page: 39
  year: 2001
  end-page: 54
  ident: bb0335
  article-title: Discovery by kinetic studies of the latent physicochemical processes and their mechanisms during the growth of porous anodic alumina films in sulfate electrolytes
  publication-title: J. Solid State Electrochem.
– volume: 18
  start-page: 481
  year: 1978
  end-page: 498
  ident: bb0350
  article-title: Electron microscopy of ion beam thinned porous anodic films formed on aluminium
  publication-title: Corros. Sci.
– volume: 56
  start-page: 4972
  year: 2011
  end-page: 4979
  ident: bb0060
  article-title: Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 125
  year: 2012
  end-page: 129
  ident: bb0255
  article-title: Heat treatment of aluminum in preparing porous anodic alumina templates
  publication-title: Micro Nano Lett.
– volume: 8
  start-page: 451
  year: 2008
  end-page: 454
  ident: bb0290
  article-title: Preparation and high-temperature characterisation of nanostructured alumina ceramic membranes for gas purification
  publication-title: Curr. Appl. Phys.
– volume: 35
  start-page: 6251
  year: 2000
  end-page: 6258
  ident: bb0410
  article-title: Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures
  publication-title: J. Mater. Sci.
– volume: 53
  start-page: 2258
  year: 2008
  end-page: 2264
  ident: bb0005
  article-title: Pore diameter control of anodic aluminum oxide with ordered array of nanopores
  publication-title: Electrochim. Acta
– start-page: 1
  year: 2008
  end-page: 116
  ident: bb0150
  article-title: Highly ordered anodic porous alumina formation by self-organized anodizing
  publication-title: Nanostruct. Mater. Electrochem.
– volume: 750
  start-page: 79
  year: 2015
  end-page: 88
  ident: bb0130
  article-title: Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina
  publication-title: J. Electroanal. Chem.
– volume: 58
  start-page: 636
  year: 2013
  end-page: 704
  ident: bb0160
  article-title: Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications
  publication-title: Prog. Mater. Sci.
– volume: 121
  start-page: 588
  year: 2006
  end-page: 594
  ident: bb0300
  article-title: Photoluminescence properties of anodic alumina membranes with ordered nanopore arrays
  publication-title: J. Lumin.
– volume: 54
  start-page: 3683
  year: 2009
  end-page: 3691
  ident: bb0055
  article-title: Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures
  publication-title: Electrochim. Acta
– volume: 98
  start-page: 131
  year: 1995
  end-page: 142
  ident: bb0330
  article-title: New and modified anodic alumina membranes part I. Thermotreatment of anodic alumina membranes
  publication-title: J. Membr. Sci.
– volume: 19
  start-page: 1013
  year: 2009
  end-page: 1017
  ident: bb0100
  article-title: Formation of unidirectional nanoporous structures in thickly anodized aluminum oxide layer
  publication-title: Trans. Nonferrous Metals Soc. China
– volume: 52
  start-page: 2489
  year: 2010
  end-page: 2497
  ident: bb0365
  article-title: The behaviour of second phase particles during anodizing of aluminium alloys
  publication-title: Corros. Sci.
– volume: 378
  year: 2019
  ident: bb0115
  article-title: Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082)
  publication-title: Surf. Coat. Technol.
– volume: 68
  start-page: 20
  year: 1990
  end-page: 28
  ident: bb0375
  article-title: The influence of chemical composition and fabrication procedures on the properties of anodised aluminium surfaces
  publication-title: Trans. Int. Met. Finish
– volume: 11
  start-page: 190
  year: 2009
  end-page: 193
  ident: bb0045
  article-title: Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities
  publication-title: Electrochem. Commun.
– volume: 227
  start-page: 26
  year: 2004
  end-page: 32
  ident: bb0110
  article-title: Porous anodic alumina optimized as a catalyst support for microreactors
  publication-title: J. Catal.
– volume: 58
  start-page: 173
  year: 2011
  end-page: 178
  ident: bb0380
  article-title: FIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium
  publication-title: Anti-Corros. Methods Mater.
– volume: 44
  start-page: 1529
  year: 2005
  end-page: 1533
  ident: bb0105
  article-title: Post-treatment method of producing ordered array of anodic aluminum oxide using general purity commercial (99.7%) aluminum
  publication-title: Jpn. J. Appl. Phys.
– volume: 11
  start-page: 1191
  year: 2007
  end-page: 1204
  ident: bb0200
  article-title: Formulation of a holistic model for the kinetics of steady state growth of porous anodic alumina films
  publication-title: J. Solid State Electrochem.
– volume: 66
  start-page: 166
  year: 2003
  end-page: 170
  ident: bb0270
  article-title: Fabrication and characterization of anodic aluminum oxide template
  publication-title: Microelectron. Eng.
– volume: 2
  start-page: 229
  year: 1970
  end-page: 250
  ident: bb0305
  article-title: Differential thermal analysis study of various oxalates in oxygen and nitrogen
  publication-title: J. Therm. Anal. Calorim.
– volume: 12
  year: 2019
  ident: bb0095
  article-title: Influence of anodizing parameters on surface morphology and surface-free energy of Al
  publication-title: Materials
– volume: 162-163
  start-page: 367
  year: 2005
  end-page: 372
  ident: bb0395
  article-title: Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys
  publication-title: J. Mater. Process. Technol.
– volume: 287
  start-page: 264
  year: 2007
  end-page: 270
  ident: bb0280
  article-title: Structural characterisation of heat-treated anodic alumina membranes prepared using a simplified fabrication process
  publication-title: J. Membr. Sci.
– volume: 55
  start-page: 1829
  year: 2010
  end-page: 1835
  ident: bb0040
  article-title: Electrochemical synthesis of nickel hexacyanoferrate nanoarrays with dots, rods and nanotubes morphology using a porous alumina template
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 1005
  year: 2011
  ident: bb0310
  article-title: Chemical composition and surface morphology of anodic alumina determined by electron microscopy and thermogravimetry
  publication-title: J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech.ch.
– volume: 27
  start-page: 983
  year: 2006
  end-page: 988
  ident: bb0170
  article-title: On the growth sequence of highly ordered nanoporous anodic aluminium oxide
  publication-title: Mater. Des.
– start-page: 1310
  year: 2003
  ident: bb0360
  publication-title: Handbook of Aluminum: Physical Metallurgy and Processes
– volume: 201
  start-page: 6352
  year: 2007
  end-page: 6357
  ident: bb0195
  article-title: Influence of the aluminum surface on the final results of a two-step anodizing
  publication-title: Surf. Coat. Technol.
– volume: 55
  start-page: 4368
  year: 2010
  end-page: 4376
  ident: bb0240
  article-title: Through-hole membranes of nanoporous alumina formed by anodizing in oxalic acid and their applications in fabrication of nanowire arrays
  publication-title: Electrochim. Acta
– volume: 205
  start-page: 2432
  year: 2010
  end-page: 2437
  ident: bb0250
  article-title: Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays
  publication-title: Surf. Coat. Technol.
– volume: 297
  start-page: 192
  year: 1997
  end-page: 201
  ident: bb0355
  article-title: Porous anodic alumina: fabrication, characterization and applications
  publication-title: Thin Solid Films
– volume: 15
  start-page: 2427
  year: 2011
  end-page: 2436
  ident: bb0245
  article-title: Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time
  publication-title: J. Solid State Electrochem.
– volume: 19
  start-page: 1053
  year: 2012
  end-page: 1062
  ident: bb0295
  article-title: Fabrication and high-temperature structural characterization study of porous anodic alumina membranes
  publication-title: J. Porous. Mater.
– volume: 40
  start-page: 699
  year: 1995
  end-page: 708
  ident: bb0180
  article-title: Electrochemical kinetic study on the growth of porous anodic oxide films on aluminium
  publication-title: Electrochim. Acta
– volume: 258
  start-page: 5305
  year: 2012
  end-page: 5311
  ident: bb0235
  article-title: A facile and efficient approach for pore-opening detection of anodic aluminum oxide membranes
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 741
  year: 2006
  end-page: 747
  ident: bb0120
  article-title: Fast fabrication of long-range ordered porous alumina membranes by hard anodization
  publication-title: Nat. Mater.
– volume: 33
  start-page: 259
  year: 2013
  end-page: 264
  ident: bb0125
  article-title: Preparation of near micrometer-sized TiO
  publication-title: Mater. Sci. Eng. C
– volume: 51
  start-page: 502
  year: 2005
  end-page: 509
  ident: bb0285
  article-title: Thermal evolution of porous anodic aluminas: a comparative study
  publication-title: Rev. Mex. Fis.
– volume: 9
  year: 2019
  ident: bb0080
  article-title: Synthesis and morphological characterization of nanoporous aluminum oxide films by using a single anodization step
  publication-title: Coatings
– volume: 47
  start-page: 40
  year: 2018
  end-page: 49
  ident: bb0315
  article-title: Studying the thermodynamic characteristics of anodic alumina
  publication-title: Russ. Microelectron.
– volume: 98
  start-page: 143
  year: 1995
  end-page: 155
  ident: bb0325
  article-title: New and modified anodic alumina membranes part II. Comparison of solubility of amorphous (normal) and polycrystalline anodic alumina membranes
  publication-title: J. Membr. Sci.
– volume: 29
  start-page: 1387
  year: 2009
  end-page: 1391
  ident: bb0275
  article-title: Synthesis of ceramic nanotubes using AAO templates
  publication-title: J. Eur. Ceram. Soc.
– volume: 17
  start-page: 266
  year: 2000
  end-page: 272
  ident: bb0320
  article-title: Thermotreatment and chemical resistance of porous alumina membrane prepared by anodic oxidation
  publication-title: Korean J. Chem. Eng.
– volume: 19
  start-page: 467
  year: 2002
  end-page: 473
  ident: bb0415
  article-title: Fabrication of highly ordered pore array in anodic aluminum oxide
  publication-title: Korean J. Chem. Eng.
– volume: 18
  start-page: 709
  year: 2006
  end-page: 712
  ident: bb0260
  article-title: Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2470
  year: 1998
  end-page: 2480
  ident: bb0155
  article-title: On the growth of highly ordered pores in anodized aluminum oxide
  publication-title: Chem. Mater.
– volume: 44
  start-page: 577
  year: 2008
  end-page: 582
  ident: bb0140
  article-title: Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization
  publication-title: Superlattice. Microst.
– volume: 2
  start-page: 1293
  year: 2002
  end-page: 1297
  ident: bb0210
  article-title: Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes
  publication-title: Nano Lett.
– volume: 49
  start-page: 1127
  year: 2004
  end-page: 1140
  ident: bb0390
  article-title: Influence of substrate microstructure on the growth of anodic oxide layers
  publication-title: Electrochim. Acta
– volume: 151
  start-page: B473
  year: 2004
  end-page: B478
  ident: bb0420
  article-title: Controlling factor of self-ordering of anodic porous alumina
  publication-title: J. Electrochem. Soc.
– volume: 75
  start-page: 18
  year: 1997
  end-page: 23
  ident: bb0215
  article-title: Effects of alloying elements in anodizing of aluminium
  publication-title: Trans. Int. Met. Finish
– volume: 101
  start-page: 329
  year: 1983
  end-page: 338
  ident: bb0340
  article-title: Nature of the carboxylate species incorporated in anodic alumina films formed in oxalic acid solution
  publication-title: Thin Solid Films
– volume: 22
  start-page: 882
  year: 2014
  end-page: 887
  ident: bb0425
  article-title: Anodic alumina supported Pt catalyst for total oxidation of trace toluene
  publication-title: Chin. J. Chem. Eng.
– volume: 119
  start-page: 207
  year: 2019
  end-page: 215
  ident: bb0400
  article-title: Recycling pre-oxidized chromite fines in the oxidative sintered pellet production process
  publication-title: J. South. Afr. Inst. Min. Metall.
– volume: 39
  start-page: 889
  year: 2006
  end-page: 895
  ident: bb0035
  article-title: Preparation of platinum catalysts supported on anodized aluminum for VOC catalytic combustion: the effect of sintering
  publication-title: J. Chem. Eng. Jpn
– volume: 25
  start-page: 1258
  year: 1992
  end-page: 1263
  ident: bb0185
  article-title: Theoretical modelling of porous oxide growth on aluminium
  publication-title: J. Phys. D
– volume: 552
  start-page: 75
  year: 2014
  end-page: 81
  ident: bb0135
  article-title: Preparation of self-ordered nanoporous anodic aluminum oxide membranes by combination of hard anodization and mild anodization
  publication-title: Thin Solid Films
– volume: 78
  start-page: 647
  year: 2009
  end-page: 652
  ident: bb0015
  article-title: A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection
  publication-title: Talanta
– volume: 9
  start-page: 671
  year: 2012
  ident: bb0145
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– volume: 496
  start-page: 133
  year: 2008
  end-page: 142
  ident: bb0385
  article-title: Influence of the alumina thickness at the interfaces on the fracture mechanisms of aluminium multilayer composites
  publication-title: Mater. Sci. Eng. A
– volume: 12
  start-page: 575
  year: 2016
  end-page: 580
  ident: bb0265
  article-title: Cell adhesion and growth on the anodized aluminum oxide membrane
  publication-title: J. Biomed. Nanotechnol.
– volume: 75
  start-page: 2047
  year: 1999
  end-page: 2049
  ident: bb0165
  article-title: Highly ordered two-dimensional carbon nanotube arrays
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 1032
  year: 2007
  end-page: 1040
  ident: bb0030
  article-title: Nanoporous aluminum oxide membranes for filtration and biofunctionalization
  publication-title: Small
– volume: 6
  start-page: 12971
  year: 2014
  end-page: 12978
  ident: bb0010
  article-title: Nanoporous anodic alumina rugate filters for sensing of ionic mercury: toward environmental point-of-analysis systems
  publication-title: ACS Appl. Mater. Interfaces
– volume: 325
  start-page: 801
  year: 2008
  end-page: 808
  ident: bb0020
  article-title: Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation
  publication-title: J. Membr. Sci.
– volume: 97
  year: 2005
  ident: bb0205
  article-title: Formation mechanism of alumina nanotubes and nanowires from highly ordered porous anodic alumina template
  publication-title: J. Appl. Phys.
– volume: 479
  start-page: 105
  year: 2019
  end-page: 113
  ident: bb0230
  article-title: Effects of graphene oxide-filled sol-gel sealing on the corrosion resistance and paint adhesion of anodized aluminum
  publication-title: Appl. Surf. Sci.
– volume: 518
  start-page: 7128
  year: 2010
  end-page: 7132
  ident: bb0065
  article-title: Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate
  publication-title: Thin Solid Films
– volume: 268
  start-page: 1466
  year: 1995
  ident: bb0050
  article-title: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina
  publication-title: Science
– volume: 72
  start-page: 2248
  year: 1976
  end-page: 2256
  ident: bb0345
  article-title: Behaviour of oxalic acid in the anodic oxidation of aluminium. The role of anodically initiated reduction processes in coloration and photoluminescence
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 49
  start-page: 2648
  year: 2008
  end-page: 2655
  ident: bb0370
  article-title: Pitting corrosion resistance of anodized aluminum-copper alloy processed by severe plastic deformation
  publication-title: Mater. Trans.
– volume: 6
  start-page: 596
  issue: 1
  year: 2011
  ident: 10.1016/j.surfcoat.2019.125234_bb0090
  article-title: Anodization of nanoporous alumina on impurity-induced hemisphere curved surface of aluminum at room temperature
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-596
– volume: 325
  start-page: 801
  issue: 2
  year: 2008
  ident: 10.1016/j.surfcoat.2019.125234_bb0020
  article-title: Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.09.003
– volume: 8
  start-page: 451
  issue: 3
  year: 2008
  ident: 10.1016/j.surfcoat.2019.125234_bb0290
  article-title: Preparation and high-temperature characterisation of nanostructured alumina ceramic membranes for gas purification
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2007.10.037
– volume: 55
  start-page: 4377
  issue: 14
  year: 2010
  ident: 10.1016/j.surfcoat.2019.125234_bb0070
  article-title: Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.12.054
– volume: 53
  start-page: 2258
  issue: 5
  year: 2008
  ident: 10.1016/j.surfcoat.2019.125234_bb0005
  article-title: Pore diameter control of anodic aluminum oxide with ordered array of nanopores
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.09.039
– start-page: 1
  year: 2008
  ident: 10.1016/j.surfcoat.2019.125234_bb0150
  article-title: Highly ordered anodic porous alumina formation by self-organized anodizing
  publication-title: Nanostruct. Mater. Electrochem.
– volume: 49
  start-page: 2648
  issue: 11
  year: 2008
  ident: 10.1016/j.surfcoat.2019.125234_bb0370
  article-title: Pitting corrosion resistance of anodized aluminum-copper alloy processed by severe plastic deformation
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.MRA2008216
– volume: 205
  start-page: 2432
  issue: 7
  year: 2010
  ident: 10.1016/j.surfcoat.2019.125234_bb0250
  article-title: Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2010.09.038
– volume: 119
  start-page: 207
  year: 2019
  ident: 10.1016/j.surfcoat.2019.125234_bb0400
  article-title: Recycling pre-oxidized chromite fines in the oxidative sintered pellet production process
  publication-title: J. South. Afr. Inst. Min. Metall.
  doi: 10.17159/2411-9717/2019/v119n2a13
– volume: 55
  start-page: 1829
  issue: 5
  year: 2010
  ident: 10.1016/j.surfcoat.2019.125234_bb0040
  article-title: Electrochemical synthesis of nickel hexacyanoferrate nanoarrays with dots, rods and nanotubes morphology using a porous alumina template
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.10.075
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.surfcoat.2019.125234_bb0145
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 58
  start-page: 173
  issue: 4
  year: 2011
  ident: 10.1016/j.surfcoat.2019.125234_bb0380
  article-title: FIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium
  publication-title: Anti-Corros. Methods Mater.
  doi: 10.1108/00035591111148885
– volume: 136
  start-page: 68
  issue: 1
  year: 2010
  ident: 10.1016/j.surfcoat.2019.125234_bb0085
  article-title: Self-ordered porous alumina by two-step anodizing at constant current: behaviour and evolution of the structure
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2010.07.022
– volume: 19
  start-page: 467
  issue: 3
  year: 2002
  ident: 10.1016/j.surfcoat.2019.125234_bb0415
  article-title: Fabrication of highly ordered pore array in anodic aluminum oxide
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/BF02697158
– volume: 343
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.surfcoat.2019.125234_bb0025
  article-title: Thin alumina nanoporous membranes for similar size biomolecule separation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.07.027
– volume: 66
  start-page: 166
  issue: 1
  year: 2003
  ident: 10.1016/j.surfcoat.2019.125234_bb0270
  article-title: Fabrication and characterization of anodic aluminum oxide template
  publication-title: Microelectron. Eng.
  doi: 10.1016/S0167-9317(03)00042-X
– volume: 552
  start-page: 75
  year: 2014
  ident: 10.1016/j.surfcoat.2019.125234_bb0135
  article-title: Preparation of self-ordered nanoporous anodic aluminum oxide membranes by combination of hard anodization and mild anodization
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.12.023
– volume: 40
  start-page: 699
  issue: 6
  year: 1995
  ident: 10.1016/j.surfcoat.2019.125234_bb0180
  article-title: Electrochemical kinetic study on the growth of porous anodic oxide films on aluminium
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(94)00347-4
– volume: 75
  start-page: 18
  issue: 1
  year: 1997
  ident: 10.1016/j.surfcoat.2019.125234_bb0215
  article-title: Effects of alloying elements in anodizing of aluminium
  publication-title: Trans. Int. Met. Finish
  doi: 10.1080/00202967.1997.11871137
– volume: 157
  start-page: 80
  issue: 1
  year: 2002
  ident: 10.1016/j.surfcoat.2019.125234_bb0220
  article-title: Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(02)00144-5
– volume: 750
  start-page: 79
  year: 2015
  ident: 10.1016/j.surfcoat.2019.125234_bb0130
  article-title: Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2015.05.024
– volume: 75
  start-page: 2047
  issue: 14
  year: 1999
  ident: 10.1016/j.surfcoat.2019.125234_bb0165
  article-title: Highly ordered two-dimensional carbon nanotube arrays
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.124911
– volume: 268
  start-page: 1466
  issue: 5216
  year: 1995
  ident: 10.1016/j.surfcoat.2019.125234_bb0050
  article-title: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina
  publication-title: Science
  doi: 10.1126/science.268.5216.1466
– volume: 27
  start-page: 983
  issue: 10
  year: 2006
  ident: 10.1016/j.surfcoat.2019.125234_bb0170
  article-title: On the growth sequence of highly ordered nanoporous anodic aluminium oxide
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2005.02.018
– volume: 3
  start-page: 1032
  issue: 6
  year: 2007
  ident: 10.1016/j.surfcoat.2019.125234_bb0030
  article-title: Nanoporous aluminum oxide membranes for filtration and biofunctionalization
  publication-title: Small
  doi: 10.1002/smll.200600582
– volume: 227
  start-page: 26
  issue: 1
  year: 2004
  ident: 10.1016/j.surfcoat.2019.125234_bb0110
  article-title: Porous anodic alumina optimized as a catalyst support for microreactors
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.06.016
– volume: 287
  start-page: 264
  issue: 2
  year: 2007
  ident: 10.1016/j.surfcoat.2019.125234_bb0280
  article-title: Structural characterisation of heat-treated anodic alumina membranes prepared using a simplified fabrication process
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.10.045
– volume: 5
  start-page: 1005
  issue: 5
  year: 2011
  ident: 10.1016/j.surfcoat.2019.125234_bb0310
  article-title: Chemical composition and surface morphology of anodic alumina determined by electron microscopy and thermogravimetry
  publication-title: J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech.ch.
  doi: 10.1134/S1027451011100090
– volume: 7
  start-page: 125
  year: 2012
  ident: 10.1016/j.surfcoat.2019.125234_bb0255
  article-title: Heat treatment of aluminum in preparing porous anodic alumina templates
  publication-title: Micro Nano Lett.
  doi: 10.1049/mnl.2011.0599
– volume: 6
  start-page: 39
  issue: 1
  year: 2001
  ident: 10.1016/j.surfcoat.2019.125234_bb0335
  article-title: Discovery by kinetic studies of the latent physicochemical processes and their mechanisms during the growth of porous anodic alumina films in sulfate electrolytes
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s100080000176
– volume: 97
  issue: 3
  year: 2005
  ident: 10.1016/j.surfcoat.2019.125234_bb0205
  article-title: Formation mechanism of alumina nanotubes and nanowires from highly ordered porous anodic alumina template
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1846137
– volume: 151
  start-page: B473
  issue: 8
  year: 2004
  ident: 10.1016/j.surfcoat.2019.125234_bb0420
  article-title: Controlling factor of self-ordering of anodic porous alumina
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1767838
– volume: 10
  start-page: 2470
  issue: 9
  year: 1998
  ident: 10.1016/j.surfcoat.2019.125234_bb0155
  article-title: On the growth of highly ordered pores in anodized aluminum oxide
  publication-title: Chem. Mater.
  doi: 10.1021/cm980163a
– volume: 105
  start-page: 424
  year: 2013
  ident: 10.1016/j.surfcoat.2019.125234_bb0075
  article-title: Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—a comparative study with the AAO produced on high purity aluminum
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.04.160
– volume: 201
  start-page: 6352
  issue: 14
  year: 2007
  ident: 10.1016/j.surfcoat.2019.125234_bb0195
  article-title: Influence of the aluminum surface on the final results of a two-step anodizing
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2006.12.003
– volume: 15
  start-page: 2427
  issue: 11
  year: 2011
  ident: 10.1016/j.surfcoat.2019.125234_bb0245
  article-title: Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-011-1471-z
– volume: 33
  start-page: 259
  issue: 1
  year: 2013
  ident: 10.1016/j.surfcoat.2019.125234_bb0125
  article-title: Preparation of near micrometer-sized TiO2 nanotube arrays by high voltage anodization
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2012.08.038
– volume: 11
  start-page: 1191
  issue: 9
  year: 2007
  ident: 10.1016/j.surfcoat.2019.125234_bb0200
  article-title: Formulation of a holistic model for the kinetics of steady state growth of porous anodic alumina films
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-006-0259-z
– volume: 22
  start-page: 882
  issue: 8
  year: 2014
  ident: 10.1016/j.surfcoat.2019.125234_bb0425
  article-title: Anodic alumina supported Pt catalyst for total oxidation of trace toluene
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2014.06.011
– volume: 9
  issue: 2
  year: 2019
  ident: 10.1016/j.surfcoat.2019.125234_bb0080
  article-title: Synthesis and morphological characterization of nanoporous aluminum oxide films by using a single anodization step
  publication-title: Coatings
  doi: 10.3390/coatings9020115
– volume: 121
  start-page: 588
  issue: 2
  year: 2006
  ident: 10.1016/j.surfcoat.2019.125234_bb0300
  article-title: Photoluminescence properties of anodic alumina membranes with ordered nanopore arrays
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2005.12.057
– volume: 18
  start-page: 481
  issue: 5
  year: 1978
  ident: 10.1016/j.surfcoat.2019.125234_bb0350
  article-title: Electron microscopy of ion beam thinned porous anodic films formed on aluminium
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(78)80041-9
– volume: 47
  start-page: 40
  issue: 1
  year: 2018
  ident: 10.1016/j.surfcoat.2019.125234_bb0315
  article-title: Studying the thermodynamic characteristics of anodic alumina
  publication-title: Russ. Microelectron.
  doi: 10.1134/S1063739718010080
– volume: 479
  start-page: 105
  year: 2019
  ident: 10.1016/j.surfcoat.2019.125234_bb0230
  article-title: Effects of graphene oxide-filled sol-gel sealing on the corrosion resistance and paint adhesion of anodized aluminum
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.02.005
– volume: 518
  start-page: 7128
  issue: 23
  year: 2010
  ident: 10.1016/j.surfcoat.2019.125234_bb0065
  article-title: Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2010.07.017
– volume: 101
  start-page: 329
  issue: 4
  year: 1983
  ident: 10.1016/j.surfcoat.2019.125234_bb0340
  article-title: Nature of the carboxylate species incorporated in anodic alumina films formed in oxalic acid solution
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(83)90099-8
– volume: 78
  start-page: 647
  issue: 3
  year: 2009
  ident: 10.1016/j.surfcoat.2019.125234_bb0015
  article-title: A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection
  publication-title: Talanta
  doi: 10.1016/j.talanta.2008.12.001
– volume: 2
  start-page: 1293
  issue: 11
  year: 2002
  ident: 10.1016/j.surfcoat.2019.125234_bb0210
  article-title: Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes
  publication-title: Nano Lett.
  doi: 10.1021/nl025758q
– volume: 68
  start-page: 20
  issue: 1
  year: 1990
  ident: 10.1016/j.surfcoat.2019.125234_bb0375
  article-title: The influence of chemical composition and fabrication procedures on the properties of anodised aluminium surfaces
  publication-title: Trans. Int. Met. Finish
  doi: 10.1080/00202967.1990.11870860
– volume: 5
  start-page: 741
  issue: 9
  year: 2006
  ident: 10.1016/j.surfcoat.2019.125234_bb0120
  article-title: Fast fabrication of long-range ordered porous alumina membranes by hard anodization
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1717
– volume: 44
  start-page: 1529
  issue: 3
  year: 2005
  ident: 10.1016/j.surfcoat.2019.125234_bb0105
  article-title: Post-treatment method of producing ordered array of anodic aluminum oxide using general purity commercial (99.7%) aluminum
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.44.1529
– volume: 49
  start-page: 1127
  issue: 7
  year: 2004
  ident: 10.1016/j.surfcoat.2019.125234_bb0390
  article-title: Influence of substrate microstructure on the growth of anodic oxide layers
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2003.10.024
– volume: 72
  start-page: 1173
  issue: 10
  year: 1998
  ident: 10.1016/j.surfcoat.2019.125234_bb0190
  article-title: Self-organized formation of hexagonal pore arrays in anodic alumina
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121004
– volume: 35
  start-page: 6251
  issue: 24
  year: 2000
  ident: 10.1016/j.surfcoat.2019.125234_bb0410
  article-title: Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1026714218522
– volume: 378
  year: 2019
  ident: 10.1016/j.surfcoat.2019.125234_bb0115
  article-title: Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082)
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2019.124970
– volume: 2
  start-page: 229
  issue: 3
  year: 1970
  ident: 10.1016/j.surfcoat.2019.125234_bb0305
  article-title: Differential thermal analysis study of various oxalates in oxygen and nitrogen
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/BF01911405
– volume: 17
  start-page: 266
  issue: 3
  year: 2000
  ident: 10.1016/j.surfcoat.2019.125234_bb0320
  article-title: Thermotreatment and chemical resistance of porous alumina membrane prepared by anodic oxidation
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/BF02699038
– volume: 25
  start-page: 1258
  issue: 8
  year: 1992
  ident: 10.1016/j.surfcoat.2019.125234_bb0185
  article-title: Theoretical modelling of porous oxide growth on aluminium
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/25/8/017
– volume: 258
  start-page: 5305
  issue: 14
  year: 2012
  ident: 10.1016/j.surfcoat.2019.125234_bb0235
  article-title: A facile and efficient approach for pore-opening detection of anodic aluminum oxide membranes
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.01.099
– volume: 52
  start-page: 2489
  issue: 7
  year: 2010
  ident: 10.1016/j.surfcoat.2019.125234_bb0365
  article-title: The behaviour of second phase particles during anodizing of aluminium alloys
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2010.03.029
– volume: 98
  start-page: 143
  issue: 1
  year: 1995
  ident: 10.1016/j.surfcoat.2019.125234_bb0325
  article-title: New and modified anodic alumina membranes part II. Comparison of solubility of amorphous (normal) and polycrystalline anodic alumina membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(94)00185-2
– volume: 12
  issue: 5
  year: 2019
  ident: 10.1016/j.surfcoat.2019.125234_bb0095
  article-title: Influence of anodizing parameters on surface morphology and surface-free energy of Al2O3 layers produced on EN AW-5251 alloy
  publication-title: Materials
  doi: 10.3390/ma12050695
– volume: 49
  start-page: 3169
  issue: 19
  year: 2004
  ident: 10.1016/j.surfcoat.2019.125234_bb0225
  article-title: A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.02.030
– volume: 18
  start-page: 709
  issue: 6
  year: 2006
  ident: 10.1016/j.surfcoat.2019.125234_bb0260
  article-title: Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200501500
– volume: 162-163
  start-page: 367
  year: 2005
  ident: 10.1016/j.surfcoat.2019.125234_bb0395
  article-title: Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2005.02.115
– volume: 19
  start-page: 1053
  issue: 6
  year: 2012
  ident: 10.1016/j.surfcoat.2019.125234_bb0295
  article-title: Fabrication and high-temperature structural characterization study of porous anodic alumina membranes
  publication-title: J. Porous. Mater.
  doi: 10.1007/s10934-012-9568-z
– volume: 98
  start-page: 131
  issue: 1
  year: 1995
  ident: 10.1016/j.surfcoat.2019.125234_bb0330
  article-title: New and modified anodic alumina membranes part I. Thermotreatment of anodic alumina membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(94)00184-Z
– start-page: 1310
  year: 2003
  ident: 10.1016/j.surfcoat.2019.125234_bb0360
– volume: 11
  start-page: 190
  issue: 1
  year: 2009
  ident: 10.1016/j.surfcoat.2019.125234_bb0045
  article-title: Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.11.016
– volume: 51
  start-page: 502
  year: 2005
  ident: 10.1016/j.surfcoat.2019.125234_bb0285
  article-title: Thermal evolution of porous anodic aluminas: a comparative study
  publication-title: Rev. Mex. Fis.
– volume: 54
  start-page: 3683
  issue: 14
  year: 2009
  ident: 10.1016/j.surfcoat.2019.125234_bb0055
  article-title: Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.01.046
– volume: 39
  start-page: 889
  issue: 8
  year: 2006
  ident: 10.1016/j.surfcoat.2019.125234_bb0035
  article-title: Preparation of platinum catalysts supported on anodized aluminum for VOC catalytic combustion: the effect of sintering
  publication-title: J. Chem. Eng. Jpn
  doi: 10.1252/jcej.39.889
– volume: 12
  start-page: 575
  issue: 3
  year: 2016
  ident: 10.1016/j.surfcoat.2019.125234_bb0265
  article-title: Cell adhesion and growth on the anodized aluminum oxide membrane
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2016.2192
– volume: 56
  start-page: 4972
  issue: 14
  year: 2011
  ident: 10.1016/j.surfcoat.2019.125234_bb0060
  article-title: Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.03.126
– volume: 84
  start-page: 420
  issue: 2
  year: 2001
  ident: 10.1016/j.surfcoat.2019.125234_bb0405
  article-title: Solubility of magnesia in polycrystalline alumina at high temperatures
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2001.tb00671.x
– volume: 6
  start-page: 12971
  issue: 15
  year: 2014
  ident: 10.1016/j.surfcoat.2019.125234_bb0010
  article-title: Nanoporous anodic alumina rugate filters for sensing of ionic mercury: toward environmental point-of-analysis systems
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502882d
– volume: 72
  start-page: 2248
  issue: 0
  year: 1976
  ident: 10.1016/j.surfcoat.2019.125234_bb0345
  article-title: Behaviour of oxalic acid in the anodic oxidation of aluminium. The role of anodically initiated reduction processes in coloration and photoluminescence
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/f19767202248
– volume: 496
  start-page: 133
  issue: 1
  year: 2008
  ident: 10.1016/j.surfcoat.2019.125234_bb0385
  article-title: Influence of the alumina thickness at the interfaces on the fracture mechanisms of aluminium multilayer composites
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.05.015
– volume: 297
  start-page: 192
  issue: 1
  year: 1997
  ident: 10.1016/j.surfcoat.2019.125234_bb0355
  article-title: Porous anodic alumina: fabrication, characterization and applications
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(96)09440-0
– volume: 44
  start-page: 577
  issue: 4
  year: 2008
  ident: 10.1016/j.surfcoat.2019.125234_bb0140
  article-title: Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2007.10.005
– volume: 55
  start-page: 4368
  issue: 14
  year: 2010
  ident: 10.1016/j.surfcoat.2019.125234_bb0240
  article-title: Through-hole membranes of nanoporous alumina formed by anodizing in oxalic acid and their applications in fabrication of nanowire arrays
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.01.048
– volume: 19
  start-page: 1013
  issue: 4
  year: 2009
  ident: 10.1016/j.surfcoat.2019.125234_bb0100
  article-title: Formation of unidirectional nanoporous structures in thickly anodized aluminum oxide layer
  publication-title: Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(08)60398-2
– volume: 58
  start-page: 636
  issue: 5
  year: 2013
  ident: 10.1016/j.surfcoat.2019.125234_bb0160
  article-title: Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.01.002
– volume: 317
  start-page: 511
  issue: 1531
  year: 1970
  ident: 10.1016/j.surfcoat.2019.125234_bb0175
  article-title: The morphology and mechanism of formation of porous anodic films on aluminium
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1970.0129
– volume: 29
  start-page: 1387
  issue: 8
  year: 2009
  ident: 10.1016/j.surfcoat.2019.125234_bb0275
  article-title: Synthesis of ceramic nanotubes using AAO templates
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2008.09.011
SSID ssj0001794
Score 2.400383
Snippet In this study, semi-organized anodized aluminum oxide (AAO) is prepared by two-step anodization in oxalic acid using a low-purity aluminum (Al) alloy (Al6082)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125234
SubjectTerms Al6082
Aluminum
Aluminum base alloys
Aluminum oxide
Anodized aluminum
Anodizing
Calcination
Diameters
Morphology
Oxalic acid
Pore–widening
Roasting
Thickness
Widening
Title The effects of pore widening and calcination on anodized aluminum oxide prepared from Al6082
URI https://dx.doi.org/10.1016/j.surfcoat.2019.125234
https://www.proquest.com/docview/2353618924
Volume 383
WOSCitedRecordID wos000509617000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKhgQ8IBggBgP5gTeUkNpJYz-WqXxK06QNqQ9IkesPrVuVTFnaVfv1XMd2lm3A2ANSFKVubSU9J9fHV_f6IvRuxpRJhCKR0CKJUp2wCD7pSKTEEK1oyrRpi03ke3tsOuX7g8F5yIVZLfKyZOs1P_2vUEMbgG1TZ-8AdzcoNMA1gA5ngB3O_wx8L0oD9LV-f25Lh4Z0REBFzksvFW0scqXmF6A7BdipuQ2Mr9bwc7t7gItObzNQxotR4ur3BCl7sKyNkLrljqxE09b_bG546r9XF0fLk6Nq5Ry48SQO36ilDQBxHuyDeL9r_2irstRAzlVrEOPPcd81AetQWygl61kwsAcR4_kVc0sZ7RlM0FfEeTNv2HLnVjiGSaQ29jFsHB6PLztc3Tz72qTWhRqGKLbjIoxT2HEKN849tEnyjINF3xx_nUy_dZO4tVOte84_QS-5_Pd39Cddc22Gb2XL4RP02K838Njx5Cka6HILPdgNZf620KPejpTP0E9gD_bswZXBlj04sAcDe3CPPRiOwB4c2INb9uDAHmzZgx17nqMfnyaHu18iX4AjkpSxJsq4ynSajiQss7UiJhd8plkuiUpn2khKSWIoB6pRJnOqqc6YNGIoGZ0xMWJD-gJtlFWpXyIsJOj2VFFuQ1mTIROMCpoooXOZCWP4NsrC31dIvzu9LZKyKP4O4Db60PU7dfuz3NqDB3QKrzKdeiyAeLf23QlwFv6VPysIzehoyDhJX935Zl6jh5cvzg7aaOqlfoPuy1UzP6vfelL-Ah_7rKU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+pore+widening+and+calcination+on+anodized+aluminum+oxide+prepared+from+Al6082&rft.jtitle=Surface+%26+coatings+technology&rft.au=Kozhukhova%2C+A.E.&rft.au=du+Preez%2C+S.P.&rft.au=Bessarabov%2C+D.G.&rft.date=2020-02-15&rft.issn=0257-8972&rft.volume=383&rft.spage=125234&rft_id=info:doi/10.1016%2Fj.surfcoat.2019.125234&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2019_125234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon