The effects of pore widening and calcination on anodized aluminum oxide prepared from Al6082
In this study, semi-organized anodized aluminum oxide (AAO) is prepared by two-step anodization in oxalic acid using a low-purity aluminum (Al) alloy (Al6082) as the source material. Obtaining ideally ordered AAO layers from Al alloys is confounded by the presence of impurities and requires speciali...
Uloženo v:
| Vydáno v: | Surface & coatings technology Ročník 383; s. 125234 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Lausanne
Elsevier B.V
15.02.2020
Elsevier BV |
| Témata: | |
| ISSN: | 0257-8972, 1879-3347 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this study, semi-organized anodized aluminum oxide (AAO) is prepared by two-step anodization in oxalic acid using a low-purity aluminum (Al) alloy (Al6082) as the source material. Obtaining ideally ordered AAO layers from Al alloys is confounded by the presence of impurities and requires specialized post-anodization treatment. Here, a process is proposed for obtaining an AAO layer with a semi-ordered pore arrangement by means of calcination and pore-widening procedures. Calcination temperatures of 400–600 °C and pore–widening times of 15–120 min were explored. It was found that calcination improved the pore order of AAO layers from disordered to semi-ordered (defined as being near ideally ordered—one pore surrounded by six neighboring pores). In addition, it was found that calcination at 600 °C resulted in suitable pore widening of the AAO layer. The morphology of the AAO layers was characterized using scanning electron microscopy, which was applied to determine pore diameter, inter-pore distance, pore density, and AAO layer thickness. We found that calcinated and pore-widened AAO layers with pore diameters of 48.7 nm, inter-pore distances of 80.6 nm, and pore densities of 178 pores/μm2 could be prepared. The AAO preparation method proposed here is an economically attractive process suitable for the preparation of AAO layers due to the utilization of an inexpensive Al source.
•AAO layer preparation from low cost Al sources is economically attractive.•Non-Al elements present in Al alloys perplexes AAO layer preparation.•Pore arrangement of AAO layers prepared from Al alloys is generally disordered.•AAO layer calcination and pore widening improves pore arrangement. |
|---|---|
| AbstractList | In this study, semi-organized anodized aluminum oxide (AAO) is prepared by two-step anodization in oxalic acid using a low-purity aluminum (Al) alloy (Al6082) as the source material. Obtaining ideally ordered AAO layers from Al alloys is confounded by the presence of impurities and requires specialized post-anodization treatment. Here, a process is proposed for obtaining an AAO layer with a semi-ordered pore arrangement by means of calcination and pore-widening procedures. Calcination temperatures of 400–600 °C and pore–widening times of 15–120 min were explored. It was found that calcination improved the pore order of AAO layers from disordered to semi-ordered (defined as being near ideally ordered-one pore surrounded by six neighboring pores). In addition, it was found that calcination at 600 °C resulted in suitable pore widening of the AAO layer. The morphology of the AAO layers was characterized using scanning electron microscopy, which was applied to determine pore diameter, inter-pore distance, pore density, and AAO layer thickness. We found that calcinated and pore-widened AAO layers with pore diameters of 48.7 nm, inter-pore distances of 80.6 nm, and pore densities of 178 pores/μm2 could be prepared. The AAO preparation method proposed here is an economically attractive process suitable for the preparation of AAO layers due to the utilization of an inexpensive Al source. In this study, semi-organized anodized aluminum oxide (AAO) is prepared by two-step anodization in oxalic acid using a low-purity aluminum (Al) alloy (Al6082) as the source material. Obtaining ideally ordered AAO layers from Al alloys is confounded by the presence of impurities and requires specialized post-anodization treatment. Here, a process is proposed for obtaining an AAO layer with a semi-ordered pore arrangement by means of calcination and pore-widening procedures. Calcination temperatures of 400–600 °C and pore–widening times of 15–120 min were explored. It was found that calcination improved the pore order of AAO layers from disordered to semi-ordered (defined as being near ideally ordered—one pore surrounded by six neighboring pores). In addition, it was found that calcination at 600 °C resulted in suitable pore widening of the AAO layer. The morphology of the AAO layers was characterized using scanning electron microscopy, which was applied to determine pore diameter, inter-pore distance, pore density, and AAO layer thickness. We found that calcinated and pore-widened AAO layers with pore diameters of 48.7 nm, inter-pore distances of 80.6 nm, and pore densities of 178 pores/μm2 could be prepared. The AAO preparation method proposed here is an economically attractive process suitable for the preparation of AAO layers due to the utilization of an inexpensive Al source. •AAO layer preparation from low cost Al sources is economically attractive.•Non-Al elements present in Al alloys perplexes AAO layer preparation.•Pore arrangement of AAO layers prepared from Al alloys is generally disordered.•AAO layer calcination and pore widening improves pore arrangement. |
| ArticleNumber | 125234 |
| Author | du Preez, S.P. Bessarabov, D.G. Kozhukhova, A.E. |
| Author_xml | – sequence: 1 givenname: A.E. surname: Kozhukhova fullname: Kozhukhova, A.E. – sequence: 2 givenname: S.P. surname: du Preez fullname: du Preez, S.P. email: Faan.duPreez@nwu.ac.za – sequence: 3 givenname: D.G. surname: Bessarabov fullname: Bessarabov, D.G. email: Dmitri.Bessarabov@nwu.ac.za |
| BookMark | eNqFkEtLAzEQx4Mo2Fa_ggQ8b81jH1nwYCm-oOCl3oSQJhNN2SZrsuvr07u1evFSGBgY_r8Z5jdGhz54QOiMkikltLxYT1MfrQ6qmzJC6yllBeP5ARpRUdUZ53l1iEaEFVUm6oodo3FKa0IIrep8hJ6WL4DBWtBdwsHiNkTA786Ad_4ZK2-wVo12XnUueDyU8sG4LzBYNf3G-X6Dw8cQx22EVsVhbmPY4FlTEsFO0JFVTYLT3z5BjzfXy_ldtni4vZ_PFpnmQnRZUZsC8rzUrKRgmK1UvQJRaWbyFVjNOSOW10oDF7riwKEQ2iqqBV8JVQrKJ-h8t7eN4bWH1Ml16KMfTkrGC15SUbN8SF3uUjqGlCJYqV3381cXlWskJXLrU67ln0-59Sl3Pge8_Ie30W1U_NwPXu1AGBS8OYgyaQdeg3Fx0C5NcPtWfAPbx5bE |
| CitedBy_id | crossref_primary_10_1021_acsami_4c22543 crossref_primary_10_3390_nano12030444 crossref_primary_10_1016_j_jallcom_2023_170464 crossref_primary_10_1016_j_electacta_2024_144380 crossref_primary_10_1016_j_surfcoat_2021_127674 crossref_primary_10_1016_j_ijhydene_2022_01_246 crossref_primary_10_1016_j_surfcoat_2020_126483 crossref_primary_10_1016_j_nucengdes_2024_113481 crossref_primary_10_3390_catal11040491 |
| Cites_doi | 10.1186/1556-276X-6-596 10.1016/j.memsci.2008.09.003 10.1016/j.cap.2007.10.037 10.1016/j.electacta.2009.12.054 10.1016/j.electacta.2007.09.039 10.2320/matertrans.MRA2008216 10.1016/j.surfcoat.2010.09.038 10.17159/2411-9717/2019/v119n2a13 10.1016/j.electacta.2009.10.075 10.1038/nmeth.2089 10.1108/00035591111148885 10.1016/j.micromeso.2010.07.022 10.1007/BF02697158 10.1016/j.memsci.2009.07.027 10.1016/S0167-9317(03)00042-X 10.1016/j.tsf.2013.12.023 10.1016/0013-4686(94)00347-4 10.1080/00202967.1997.11871137 10.1016/S0257-8972(02)00144-5 10.1016/j.jelechem.2015.05.024 10.1063/1.124911 10.1126/science.268.5216.1466 10.1016/j.matdes.2005.02.018 10.1002/smll.200600582 10.1016/j.jcat.2004.06.016 10.1016/j.memsci.2006.10.045 10.1134/S1027451011100090 10.1049/mnl.2011.0599 10.1007/s100080000176 10.1063/1.1846137 10.1149/1.1767838 10.1021/cm980163a 10.1016/j.electacta.2013.04.160 10.1016/j.surfcoat.2006.12.003 10.1007/s10008-011-1471-z 10.1016/j.msec.2012.08.038 10.1007/s10008-006-0259-z 10.1016/j.cjche.2014.06.011 10.3390/coatings9020115 10.1016/j.jlumin.2005.12.057 10.1016/S0010-938X(78)80041-9 10.1134/S1063739718010080 10.1016/j.apsusc.2019.02.005 10.1016/j.tsf.2010.07.017 10.1016/0040-6090(83)90099-8 10.1016/j.talanta.2008.12.001 10.1021/nl025758q 10.1080/00202967.1990.11870860 10.1038/nmat1717 10.1143/JJAP.44.1529 10.1016/j.electacta.2003.10.024 10.1063/1.121004 10.1023/A:1026714218522 10.1016/j.surfcoat.2019.124970 10.1007/BF01911405 10.1007/BF02699038 10.1088/0022-3727/25/8/017 10.1016/j.apsusc.2012.01.099 10.1016/j.corsci.2010.03.029 10.1016/0376-7388(94)00185-2 10.3390/ma12050695 10.1016/j.electacta.2004.02.030 10.1002/adma.200501500 10.1016/j.jmatprotec.2005.02.115 10.1007/s10934-012-9568-z 10.1016/0376-7388(94)00184-Z 10.1016/j.elecom.2008.11.016 10.1016/j.electacta.2009.01.046 10.1252/jcej.39.889 10.1166/jbn.2016.2192 10.1016/j.electacta.2011.03.126 10.1111/j.1151-2916.2001.tb00671.x 10.1021/am502882d 10.1039/f19767202248 10.1016/j.msea.2008.05.015 10.1016/S0040-6090(96)09440-0 10.1016/j.spmi.2007.10.005 10.1016/j.electacta.2010.01.048 10.1016/S1003-6326(08)60398-2 10.1016/j.pmatsci.2013.01.002 10.1098/rspa.1970.0129 10.1016/j.jeurceramsoc.2008.09.011 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Feb 15, 2020 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Feb 15, 2020 |
| DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD JG9 |
| DOI | 10.1016/j.surfcoat.2019.125234 |
| DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1879-3347 |
| ExternalDocumentID | 10_1016_j_surfcoat_2019_125234 S0257897219312241 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- SEW SMS SPG WUQ ~HD 7QQ 7SR 8BQ 8FD AFXIZ AGCQF AGRNS BNPGV JG9 SSH |
| ID | FETCH-LOGICAL-c388t-59d5e446c261ed2f7a9be87c2d4befc3320f39ace38c73e3e58cfa1c83b8a6813 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509617000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0257-8972 |
| IngestDate | Mon Jul 14 10:28:16 EDT 2025 Sat Nov 29 07:21:22 EST 2025 Tue Nov 18 22:33:25 EST 2025 Fri Feb 23 02:48:52 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Anodized aluminum Al6082 Calcination Oxalic acid Pore–widening |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c388t-59d5e446c261ed2f7a9be87c2d4befc3320f39ace38c73e3e58cfa1c83b8a6813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0257897219312241 |
| PQID | 2353618924 |
| PQPubID | 2045394 |
| ParticipantIDs | proquest_journals_2353618924 crossref_citationtrail_10_1016_j_surfcoat_2019_125234 crossref_primary_10_1016_j_surfcoat_2019_125234 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2019_125234 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-15 |
| PublicationDateYYYYMMDD | 2020-02-15 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Surface & coatings technology |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Vorob’eva, Shimanovich, Sycheva (bb0315) 2018; 47 Ono (bb0420) 2004; 151 Zaraska, Sulka, Jaskuła (bb0250) 2010; 205 Dollimore, Griffiths (bb0305) 1970; 2 Vojkuvka (bb0140) 2008; 44 Yang (bb0260) 2006; 18 Wang, Han (bb0270) 2003; 66 Lee (bb0320) 2000; 17 Yu (bb0230) 2019; 479 Chung (bb0090) 2011; 6 Bara, Niedźwiedź, Skoneczny (bb0095) 2019; 12 Na (bb0100) 2009; 19 Chen, Chen, Chao (bb0105) 2005; 44 Mardilovich (bb0325) 1995; 98 Mrówka-Nowotnik, Sieniawski (bb0395) 2005; 162-163 Wang (bb0035) 2006; 39 Norek, Dopierała, Stępniowski (bb0130) 2015; 750 Wang, Huang, Yang (bb0275) 2009; 29 Montero-Moreno, Sarret, Müller (bb0085) 2010; 136 Liu (bb0135) 2014; 552 Totten, MacKenzie (bb0360) 2003 Schacht, Boukis, Dinjus (bb0410) 2000; 35 du Preez (bb0400) 2019; 119 Wang (bb0015) 2009; 78 Patermarakis, Moussoutzanis (bb0180) 1995; 40 Kumeria (bb0010) 2014; 6 Zaraska (bb0070) 2010; 55 Gasenkova, Mazurenko, Ostapenko (bb0310) 2011; 5 Mardilovich (bb0330) 1995; 98 Zaraska, Sulka, Jaskuła (bb0245) 2011; 15 Suh, Lee (bb0165) 1999; 75 Jariyaboon (bb0380) 2011; 58 Saenz de Miera (bb0365) 2010; 52 Fratila-Apachitei (bb0390) 2004; 49 Park (bb0265) 2016; 12 Cui (bb0235) 2012; 258 Kirchner (bb0290) 2008; 8 Akeret (bb0375) 1990; 68 Sulka, Brzózka, Liu (bb0060) 2011; 56 Montero-Moreno, Sarret, Müller (bb0195) 2007; 201 Sullivan, Wood, Mott Nevill (bb0175) 1970; 317 Ni (bb0125) 2013; 33 Sun (bb0300) 2006; 121 Shimura (bb0345) 1976; 72 Thompson (bb0355) 1997; 297 Bruera (bb0080) 2019; 9 Fratila-Apachitei (bb0225) 2004; 49 Jessensky, Müller, Gösele (bb0190) 1998; 72 Rui (bb0425) 2014; 22 Patermarakis, Chandrinos, Masavetas (bb0200) 2007; 11 Mata-Zamora, Saniger (bb0285) 2005; 51 Choudhari, Sudheendra, Udayashankar (bb0295) 2012; 19 Xiao (bb0210) 2002; 2 Yamamoto, Baba (bb0340) 1983; 101 Patermarakis, Moussoutzanis, Chandrinos (bb0335) 2001; 6 Shi (bb0020) 2008; 325 Ganley (bb0110) 2004; 227 Sulka (bb0240) 2010; 55 Fratila-Apachitei, Duszczyk, Katgerman (bb0220) 2002; 157 Son (bb0370) 2008; 49 Osmanbeyoglu, Hur, Kim (bb0025) 2009; 343 Sabzi, Kant, Losic (bb0040) 2010; 55 Md Jani, Losic, Voelcker (bb0160) 2013; 58 Thompson, Furneaux, Wood (bb0350) 1978; 18 Ghorbani (bb0170) 2006; 27 Sulka (bb0150) 2008 Bai (bb0005) 2008; 53 Li, Zhang, Metzger (bb0155) 1998; 10 Wong-ek (bb0065) 2010; 518 Mei (bb0205) 2005; 97 Michalska-Domańska (bb0075) 2013; 105 Kirchner (bb0280) 2007; 287 Parkhutik, Shershulsky (bb0185) 1992; 25 Rahimi (bb0255) 2012; 7 Hwang (bb0415) 2002; 19 Sulka, Stępniowski (bb0055) 2009; 54 Kozhukhova, du Preez, Bessarabov (bb0115) 2019; 378 Habazaki (bb0215) 1997; 75 Greskovich, Brewer (bb0405) 2001; 84 Zhang (bb0045) 2009; 11 Lee (bb0120) 2006; 5 Schneider, Rasband, Eliceiri (bb0145) 2012; 9 Masuda, Fukuda (bb0050) 1995; 268 Thormann (bb0030) 2007; 3 Cepeda-Jiménez (bb0385) 2008; 496 Patermarakis (10.1016/j.surfcoat.2019.125234_bb0180) 1995; 40 Yang (10.1016/j.surfcoat.2019.125234_bb0260) 2006; 18 Fratila-Apachitei (10.1016/j.surfcoat.2019.125234_bb0220) 2002; 157 Kirchner (10.1016/j.surfcoat.2019.125234_bb0290) 2008; 8 Kozhukhova (10.1016/j.surfcoat.2019.125234_bb0115) 2019; 378 Masuda (10.1016/j.surfcoat.2019.125234_bb0050) 1995; 268 Wong-ek (10.1016/j.surfcoat.2019.125234_bb0065) 2010; 518 Lee (10.1016/j.surfcoat.2019.125234_bb0120) 2006; 5 Suh (10.1016/j.surfcoat.2019.125234_bb0165) 1999; 75 Mrówka-Nowotnik (10.1016/j.surfcoat.2019.125234_bb0395) 2005; 162-163 Wang (10.1016/j.surfcoat.2019.125234_bb0015) 2009; 78 Ganley (10.1016/j.surfcoat.2019.125234_bb0110) 2004; 227 Son (10.1016/j.surfcoat.2019.125234_bb0370) 2008; 49 Kumeria (10.1016/j.surfcoat.2019.125234_bb0010) 2014; 6 Na (10.1016/j.surfcoat.2019.125234_bb0100) 2009; 19 Wang (10.1016/j.surfcoat.2019.125234_bb0035) 2006; 39 Montero-Moreno (10.1016/j.surfcoat.2019.125234_bb0085) 2010; 136 Md Jani (10.1016/j.surfcoat.2019.125234_bb0160) 2013; 58 Xiao (10.1016/j.surfcoat.2019.125234_bb0210) 2002; 2 Park (10.1016/j.surfcoat.2019.125234_bb0265) 2016; 12 Liu (10.1016/j.surfcoat.2019.125234_bb0135) 2014; 552 Thompson (10.1016/j.surfcoat.2019.125234_bb0350) 1978; 18 Gasenkova (10.1016/j.surfcoat.2019.125234_bb0310) 2011; 5 Cui (10.1016/j.surfcoat.2019.125234_bb0235) 2012; 258 Thormann (10.1016/j.surfcoat.2019.125234_bb0030) 2007; 3 Sulka (10.1016/j.surfcoat.2019.125234_bb0055) 2009; 54 Michalska-Domańska (10.1016/j.surfcoat.2019.125234_bb0075) 2013; 105 Sullivan (10.1016/j.surfcoat.2019.125234_bb0175) 1970; 317 Thompson (10.1016/j.surfcoat.2019.125234_bb0355) 1997; 297 Hwang (10.1016/j.surfcoat.2019.125234_bb0415) 2002; 19 Osmanbeyoglu (10.1016/j.surfcoat.2019.125234_bb0025) 2009; 343 Sulka (10.1016/j.surfcoat.2019.125234_bb0240) 2010; 55 Fratila-Apachitei (10.1016/j.surfcoat.2019.125234_bb0390) 2004; 49 Bai (10.1016/j.surfcoat.2019.125234_bb0005) 2008; 53 Jessensky (10.1016/j.surfcoat.2019.125234_bb0190) 1998; 72 Ghorbani (10.1016/j.surfcoat.2019.125234_bb0170) 2006; 27 Schneider (10.1016/j.surfcoat.2019.125234_bb0145) 2012; 9 Wang (10.1016/j.surfcoat.2019.125234_bb0275) 2009; 29 Yu (10.1016/j.surfcoat.2019.125234_bb0230) 2019; 479 Rui (10.1016/j.surfcoat.2019.125234_bb0425) 2014; 22 Jariyaboon (10.1016/j.surfcoat.2019.125234_bb0380) 2011; 58 Montero-Moreno (10.1016/j.surfcoat.2019.125234_bb0195) 2007; 201 Cepeda-Jiménez (10.1016/j.surfcoat.2019.125234_bb0385) 2008; 496 Schacht (10.1016/j.surfcoat.2019.125234_bb0410) 2000; 35 Lee (10.1016/j.surfcoat.2019.125234_bb0320) 2000; 17 Parkhutik (10.1016/j.surfcoat.2019.125234_bb0185) 1992; 25 Ni (10.1016/j.surfcoat.2019.125234_bb0125) 2013; 33 Patermarakis (10.1016/j.surfcoat.2019.125234_bb0200) 2007; 11 Zaraska (10.1016/j.surfcoat.2019.125234_bb0070) 2010; 55 Sulka (10.1016/j.surfcoat.2019.125234_bb0150) 2008 Mei (10.1016/j.surfcoat.2019.125234_bb0205) 2005; 97 Kirchner (10.1016/j.surfcoat.2019.125234_bb0280) 2007; 287 Saenz de Miera (10.1016/j.surfcoat.2019.125234_bb0365) 2010; 52 Zaraska (10.1016/j.surfcoat.2019.125234_bb0250) 2010; 205 Mardilovich (10.1016/j.surfcoat.2019.125234_bb0330) 1995; 98 Mata-Zamora (10.1016/j.surfcoat.2019.125234_bb0285) 2005; 51 Chung (10.1016/j.surfcoat.2019.125234_bb0090) 2011; 6 Bara (10.1016/j.surfcoat.2019.125234_bb0095) 2019; 12 Patermarakis (10.1016/j.surfcoat.2019.125234_bb0335) 2001; 6 Akeret (10.1016/j.surfcoat.2019.125234_bb0375) 1990; 68 Sulka (10.1016/j.surfcoat.2019.125234_bb0060) 2011; 56 Wang (10.1016/j.surfcoat.2019.125234_bb0270) 2003; 66 Zhang (10.1016/j.surfcoat.2019.125234_bb0045) 2009; 11 du Preez (10.1016/j.surfcoat.2019.125234_bb0400) 2019; 119 Greskovich (10.1016/j.surfcoat.2019.125234_bb0405) 2001; 84 Zaraska (10.1016/j.surfcoat.2019.125234_bb0245) 2011; 15 Dollimore (10.1016/j.surfcoat.2019.125234_bb0305) 1970; 2 Yamamoto (10.1016/j.surfcoat.2019.125234_bb0340) 1983; 101 Mardilovich (10.1016/j.surfcoat.2019.125234_bb0325) 1995; 98 Shimura (10.1016/j.surfcoat.2019.125234_bb0345) 1976; 72 Fratila-Apachitei (10.1016/j.surfcoat.2019.125234_bb0225) 2004; 49 Totten (10.1016/j.surfcoat.2019.125234_bb0360) 2003 Ono (10.1016/j.surfcoat.2019.125234_bb0420) 2004; 151 Chen (10.1016/j.surfcoat.2019.125234_bb0105) 2005; 44 Sabzi (10.1016/j.surfcoat.2019.125234_bb0040) 2010; 55 Choudhari (10.1016/j.surfcoat.2019.125234_bb0295) 2012; 19 Shi (10.1016/j.surfcoat.2019.125234_bb0020) 2008; 325 Habazaki (10.1016/j.surfcoat.2019.125234_bb0215) 1997; 75 Rahimi (10.1016/j.surfcoat.2019.125234_bb0255) 2012; 7 Bruera (10.1016/j.surfcoat.2019.125234_bb0080) 2019; 9 Li (10.1016/j.surfcoat.2019.125234_bb0155) 1998; 10 Vorob’eva (10.1016/j.surfcoat.2019.125234_bb0315) 2018; 47 Norek (10.1016/j.surfcoat.2019.125234_bb0130) 2015; 750 Vojkuvka (10.1016/j.surfcoat.2019.125234_bb0140) 2008; 44 Sun (10.1016/j.surfcoat.2019.125234_bb0300) 2006; 121 |
| References_xml | – volume: 49 start-page: 3169 year: 2004 end-page: 3177 ident: bb0225 article-title: A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys publication-title: Electrochim. Acta – volume: 343 start-page: 1 year: 2009 end-page: 6 ident: bb0025 article-title: Thin alumina nanoporous membranes for similar size biomolecule separation publication-title: J. Membr. Sci. – volume: 157 start-page: 80 year: 2002 end-page: 94 ident: bb0220 article-title: Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H publication-title: Surf. Coat. Technol. – volume: 317 start-page: 511 year: 1970 end-page: 543 ident: bb0175 article-title: The morphology and mechanism of formation of porous anodic films on aluminium publication-title: Proc. R. Soc. Lond. A – volume: 84 start-page: 420 year: 2001 end-page: 425 ident: bb0405 article-title: Solubility of magnesia in polycrystalline alumina at high temperatures publication-title: J. Am. Ceram. Soc. – volume: 72 start-page: 1173 year: 1998 end-page: 1175 ident: bb0190 article-title: Self-organized formation of hexagonal pore arrays in anodic alumina publication-title: Appl. Phys. Lett. – volume: 55 start-page: 4377 year: 2010 end-page: 4386 ident: bb0070 article-title: Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum publication-title: Electrochim. Acta – volume: 105 start-page: 424 year: 2013 end-page: 432 ident: bb0075 article-title: Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—a comparative study with the AAO produced on high purity aluminum publication-title: Electrochim. Acta – volume: 136 start-page: 68 year: 2010 end-page: 74 ident: bb0085 article-title: Self-ordered porous alumina by two-step anodizing at constant current: behaviour and evolution of the structure publication-title: Microporous Mesoporous Mater. – volume: 6 start-page: 596 year: 2011 ident: bb0090 article-title: Anodization of nanoporous alumina on impurity-induced hemisphere curved surface of aluminum at room temperature publication-title: Nanoscale Res. Lett. – volume: 6 start-page: 39 year: 2001 end-page: 54 ident: bb0335 article-title: Discovery by kinetic studies of the latent physicochemical processes and their mechanisms during the growth of porous anodic alumina films in sulfate electrolytes publication-title: J. Solid State Electrochem. – volume: 18 start-page: 481 year: 1978 end-page: 498 ident: bb0350 article-title: Electron microscopy of ion beam thinned porous anodic films formed on aluminium publication-title: Corros. Sci. – volume: 56 start-page: 4972 year: 2011 end-page: 4979 ident: bb0060 article-title: Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates publication-title: Electrochim. Acta – volume: 7 start-page: 125 year: 2012 end-page: 129 ident: bb0255 article-title: Heat treatment of aluminum in preparing porous anodic alumina templates publication-title: Micro Nano Lett. – volume: 8 start-page: 451 year: 2008 end-page: 454 ident: bb0290 article-title: Preparation and high-temperature characterisation of nanostructured alumina ceramic membranes for gas purification publication-title: Curr. Appl. Phys. – volume: 35 start-page: 6251 year: 2000 end-page: 6258 ident: bb0410 article-title: Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures publication-title: J. Mater. Sci. – volume: 53 start-page: 2258 year: 2008 end-page: 2264 ident: bb0005 article-title: Pore diameter control of anodic aluminum oxide with ordered array of nanopores publication-title: Electrochim. Acta – start-page: 1 year: 2008 end-page: 116 ident: bb0150 article-title: Highly ordered anodic porous alumina formation by self-organized anodizing publication-title: Nanostruct. Mater. Electrochem. – volume: 750 start-page: 79 year: 2015 end-page: 88 ident: bb0130 article-title: Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina publication-title: J. Electroanal. Chem. – volume: 58 start-page: 636 year: 2013 end-page: 704 ident: bb0160 article-title: Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications publication-title: Prog. Mater. Sci. – volume: 121 start-page: 588 year: 2006 end-page: 594 ident: bb0300 article-title: Photoluminescence properties of anodic alumina membranes with ordered nanopore arrays publication-title: J. Lumin. – volume: 54 start-page: 3683 year: 2009 end-page: 3691 ident: bb0055 article-title: Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures publication-title: Electrochim. Acta – volume: 98 start-page: 131 year: 1995 end-page: 142 ident: bb0330 article-title: New and modified anodic alumina membranes part I. Thermotreatment of anodic alumina membranes publication-title: J. Membr. Sci. – volume: 19 start-page: 1013 year: 2009 end-page: 1017 ident: bb0100 article-title: Formation of unidirectional nanoporous structures in thickly anodized aluminum oxide layer publication-title: Trans. Nonferrous Metals Soc. China – volume: 52 start-page: 2489 year: 2010 end-page: 2497 ident: bb0365 article-title: The behaviour of second phase particles during anodizing of aluminium alloys publication-title: Corros. Sci. – volume: 378 year: 2019 ident: bb0115 article-title: Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082) publication-title: Surf. Coat. Technol. – volume: 68 start-page: 20 year: 1990 end-page: 28 ident: bb0375 article-title: The influence of chemical composition and fabrication procedures on the properties of anodised aluminium surfaces publication-title: Trans. Int. Met. Finish – volume: 11 start-page: 190 year: 2009 end-page: 193 ident: bb0045 article-title: Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities publication-title: Electrochem. Commun. – volume: 227 start-page: 26 year: 2004 end-page: 32 ident: bb0110 article-title: Porous anodic alumina optimized as a catalyst support for microreactors publication-title: J. Catal. – volume: 58 start-page: 173 year: 2011 end-page: 178 ident: bb0380 article-title: FIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium publication-title: Anti-Corros. Methods Mater. – volume: 44 start-page: 1529 year: 2005 end-page: 1533 ident: bb0105 article-title: Post-treatment method of producing ordered array of anodic aluminum oxide using general purity commercial (99.7%) aluminum publication-title: Jpn. J. Appl. Phys. – volume: 11 start-page: 1191 year: 2007 end-page: 1204 ident: bb0200 article-title: Formulation of a holistic model for the kinetics of steady state growth of porous anodic alumina films publication-title: J. Solid State Electrochem. – volume: 66 start-page: 166 year: 2003 end-page: 170 ident: bb0270 article-title: Fabrication and characterization of anodic aluminum oxide template publication-title: Microelectron. Eng. – volume: 2 start-page: 229 year: 1970 end-page: 250 ident: bb0305 article-title: Differential thermal analysis study of various oxalates in oxygen and nitrogen publication-title: J. Therm. Anal. Calorim. – volume: 12 year: 2019 ident: bb0095 article-title: Influence of anodizing parameters on surface morphology and surface-free energy of Al publication-title: Materials – volume: 162-163 start-page: 367 year: 2005 end-page: 372 ident: bb0395 article-title: Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys publication-title: J. Mater. Process. Technol. – volume: 287 start-page: 264 year: 2007 end-page: 270 ident: bb0280 article-title: Structural characterisation of heat-treated anodic alumina membranes prepared using a simplified fabrication process publication-title: J. Membr. Sci. – volume: 55 start-page: 1829 year: 2010 end-page: 1835 ident: bb0040 article-title: Electrochemical synthesis of nickel hexacyanoferrate nanoarrays with dots, rods and nanotubes morphology using a porous alumina template publication-title: Electrochim. Acta – volume: 5 start-page: 1005 year: 2011 ident: bb0310 article-title: Chemical composition and surface morphology of anodic alumina determined by electron microscopy and thermogravimetry publication-title: J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech.ch. – volume: 27 start-page: 983 year: 2006 end-page: 988 ident: bb0170 article-title: On the growth sequence of highly ordered nanoporous anodic aluminium oxide publication-title: Mater. Des. – start-page: 1310 year: 2003 ident: bb0360 publication-title: Handbook of Aluminum: Physical Metallurgy and Processes – volume: 201 start-page: 6352 year: 2007 end-page: 6357 ident: bb0195 article-title: Influence of the aluminum surface on the final results of a two-step anodizing publication-title: Surf. Coat. Technol. – volume: 55 start-page: 4368 year: 2010 end-page: 4376 ident: bb0240 article-title: Through-hole membranes of nanoporous alumina formed by anodizing in oxalic acid and their applications in fabrication of nanowire arrays publication-title: Electrochim. Acta – volume: 205 start-page: 2432 year: 2010 end-page: 2437 ident: bb0250 article-title: Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays publication-title: Surf. Coat. Technol. – volume: 297 start-page: 192 year: 1997 end-page: 201 ident: bb0355 article-title: Porous anodic alumina: fabrication, characterization and applications publication-title: Thin Solid Films – volume: 15 start-page: 2427 year: 2011 end-page: 2436 ident: bb0245 article-title: Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time publication-title: J. Solid State Electrochem. – volume: 19 start-page: 1053 year: 2012 end-page: 1062 ident: bb0295 article-title: Fabrication and high-temperature structural characterization study of porous anodic alumina membranes publication-title: J. Porous. Mater. – volume: 40 start-page: 699 year: 1995 end-page: 708 ident: bb0180 article-title: Electrochemical kinetic study on the growth of porous anodic oxide films on aluminium publication-title: Electrochim. Acta – volume: 258 start-page: 5305 year: 2012 end-page: 5311 ident: bb0235 article-title: A facile and efficient approach for pore-opening detection of anodic aluminum oxide membranes publication-title: Appl. Surf. Sci. – volume: 5 start-page: 741 year: 2006 end-page: 747 ident: bb0120 article-title: Fast fabrication of long-range ordered porous alumina membranes by hard anodization publication-title: Nat. Mater. – volume: 33 start-page: 259 year: 2013 end-page: 264 ident: bb0125 article-title: Preparation of near micrometer-sized TiO publication-title: Mater. Sci. Eng. C – volume: 51 start-page: 502 year: 2005 end-page: 509 ident: bb0285 article-title: Thermal evolution of porous anodic aluminas: a comparative study publication-title: Rev. Mex. Fis. – volume: 9 year: 2019 ident: bb0080 article-title: Synthesis and morphological characterization of nanoporous aluminum oxide films by using a single anodization step publication-title: Coatings – volume: 47 start-page: 40 year: 2018 end-page: 49 ident: bb0315 article-title: Studying the thermodynamic characteristics of anodic alumina publication-title: Russ. Microelectron. – volume: 98 start-page: 143 year: 1995 end-page: 155 ident: bb0325 article-title: New and modified anodic alumina membranes part II. Comparison of solubility of amorphous (normal) and polycrystalline anodic alumina membranes publication-title: J. Membr. Sci. – volume: 29 start-page: 1387 year: 2009 end-page: 1391 ident: bb0275 article-title: Synthesis of ceramic nanotubes using AAO templates publication-title: J. Eur. Ceram. Soc. – volume: 17 start-page: 266 year: 2000 end-page: 272 ident: bb0320 article-title: Thermotreatment and chemical resistance of porous alumina membrane prepared by anodic oxidation publication-title: Korean J. Chem. Eng. – volume: 19 start-page: 467 year: 2002 end-page: 473 ident: bb0415 article-title: Fabrication of highly ordered pore array in anodic aluminum oxide publication-title: Korean J. Chem. Eng. – volume: 18 start-page: 709 year: 2006 end-page: 712 ident: bb0260 article-title: Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses publication-title: Adv. Mater. – volume: 10 start-page: 2470 year: 1998 end-page: 2480 ident: bb0155 article-title: On the growth of highly ordered pores in anodized aluminum oxide publication-title: Chem. Mater. – volume: 44 start-page: 577 year: 2008 end-page: 582 ident: bb0140 article-title: Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization publication-title: Superlattice. Microst. – volume: 2 start-page: 1293 year: 2002 end-page: 1297 ident: bb0210 article-title: Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes publication-title: Nano Lett. – volume: 49 start-page: 1127 year: 2004 end-page: 1140 ident: bb0390 article-title: Influence of substrate microstructure on the growth of anodic oxide layers publication-title: Electrochim. Acta – volume: 151 start-page: B473 year: 2004 end-page: B478 ident: bb0420 article-title: Controlling factor of self-ordering of anodic porous alumina publication-title: J. Electrochem. Soc. – volume: 75 start-page: 18 year: 1997 end-page: 23 ident: bb0215 article-title: Effects of alloying elements in anodizing of aluminium publication-title: Trans. Int. Met. Finish – volume: 101 start-page: 329 year: 1983 end-page: 338 ident: bb0340 article-title: Nature of the carboxylate species incorporated in anodic alumina films formed in oxalic acid solution publication-title: Thin Solid Films – volume: 22 start-page: 882 year: 2014 end-page: 887 ident: bb0425 article-title: Anodic alumina supported Pt catalyst for total oxidation of trace toluene publication-title: Chin. J. Chem. Eng. – volume: 119 start-page: 207 year: 2019 end-page: 215 ident: bb0400 article-title: Recycling pre-oxidized chromite fines in the oxidative sintered pellet production process publication-title: J. South. Afr. Inst. Min. Metall. – volume: 39 start-page: 889 year: 2006 end-page: 895 ident: bb0035 article-title: Preparation of platinum catalysts supported on anodized aluminum for VOC catalytic combustion: the effect of sintering publication-title: J. Chem. Eng. Jpn – volume: 25 start-page: 1258 year: 1992 end-page: 1263 ident: bb0185 article-title: Theoretical modelling of porous oxide growth on aluminium publication-title: J. Phys. D – volume: 552 start-page: 75 year: 2014 end-page: 81 ident: bb0135 article-title: Preparation of self-ordered nanoporous anodic aluminum oxide membranes by combination of hard anodization and mild anodization publication-title: Thin Solid Films – volume: 78 start-page: 647 year: 2009 end-page: 652 ident: bb0015 article-title: A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection publication-title: Talanta – volume: 9 start-page: 671 year: 2012 ident: bb0145 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 496 start-page: 133 year: 2008 end-page: 142 ident: bb0385 article-title: Influence of the alumina thickness at the interfaces on the fracture mechanisms of aluminium multilayer composites publication-title: Mater. Sci. Eng. A – volume: 12 start-page: 575 year: 2016 end-page: 580 ident: bb0265 article-title: Cell adhesion and growth on the anodized aluminum oxide membrane publication-title: J. Biomed. Nanotechnol. – volume: 75 start-page: 2047 year: 1999 end-page: 2049 ident: bb0165 article-title: Highly ordered two-dimensional carbon nanotube arrays publication-title: Appl. Phys. Lett. – volume: 3 start-page: 1032 year: 2007 end-page: 1040 ident: bb0030 article-title: Nanoporous aluminum oxide membranes for filtration and biofunctionalization publication-title: Small – volume: 6 start-page: 12971 year: 2014 end-page: 12978 ident: bb0010 article-title: Nanoporous anodic alumina rugate filters for sensing of ionic mercury: toward environmental point-of-analysis systems publication-title: ACS Appl. Mater. Interfaces – volume: 325 start-page: 801 year: 2008 end-page: 808 ident: bb0020 article-title: Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation publication-title: J. Membr. Sci. – volume: 97 year: 2005 ident: bb0205 article-title: Formation mechanism of alumina nanotubes and nanowires from highly ordered porous anodic alumina template publication-title: J. Appl. Phys. – volume: 479 start-page: 105 year: 2019 end-page: 113 ident: bb0230 article-title: Effects of graphene oxide-filled sol-gel sealing on the corrosion resistance and paint adhesion of anodized aluminum publication-title: Appl. Surf. Sci. – volume: 518 start-page: 7128 year: 2010 end-page: 7132 ident: bb0065 article-title: Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate publication-title: Thin Solid Films – volume: 268 start-page: 1466 year: 1995 ident: bb0050 article-title: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina publication-title: Science – volume: 72 start-page: 2248 year: 1976 end-page: 2256 ident: bb0345 article-title: Behaviour of oxalic acid in the anodic oxidation of aluminium. The role of anodically initiated reduction processes in coloration and photoluminescence publication-title: J. Chem. Soc. Faraday Trans. – volume: 49 start-page: 2648 year: 2008 end-page: 2655 ident: bb0370 article-title: Pitting corrosion resistance of anodized aluminum-copper alloy processed by severe plastic deformation publication-title: Mater. Trans. – volume: 6 start-page: 596 issue: 1 year: 2011 ident: 10.1016/j.surfcoat.2019.125234_bb0090 article-title: Anodization of nanoporous alumina on impurity-induced hemisphere curved surface of aluminum at room temperature publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-596 – volume: 325 start-page: 801 issue: 2 year: 2008 ident: 10.1016/j.surfcoat.2019.125234_bb0020 article-title: Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.09.003 – volume: 8 start-page: 451 issue: 3 year: 2008 ident: 10.1016/j.surfcoat.2019.125234_bb0290 article-title: Preparation and high-temperature characterisation of nanostructured alumina ceramic membranes for gas purification publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2007.10.037 – volume: 55 start-page: 4377 issue: 14 year: 2010 ident: 10.1016/j.surfcoat.2019.125234_bb0070 article-title: Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.12.054 – volume: 53 start-page: 2258 issue: 5 year: 2008 ident: 10.1016/j.surfcoat.2019.125234_bb0005 article-title: Pore diameter control of anodic aluminum oxide with ordered array of nanopores publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.09.039 – start-page: 1 year: 2008 ident: 10.1016/j.surfcoat.2019.125234_bb0150 article-title: Highly ordered anodic porous alumina formation by self-organized anodizing publication-title: Nanostruct. Mater. Electrochem. – volume: 49 start-page: 2648 issue: 11 year: 2008 ident: 10.1016/j.surfcoat.2019.125234_bb0370 article-title: Pitting corrosion resistance of anodized aluminum-copper alloy processed by severe plastic deformation publication-title: Mater. Trans. doi: 10.2320/matertrans.MRA2008216 – volume: 205 start-page: 2432 issue: 7 year: 2010 ident: 10.1016/j.surfcoat.2019.125234_bb0250 article-title: Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.09.038 – volume: 119 start-page: 207 year: 2019 ident: 10.1016/j.surfcoat.2019.125234_bb0400 article-title: Recycling pre-oxidized chromite fines in the oxidative sintered pellet production process publication-title: J. South. Afr. Inst. Min. Metall. doi: 10.17159/2411-9717/2019/v119n2a13 – volume: 55 start-page: 1829 issue: 5 year: 2010 ident: 10.1016/j.surfcoat.2019.125234_bb0040 article-title: Electrochemical synthesis of nickel hexacyanoferrate nanoarrays with dots, rods and nanotubes morphology using a porous alumina template publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.10.075 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.surfcoat.2019.125234_bb0145 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 58 start-page: 173 issue: 4 year: 2011 ident: 10.1016/j.surfcoat.2019.125234_bb0380 article-title: FIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium publication-title: Anti-Corros. Methods Mater. doi: 10.1108/00035591111148885 – volume: 136 start-page: 68 issue: 1 year: 2010 ident: 10.1016/j.surfcoat.2019.125234_bb0085 article-title: Self-ordered porous alumina by two-step anodizing at constant current: behaviour and evolution of the structure publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2010.07.022 – volume: 19 start-page: 467 issue: 3 year: 2002 ident: 10.1016/j.surfcoat.2019.125234_bb0415 article-title: Fabrication of highly ordered pore array in anodic aluminum oxide publication-title: Korean J. Chem. Eng. doi: 10.1007/BF02697158 – volume: 343 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.surfcoat.2019.125234_bb0025 article-title: Thin alumina nanoporous membranes for similar size biomolecule separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.07.027 – volume: 66 start-page: 166 issue: 1 year: 2003 ident: 10.1016/j.surfcoat.2019.125234_bb0270 article-title: Fabrication and characterization of anodic aluminum oxide template publication-title: Microelectron. Eng. doi: 10.1016/S0167-9317(03)00042-X – volume: 552 start-page: 75 year: 2014 ident: 10.1016/j.surfcoat.2019.125234_bb0135 article-title: Preparation of self-ordered nanoporous anodic aluminum oxide membranes by combination of hard anodization and mild anodization publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.12.023 – volume: 40 start-page: 699 issue: 6 year: 1995 ident: 10.1016/j.surfcoat.2019.125234_bb0180 article-title: Electrochemical kinetic study on the growth of porous anodic oxide films on aluminium publication-title: Electrochim. Acta doi: 10.1016/0013-4686(94)00347-4 – volume: 75 start-page: 18 issue: 1 year: 1997 ident: 10.1016/j.surfcoat.2019.125234_bb0215 article-title: Effects of alloying elements in anodizing of aluminium publication-title: Trans. Int. Met. Finish doi: 10.1080/00202967.1997.11871137 – volume: 157 start-page: 80 issue: 1 year: 2002 ident: 10.1016/j.surfcoat.2019.125234_bb0220 article-title: Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(02)00144-5 – volume: 750 start-page: 79 year: 2015 ident: 10.1016/j.surfcoat.2019.125234_bb0130 article-title: Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2015.05.024 – volume: 75 start-page: 2047 issue: 14 year: 1999 ident: 10.1016/j.surfcoat.2019.125234_bb0165 article-title: Highly ordered two-dimensional carbon nanotube arrays publication-title: Appl. Phys. Lett. doi: 10.1063/1.124911 – volume: 268 start-page: 1466 issue: 5216 year: 1995 ident: 10.1016/j.surfcoat.2019.125234_bb0050 article-title: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina publication-title: Science doi: 10.1126/science.268.5216.1466 – volume: 27 start-page: 983 issue: 10 year: 2006 ident: 10.1016/j.surfcoat.2019.125234_bb0170 article-title: On the growth sequence of highly ordered nanoporous anodic aluminium oxide publication-title: Mater. Des. doi: 10.1016/j.matdes.2005.02.018 – volume: 3 start-page: 1032 issue: 6 year: 2007 ident: 10.1016/j.surfcoat.2019.125234_bb0030 article-title: Nanoporous aluminum oxide membranes for filtration and biofunctionalization publication-title: Small doi: 10.1002/smll.200600582 – volume: 227 start-page: 26 issue: 1 year: 2004 ident: 10.1016/j.surfcoat.2019.125234_bb0110 article-title: Porous anodic alumina optimized as a catalyst support for microreactors publication-title: J. Catal. doi: 10.1016/j.jcat.2004.06.016 – volume: 287 start-page: 264 issue: 2 year: 2007 ident: 10.1016/j.surfcoat.2019.125234_bb0280 article-title: Structural characterisation of heat-treated anodic alumina membranes prepared using a simplified fabrication process publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.10.045 – volume: 5 start-page: 1005 issue: 5 year: 2011 ident: 10.1016/j.surfcoat.2019.125234_bb0310 article-title: Chemical composition and surface morphology of anodic alumina determined by electron microscopy and thermogravimetry publication-title: J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech.ch. doi: 10.1134/S1027451011100090 – volume: 7 start-page: 125 year: 2012 ident: 10.1016/j.surfcoat.2019.125234_bb0255 article-title: Heat treatment of aluminum in preparing porous anodic alumina templates publication-title: Micro Nano Lett. doi: 10.1049/mnl.2011.0599 – volume: 6 start-page: 39 issue: 1 year: 2001 ident: 10.1016/j.surfcoat.2019.125234_bb0335 article-title: Discovery by kinetic studies of the latent physicochemical processes and their mechanisms during the growth of porous anodic alumina films in sulfate electrolytes publication-title: J. Solid State Electrochem. doi: 10.1007/s100080000176 – volume: 97 issue: 3 year: 2005 ident: 10.1016/j.surfcoat.2019.125234_bb0205 article-title: Formation mechanism of alumina nanotubes and nanowires from highly ordered porous anodic alumina template publication-title: J. Appl. Phys. doi: 10.1063/1.1846137 – volume: 151 start-page: B473 issue: 8 year: 2004 ident: 10.1016/j.surfcoat.2019.125234_bb0420 article-title: Controlling factor of self-ordering of anodic porous alumina publication-title: J. Electrochem. Soc. doi: 10.1149/1.1767838 – volume: 10 start-page: 2470 issue: 9 year: 1998 ident: 10.1016/j.surfcoat.2019.125234_bb0155 article-title: On the growth of highly ordered pores in anodized aluminum oxide publication-title: Chem. Mater. doi: 10.1021/cm980163a – volume: 105 start-page: 424 year: 2013 ident: 10.1016/j.surfcoat.2019.125234_bb0075 article-title: Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—a comparative study with the AAO produced on high purity aluminum publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.04.160 – volume: 201 start-page: 6352 issue: 14 year: 2007 ident: 10.1016/j.surfcoat.2019.125234_bb0195 article-title: Influence of the aluminum surface on the final results of a two-step anodizing publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2006.12.003 – volume: 15 start-page: 2427 issue: 11 year: 2011 ident: 10.1016/j.surfcoat.2019.125234_bb0245 article-title: Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-011-1471-z – volume: 33 start-page: 259 issue: 1 year: 2013 ident: 10.1016/j.surfcoat.2019.125234_bb0125 article-title: Preparation of near micrometer-sized TiO2 nanotube arrays by high voltage anodization publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2012.08.038 – volume: 11 start-page: 1191 issue: 9 year: 2007 ident: 10.1016/j.surfcoat.2019.125234_bb0200 article-title: Formulation of a holistic model for the kinetics of steady state growth of porous anodic alumina films publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-006-0259-z – volume: 22 start-page: 882 issue: 8 year: 2014 ident: 10.1016/j.surfcoat.2019.125234_bb0425 article-title: Anodic alumina supported Pt catalyst for total oxidation of trace toluene publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2014.06.011 – volume: 9 issue: 2 year: 2019 ident: 10.1016/j.surfcoat.2019.125234_bb0080 article-title: Synthesis and morphological characterization of nanoporous aluminum oxide films by using a single anodization step publication-title: Coatings doi: 10.3390/coatings9020115 – volume: 121 start-page: 588 issue: 2 year: 2006 ident: 10.1016/j.surfcoat.2019.125234_bb0300 article-title: Photoluminescence properties of anodic alumina membranes with ordered nanopore arrays publication-title: J. Lumin. doi: 10.1016/j.jlumin.2005.12.057 – volume: 18 start-page: 481 issue: 5 year: 1978 ident: 10.1016/j.surfcoat.2019.125234_bb0350 article-title: Electron microscopy of ion beam thinned porous anodic films formed on aluminium publication-title: Corros. Sci. doi: 10.1016/S0010-938X(78)80041-9 – volume: 47 start-page: 40 issue: 1 year: 2018 ident: 10.1016/j.surfcoat.2019.125234_bb0315 article-title: Studying the thermodynamic characteristics of anodic alumina publication-title: Russ. Microelectron. doi: 10.1134/S1063739718010080 – volume: 479 start-page: 105 year: 2019 ident: 10.1016/j.surfcoat.2019.125234_bb0230 article-title: Effects of graphene oxide-filled sol-gel sealing on the corrosion resistance and paint adhesion of anodized aluminum publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.02.005 – volume: 518 start-page: 7128 issue: 23 year: 2010 ident: 10.1016/j.surfcoat.2019.125234_bb0065 article-title: Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate publication-title: Thin Solid Films doi: 10.1016/j.tsf.2010.07.017 – volume: 101 start-page: 329 issue: 4 year: 1983 ident: 10.1016/j.surfcoat.2019.125234_bb0340 article-title: Nature of the carboxylate species incorporated in anodic alumina films formed in oxalic acid solution publication-title: Thin Solid Films doi: 10.1016/0040-6090(83)90099-8 – volume: 78 start-page: 647 issue: 3 year: 2009 ident: 10.1016/j.surfcoat.2019.125234_bb0015 article-title: A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection publication-title: Talanta doi: 10.1016/j.talanta.2008.12.001 – volume: 2 start-page: 1293 issue: 11 year: 2002 ident: 10.1016/j.surfcoat.2019.125234_bb0210 article-title: Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes publication-title: Nano Lett. doi: 10.1021/nl025758q – volume: 68 start-page: 20 issue: 1 year: 1990 ident: 10.1016/j.surfcoat.2019.125234_bb0375 article-title: The influence of chemical composition and fabrication procedures on the properties of anodised aluminium surfaces publication-title: Trans. Int. Met. Finish doi: 10.1080/00202967.1990.11870860 – volume: 5 start-page: 741 issue: 9 year: 2006 ident: 10.1016/j.surfcoat.2019.125234_bb0120 article-title: Fast fabrication of long-range ordered porous alumina membranes by hard anodization publication-title: Nat. Mater. doi: 10.1038/nmat1717 – volume: 44 start-page: 1529 issue: 3 year: 2005 ident: 10.1016/j.surfcoat.2019.125234_bb0105 article-title: Post-treatment method of producing ordered array of anodic aluminum oxide using general purity commercial (99.7%) aluminum publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.44.1529 – volume: 49 start-page: 1127 issue: 7 year: 2004 ident: 10.1016/j.surfcoat.2019.125234_bb0390 article-title: Influence of substrate microstructure on the growth of anodic oxide layers publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2003.10.024 – volume: 72 start-page: 1173 issue: 10 year: 1998 ident: 10.1016/j.surfcoat.2019.125234_bb0190 article-title: Self-organized formation of hexagonal pore arrays in anodic alumina publication-title: Appl. Phys. Lett. doi: 10.1063/1.121004 – volume: 35 start-page: 6251 issue: 24 year: 2000 ident: 10.1016/j.surfcoat.2019.125234_bb0410 article-title: Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures publication-title: J. Mater. Sci. doi: 10.1023/A:1026714218522 – volume: 378 year: 2019 ident: 10.1016/j.surfcoat.2019.125234_bb0115 article-title: Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082) publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.124970 – volume: 2 start-page: 229 issue: 3 year: 1970 ident: 10.1016/j.surfcoat.2019.125234_bb0305 article-title: Differential thermal analysis study of various oxalates in oxygen and nitrogen publication-title: J. Therm. Anal. Calorim. doi: 10.1007/BF01911405 – volume: 17 start-page: 266 issue: 3 year: 2000 ident: 10.1016/j.surfcoat.2019.125234_bb0320 article-title: Thermotreatment and chemical resistance of porous alumina membrane prepared by anodic oxidation publication-title: Korean J. Chem. Eng. doi: 10.1007/BF02699038 – volume: 25 start-page: 1258 issue: 8 year: 1992 ident: 10.1016/j.surfcoat.2019.125234_bb0185 article-title: Theoretical modelling of porous oxide growth on aluminium publication-title: J. Phys. D doi: 10.1088/0022-3727/25/8/017 – volume: 258 start-page: 5305 issue: 14 year: 2012 ident: 10.1016/j.surfcoat.2019.125234_bb0235 article-title: A facile and efficient approach for pore-opening detection of anodic aluminum oxide membranes publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.01.099 – volume: 52 start-page: 2489 issue: 7 year: 2010 ident: 10.1016/j.surfcoat.2019.125234_bb0365 article-title: The behaviour of second phase particles during anodizing of aluminium alloys publication-title: Corros. Sci. doi: 10.1016/j.corsci.2010.03.029 – volume: 98 start-page: 143 issue: 1 year: 1995 ident: 10.1016/j.surfcoat.2019.125234_bb0325 article-title: New and modified anodic alumina membranes part II. Comparison of solubility of amorphous (normal) and polycrystalline anodic alumina membranes publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(94)00185-2 – volume: 12 issue: 5 year: 2019 ident: 10.1016/j.surfcoat.2019.125234_bb0095 article-title: Influence of anodizing parameters on surface morphology and surface-free energy of Al2O3 layers produced on EN AW-5251 alloy publication-title: Materials doi: 10.3390/ma12050695 – volume: 49 start-page: 3169 issue: 19 year: 2004 ident: 10.1016/j.surfcoat.2019.125234_bb0225 article-title: A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.02.030 – volume: 18 start-page: 709 issue: 6 year: 2006 ident: 10.1016/j.surfcoat.2019.125234_bb0260 article-title: Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses publication-title: Adv. Mater. doi: 10.1002/adma.200501500 – volume: 162-163 start-page: 367 year: 2005 ident: 10.1016/j.surfcoat.2019.125234_bb0395 article-title: Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2005.02.115 – volume: 19 start-page: 1053 issue: 6 year: 2012 ident: 10.1016/j.surfcoat.2019.125234_bb0295 article-title: Fabrication and high-temperature structural characterization study of porous anodic alumina membranes publication-title: J. Porous. Mater. doi: 10.1007/s10934-012-9568-z – volume: 98 start-page: 131 issue: 1 year: 1995 ident: 10.1016/j.surfcoat.2019.125234_bb0330 article-title: New and modified anodic alumina membranes part I. Thermotreatment of anodic alumina membranes publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(94)00184-Z – start-page: 1310 year: 2003 ident: 10.1016/j.surfcoat.2019.125234_bb0360 – volume: 11 start-page: 190 issue: 1 year: 2009 ident: 10.1016/j.surfcoat.2019.125234_bb0045 article-title: Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.11.016 – volume: 51 start-page: 502 year: 2005 ident: 10.1016/j.surfcoat.2019.125234_bb0285 article-title: Thermal evolution of porous anodic aluminas: a comparative study publication-title: Rev. Mex. Fis. – volume: 54 start-page: 3683 issue: 14 year: 2009 ident: 10.1016/j.surfcoat.2019.125234_bb0055 article-title: Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.01.046 – volume: 39 start-page: 889 issue: 8 year: 2006 ident: 10.1016/j.surfcoat.2019.125234_bb0035 article-title: Preparation of platinum catalysts supported on anodized aluminum for VOC catalytic combustion: the effect of sintering publication-title: J. Chem. Eng. Jpn doi: 10.1252/jcej.39.889 – volume: 12 start-page: 575 issue: 3 year: 2016 ident: 10.1016/j.surfcoat.2019.125234_bb0265 article-title: Cell adhesion and growth on the anodized aluminum oxide membrane publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2016.2192 – volume: 56 start-page: 4972 issue: 14 year: 2011 ident: 10.1016/j.surfcoat.2019.125234_bb0060 article-title: Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.03.126 – volume: 84 start-page: 420 issue: 2 year: 2001 ident: 10.1016/j.surfcoat.2019.125234_bb0405 article-title: Solubility of magnesia in polycrystalline alumina at high temperatures publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2001.tb00671.x – volume: 6 start-page: 12971 issue: 15 year: 2014 ident: 10.1016/j.surfcoat.2019.125234_bb0010 article-title: Nanoporous anodic alumina rugate filters for sensing of ionic mercury: toward environmental point-of-analysis systems publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502882d – volume: 72 start-page: 2248 issue: 0 year: 1976 ident: 10.1016/j.surfcoat.2019.125234_bb0345 article-title: Behaviour of oxalic acid in the anodic oxidation of aluminium. The role of anodically initiated reduction processes in coloration and photoluminescence publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/f19767202248 – volume: 496 start-page: 133 issue: 1 year: 2008 ident: 10.1016/j.surfcoat.2019.125234_bb0385 article-title: Influence of the alumina thickness at the interfaces on the fracture mechanisms of aluminium multilayer composites publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.05.015 – volume: 297 start-page: 192 issue: 1 year: 1997 ident: 10.1016/j.surfcoat.2019.125234_bb0355 article-title: Porous anodic alumina: fabrication, characterization and applications publication-title: Thin Solid Films doi: 10.1016/S0040-6090(96)09440-0 – volume: 44 start-page: 577 issue: 4 year: 2008 ident: 10.1016/j.surfcoat.2019.125234_bb0140 article-title: Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2007.10.005 – volume: 55 start-page: 4368 issue: 14 year: 2010 ident: 10.1016/j.surfcoat.2019.125234_bb0240 article-title: Through-hole membranes of nanoporous alumina formed by anodizing in oxalic acid and their applications in fabrication of nanowire arrays publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.01.048 – volume: 19 start-page: 1013 issue: 4 year: 2009 ident: 10.1016/j.surfcoat.2019.125234_bb0100 article-title: Formation of unidirectional nanoporous structures in thickly anodized aluminum oxide layer publication-title: Trans. Nonferrous Metals Soc. China doi: 10.1016/S1003-6326(08)60398-2 – volume: 58 start-page: 636 issue: 5 year: 2013 ident: 10.1016/j.surfcoat.2019.125234_bb0160 article-title: Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.01.002 – volume: 317 start-page: 511 issue: 1531 year: 1970 ident: 10.1016/j.surfcoat.2019.125234_bb0175 article-title: The morphology and mechanism of formation of porous anodic films on aluminium publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1970.0129 – volume: 29 start-page: 1387 issue: 8 year: 2009 ident: 10.1016/j.surfcoat.2019.125234_bb0275 article-title: Synthesis of ceramic nanotubes using AAO templates publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2008.09.011 |
| SSID | ssj0001794 |
| Score | 2.4002974 |
| Snippet | In this study, semi-organized anodized aluminum oxide (AAO) is prepared by two-step anodization in oxalic acid using a low-purity aluminum (Al) alloy (Al6082)... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125234 |
| SubjectTerms | Al6082 Aluminum Aluminum base alloys Aluminum oxide Anodized aluminum Anodizing Calcination Diameters Morphology Oxalic acid Pore–widening Roasting Thickness Widening |
| Title | The effects of pore widening and calcination on anodized aluminum oxide prepared from Al6082 |
| URI | https://dx.doi.org/10.1016/j.surfcoat.2019.125234 https://www.proquest.com/docview/2353618924 |
| Volume | 383 |
| WOSCitedRecordID | wos000509617000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3347 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001794 issn: 0257-8972 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKhgQcEAwmBgP5wE4oo4mTxj6W0fKrKkjrUA9IluM4Wrcq6bK0VLvxn_Mc21mAweCAVEVVWqet35fPn1_fD4SeK1iF_SxVnqA-bFCUCj3h-8oLfanVNUtoUhdxHcXjMZ1O2adO55vLhVnN4zyn6zVb_FdTwzkwtk6d_QdzNxeFE_AcjA5HMDsc_9rwrSgN0NfqxVfdOtSlI4JV5Cy3UlHHIhfp7AJ0pwCemunA-GINb9fVA0x0ep2B0p_3uqZ_j5Oyh8syE1LV2JGFqOr-n9UvnvoPxcXx8vS4WBkHbpP4kC51-IfxXx82SWavdEeWEoC5qsnwTdspATtQ3SIluvSUNdkyn1t8BuzgUWY69ewrw7c0Zh4hpuimI2RCSYtS_SuJ3vgcTmCFKTP9G3WQHtsHtRZY3-gPlbXHH_nwaDTik8F0skeGizNPtx3Tf8_vkdcGAjfQZhBHDLh9s_9uMH3fLOeasWpHnf32rTTzqz_-dwrnp7W-FjCTe-iu3XngvkHMfdRR-Ra6deAa_m2hO63alA_QF8ARtjjCRYY1jrDDEQYc4RaOMDwcjrDDEa5xhB2OsMYRNjh6iI6Gg8nBW8-24vAkobTyIpZGKgx7EjbcKg2yWLBE0VgGaZioTBISdDPCAHSEypgooiIqM-FLShIqetQn22gjL3L1COEoTZNAACHoxgC-lEkkUtgHiDgE8R904x0Uuenj0tap1-1S5twFJJ5wN-1cTzs3076DXjbjFqZSy7UjmLMOt3rT6EgOKLt27K4zJ7c3_zkPSER6PmVB-PjPLz9Bty_vml20UZVL9RTdlKtqdl4-swj8DiSNqv4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+pore+widening+and+calcination+on+anodized+aluminum+oxide+prepared+from+Al6082&rft.jtitle=Surface+%26+coatings+technology&rft.au=Kozhukhova%2C+AE&rft.au=du+Preez%2C+SP&rft.au=Bessarabov%2C+DG&rft.date=2020-02-15&rft.pub=Elsevier+BV&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=383&rft.spage=1&rft_id=info:doi/10.1016%2Fj.surfcoat.2019.125234&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |