Collective spin excitations of helices and magnetic skyrmions: review and perspectives of magnonics in non-centrosymmetric magnets
Magnetic materials hosting correlated electrons play an important role for information technology and signal processing. The currently used ferro-, ferri- and antiferromagnetic materials provide microscopic moments (spins) that are mainly collinear. Recently more complex spin structures such as spin...
Gespeichert in:
| Veröffentlicht in: | Journal of physics. D, Applied physics Jg. 50; H. 29 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IOP Publishing
30.06.2017
|
| Schlagworte: | |
| ISSN: | 0022-3727, 1361-6463 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Magnetic materials hosting correlated electrons play an important role for information technology and signal processing. The currently used ferro-, ferri- and antiferromagnetic materials provide microscopic moments (spins) that are mainly collinear. Recently more complex spin structures such as spin helices and cycloids have regained a lot of interest. The interest has been initiated by the discovery of the skyrmion lattice phase in non-centrosymmetric helical magnets. In this review we address how spin helices and skyrmion lattices enrich the microwave characteristics of magnetic materials and give rise to bottom-up magnonic crystals. When discussing perspectives for microwave electronics and magnonics we focus particularly on insulating materials as they avoid eddy current losses, offer low spin-wave damping, and allow for electric field control. Thereby, they further fuel the vision of magnonics operated at low energy consumption. |
|---|---|
| Bibliographie: | JPhysD-112101.R1 |
| ISSN: | 0022-3727 1361-6463 |
| DOI: | 10.1088/1361-6463/aa7573 |