A Large-Batch Orthorectification Generation Method Based on Adaptive GPU Thread Parameters and Parallel Calculation

Orthorectification reflects a large amount of real and objective information, such as the characteristics of images and the geometric accuracy of maps. Conducting a large batch of orthorectification is a process with high time cost owing to the pixelwise correction each image. A common approach is t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 16; s. 4638 - 4648
Hlavní autoři: Zhou, Ruyan, Hu, Shangcheng, Hong, Zhonghua, Tong, Xiaohua, Liu, Shijie, Pan, Haiyan, Zhang, Yun, Han, Yanling, Wang, Jing, Yang, Shuhu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
IEEE
Témata:
ISSN:1939-1404, 2151-1535
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Orthorectification reflects a large amount of real and objective information, such as the characteristics of images and the geometric accuracy of maps. Conducting a large batch of orthorectification is a process with high time cost owing to the pixelwise correction each image. A common approach is to use graphics processing unit (GPU) parallel computing to accelerate orthorectification processing. However, most of the existing GPU acceleration studies have adopted experimental testing methods to determine thread parameters, which are inapplicable to different GPUs and affect the GPU acceleration performance. We put forward an adaptive calculation method for GPU thread parameters based on the performance parameters of different GPUs and by simultaneously blocking the image automatically according to the GPU memory space. We used 112 ZY-3 images to test the adaptive GPU and compare it to a general GPU. The experimental results show the following: first, for a single ZY-3 image, the GPU acceleration by the adaptive calculation method presented in this article is 43.22% higher than that by the general GPU, and the correction time is 34.41 times faster than that of the central processing unit. The result of the automatic image blocking was the same as that of the artificial blocking. Second, the experimental performance on four different GPUs indicated that all GPUs exhibited a significant speed boost. Third, for large-batch images, the GPU acceleration by the adaptive GPU was 32.6% higher than that by the general GPU, which provides an adaptive optimization strategy for large-batch image orthorectification.
AbstractList Orthorectification reflects a large amount of real and objective information, such as the characteristics of images and the geometric accuracy of maps. Conducting a large batch of orthorectification is a process with high time cost owing to the pixelwise correction each image. A common approach is to use graphics processing unit (GPU) parallel computing to accelerate orthorectification processing. However, most of the existing GPU acceleration studies have adopted experimental testing methods to determine thread parameters, which are inapplicable to different GPUs and affect the GPU acceleration performance. We put forward an adaptive calculation method for GPU thread parameters based on the performance parameters of different GPUs and by simultaneously blocking the image automatically according to the GPU memory space. We used 112 ZY-3 images to test the adaptive GPU and compare it to a general GPU. The experimental results show the following: first, for a single ZY-3 image, the GPU acceleration by the adaptive calculation method presented in this article is 43.22% higher than that by the general GPU, and the correction time is 34.41 times faster than that of the central processing unit. The result of the automatic image blocking was the same as that of the artificial blocking. Second, the experimental performance on four different GPUs indicated that all GPUs exhibited a significant speed boost. Third, for large-batch images, the GPU acceleration by the adaptive GPU was 32.6% higher than that by the general GPU, which provides an adaptive optimization strategy for large-batch image orthorectification.
Author Zhou, Ruyan
Hu, Shangcheng
Pan, Haiyan
Han, Yanling
Tong, Xiaohua
Liu, Shijie
Wang, Jing
Yang, Shuhu
Hong, Zhonghua
Zhang, Yun
Author_xml – sequence: 1
  givenname: Ruyan
  orcidid: 0000-0003-4044-2340
  surname: Zhou
  fullname: Zhou, Ruyan
  organization: College of Information Technology, Shanghai Ocean University, Shanghai, China
– sequence: 2
  givenname: Shangcheng
  surname: Hu
  fullname: Hu, Shangcheng
  organization: College of Information Technology, Shanghai Ocean University, Shanghai, China
– sequence: 3
  givenname: Zhonghua
  orcidid: 0000-0003-0045-1066
  surname: Hong
  fullname: Hong, Zhonghua
  organization: College of Information Technology, Shanghai Ocean University, Shanghai, China
– sequence: 4
  givenname: Xiaohua
  orcidid: 0000-0002-1045-3797
  surname: Tong
  fullname: Tong, Xiaohua
  organization: College of Surveying and Geo-Informatics, Tongji University, Shanghai, China
– sequence: 5
  givenname: Shijie
  orcidid: 0000-0002-5941-0763
  surname: Liu
  fullname: Liu, Shijie
  organization: College of Surveying and Geo-Informatics, Tongji University, Shanghai, China
– sequence: 6
  givenname: Haiyan
  orcidid: 0009-0004-5565-3022
  surname: Pan
  fullname: Pan, Haiyan
  organization: College of Information Technology, Shanghai Ocean University, Shanghai, China
– sequence: 7
  givenname: Yun
  surname: Zhang
  fullname: Zhang, Yun
  organization: College of Information Technology, Shanghai Ocean University, Shanghai, China
– sequence: 8
  givenname: Yanling
  surname: Han
  fullname: Han, Yanling
  organization: College of Information Technology, Shanghai Ocean University, Shanghai, China
– sequence: 9
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: College of Information Technology, Shanghai Ocean University, Shanghai, China
– sequence: 10
  givenname: Shuhu
  orcidid: 0000-0001-9967-7756
  surname: Yang
  fullname: Yang, Shuhu
  organization: College of Information Technology, Shanghai Ocean University, Shanghai, China
BookMark eNp9UctOGzEUtRCVGmi_oBtLrCcd22PPeBmiNgWlApWwti72NXE0jFOPg8TfYzKw6aKr-zznPs4ZOR3igIR8Y_WcsVp_v77bLP7czXnNxVzwVnGmT8iMM8kqJoU8JTOmha5YUzefydk47upa8VaLGRkXdA3pEatLyHZLb1LexoQ2Bx8s5BAHusIB0-T-xlJ19BJGdLTECwf7HJ6Rrm7v6WabEBy9hQRPmDGNFIYp7Hvs6RJ6e-iPPF_IJw_9iF_f7Tm5__ljs_xVrW9WV8vFurKi63LFOy-gVa1H8BZ9KzzvGiU9Oua4F1YI1EIqB9yxTjLlpH9owbpSQS9rLc7J1cTrIuzMPoUnSC8mQjDHREyPBlIOtkdjlXIP5SHAQDUNiI6XX0qhNGBTxneF62Li2qf494BjNrt4SENZ3_CO6UarVsjSpacum-I4JvTGhny8OScIvWG1edPLTHqZN73Mu14FK_7Bfmz8P9Qrdambyw
CitedBy_id crossref_primary_10_1109_TGRS_2025_3577755
crossref_primary_10_1109_JSTARS_2024_3438620
Cites_doi 10.1109/TPDS.2021.3082802
10.1093/nsr/nww009
10.1109/IGARSS.2018.8519046
10.3390/s18082511
10.1109/JSTARS.2015.2477460
10.1109/rast.2019.8767856
10.1109/ lgrs.2014.2320991
10.1117/1.OE.52.2.026201
10.1109/IGARSS.2018.8518556
10.1016/j.isprsjprs.2017.01.007
10.1109/ISIDF.2011.6024247
10.14358/PERS.80.6.559-570
10.3390/ijgi7060229
10.33969/twjournals.fcta.2020.010101
10.1016/j.engappai.2019.07.008
10.3390/rs70404549
10.3390/rs11182097
10.1111/j.1477-9730.2011.00665.x
10.1109/JSTARS.2015.2485399
10.1016/j.jocs.2017.03.027
10.1080/01431161.2019.1587204
10.1109/TGRS.2022.3142372
10.1109/tgrs.2020.3045091
10.1109/lgrs.2020.3031398
10.1109/JSTARS.2010.2102340
10.1109/TCSI.2018.2839266
10.1109/TGRS.2016.2517100
10.1016/j.isprsjprs.2017.10.013
10.1117/12.2063894
10.1109/JPROC.2018.2841200
10.1109/CVPR.2011.5995552
10.1080/01431161.2018.1488296
10.1016/j.scib.2020.03.003
10.1109/JSTARS.2014.2320896
10.1109/LGRS.2014.2365210
10.1111/phor.12339
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2023.3276219
DatabaseName CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 4648
ExternalDocumentID oai_doaj_org_article_c66db793a1a644a3822025369ae4eaf8
10_1109_JSTARS_2023_3276219
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
AAYXX
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
7UA
8FD
ABAZT
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c388t-28f3a767feafcef73f28465fed1d2f3c33e9356da2d18516d5fb7acd3c3ef5093
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000995888100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:50:25 EDT 2025
Fri Jul 25 10:38:13 EDT 2025
Sat Nov 29 04:51:17 EST 2025
Tue Nov 18 21:18:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c388t-28f3a767feafcef73f28465fed1d2f3c33e9356da2d18516d5fb7acd3c3ef5093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1045-3797
0000-0001-9967-7756
0000-0002-5941-0763
0009-0004-5565-3022
0000-0003-4044-2340
0000-0003-0045-1066
OpenAccessLink https://doaj.org/article/c66db793a1a644a3822025369ae4eaf8
PQID 2819496735
PQPubID 75722
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_c66db793a1a644a3822025369ae4eaf8
proquest_journals_2819496735
crossref_citationtrail_10_1109_JSTARS_2023_3276219
crossref_primary_10_1109_JSTARS_2023_3276219
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationYear 2023
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
IEEE
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: IEEE
References ref13
ref35
(ref34) 2018
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1109/TPDS.2021.3082802
– ident: ref12
  doi: 10.1093/nsr/nww009
– ident: ref23
  doi: 10.1109/IGARSS.2018.8519046
– ident: ref21
  doi: 10.3390/s18082511
– ident: ref28
  doi: 10.1109/JSTARS.2015.2477460
– ident: ref24
  doi: 10.1109/rast.2019.8767856
– ident: ref26
  doi: 10.1109/ lgrs.2014.2320991
– ident: ref5
  doi: 10.1117/1.OE.52.2.026201
– year: 2018
  ident: ref34
  publication-title: CUDA C Programming Guide
– ident: ref29
  doi: 10.1109/IGARSS.2018.8518556
– ident: ref8
  doi: 10.1016/j.isprsjprs.2017.01.007
– ident: ref25
  doi: 10.1109/ISIDF.2011.6024247
– ident: ref11
  doi: 10.14358/PERS.80.6.559-570
– ident: ref30
  doi: 10.3390/ijgi7060229
– ident: ref10
  doi: 10.33969/twjournals.fcta.2020.010101
– ident: ref14
  doi: 10.1016/j.engappai.2019.07.008
– ident: ref6
  doi: 10.3390/rs70404549
– ident: ref32
  doi: 10.3390/rs11182097
– ident: ref3
  doi: 10.1111/j.1477-9730.2011.00665.x
– ident: ref20
  doi: 10.1109/JSTARS.2015.2485399
– ident: ref15
  doi: 10.1016/j.jocs.2017.03.027
– ident: ref7
  doi: 10.1080/01431161.2019.1587204
– ident: ref2
  doi: 10.1109/TGRS.2022.3142372
– ident: ref35
  doi: 10.1109/tgrs.2020.3045091
– ident: ref33
  doi: 10.1109/lgrs.2020.3031398
– ident: ref18
  doi: 10.1109/JSTARS.2010.2102340
– ident: ref16
  doi: 10.1109/TCSI.2018.2839266
– ident: ref9
  doi: 10.1109/TGRS.2016.2517100
– ident: ref31
  doi: 10.1016/j.isprsjprs.2017.10.013
– ident: ref27
  doi: 10.1117/12.2063894
– ident: ref13
  doi: 10.1109/JPROC.2018.2841200
– ident: ref22
  doi: 10.1109/CVPR.2011.5995552
– ident: ref1
  doi: 10.1080/01431161.2018.1488296
– ident: ref37
  doi: 10.1016/j.scib.2020.03.003
– ident: ref19
  doi: 10.1109/JSTARS.2014.2320896
– ident: ref4
  doi: 10.1109/LGRS.2014.2365210
– ident: ref36
  doi: 10.1111/phor.12339
SSID ssj0062793
Score 2.328468
Snippet Orthorectification reflects a large amount of real and objective information, such as the characteristics of images and the geometric accuracy of maps....
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4638
SubjectTerms Acceleration
Adaptive
Central processing units
CPUs
Geometric accuracy
Graphics
graphics processing unit (GPU)
Graphics processing units
large batch
Mathematical analysis
Methods
Optimization
orthorectification
Parameters
thread parameters
Title A Large-Batch Orthorectification Generation Method Based on Adaptive GPU Thread Parameters and Parallel Calculation
URI https://www.proquest.com/docview/2819496735
https://doaj.org/article/c66db793a1a644a3822025369ae4eaf8
Volume 16
WOSCitedRecordID wos000995888100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCl7EJ64vcvBotU3adHPcFR-HdV18gLeQZhIUyiq7q-C_d_JYEQS9eGvahIaZyXxJmn4fIUeVzZkrap4VlamysmlkpqW0meG59QojLG8Cz-ygHg67j49y9E3qy58Ji_TA0XCnRghoMIh0oRG6NUdAQ5jmQmpbWu3Cb755LeeLqZiDBcMWiWOoyOUpBnnv9u7ES4WfcIbj3xPrfMOhQNf_IxsHiLlYI6tpbkh7sU_rZMGON8jyZdDe_dgk0x4d-HPbWR_T5xO9mcyeXkK-cmnfjUYO6XB5HZShaR9BCiiWe6BffWajl6MHeo8O1EBH2p_M8vSaVI9jsW1tS890a5Kq1xZ5uDi_P7vKkmYCWrfbnWWs67iuRe3QNsa6mjvEH1E5CwUwxw3nVvJKgGaASF0IqFxTawP4xDqcPPBtsjh-GdsdQm3J0VGGG9BlycDqKucNAC5BGmAFQIewuQWVSYTiXteiVWFhkUsVza682VUye4ccfzV6jXwav1fve9d8VfVk2OEGhohKIaL-CpEO2Z87VqUROlX-A2IpRc2r3f94xx5Z8f2OmzP7ZHE2ebMHZMm8z56nk8MQnJ-mEugY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Large-Batch+Orthorectification+Generation+Method+Based+on+Adaptive+GPU+Thread+Parameters+and+Parallel+Calculation&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Zhou%2C+Ruyan&rft.au=Hu%2C+Shangcheng&rft.au=Hong%2C+Zhonghua&rft.au=Tong%2C+Xiaohua&rft.date=2023&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=16&rft.spage=4638&rft.epage=4648&rft_id=info:doi/10.1109%2FJSTARS.2023.3276219&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2023_3276219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon