Astrocyte Responses Influence Local Effects of Whole‐Brain Magnetic Stimulation in Parkinsonian Rats

Background Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate–aspartate transporter (GLAST), whose alterations have been reported in PD. Nonin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Movement disorders Ročník 38; číslo 12; s. 2173 - 2184
Hlavní autori: Natale, Giuseppina, Colella, Micol, De Carluccio, Maria, Lelli, Daniele, Paffi, Alessandra, Carducci, Filippo, Apollonio, Francesca, Palacios, Daniela, Viscomi, Maria Teresa, Liberti, Micaela, Ghiglieri, Veronica
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 01.12.2023
Wiley Subscription Services, Inc
Predmet:
ISSN:0885-3185, 1531-8257, 1531-8257
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate–aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta‐burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism. Objective Because PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional‐ and cell‐specific effects through modulation of glial functions. Methods 6‐Hydroxydopamine‐lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper‐realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively. Results As predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c‐FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho‐CREB levels, and recovery of GLAST. Striatal‐dependent motor performances were also significantly improved. Conclusion These data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS‐mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric‐field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
AbstractList BackgroundExcessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate–aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta‐burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism.ObjectiveBecause PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional‐ and cell‐specific effects through modulation of glial functions.Methods6‐Hydroxydopamine‐lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper‐realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively.ResultsAs predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c‐FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho‐CREB levels, and recovery of GLAST. Striatal‐dependent motor performances were also significantly improved.ConclusionThese data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS‐mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric‐field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate-aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta-burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism.BACKGROUNDExcessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate-aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta-burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism.Because PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional- and cell-specific effects through modulation of glial functions.OBJECTIVEBecause PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional- and cell-specific effects through modulation of glial functions.6-Hydroxydopamine-lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper-realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively.METHODS6-Hydroxydopamine-lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper-realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively.As predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c-FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho-CREB levels, and recovery of GLAST. Striatal-dependent motor performances were also significantly improved.RESULTSAs predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c-FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho-CREB levels, and recovery of GLAST. Striatal-dependent motor performances were also significantly improved.These data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS-mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric-field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.CONCLUSIONThese data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS-mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric-field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Background Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate–aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta‐burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism. Objective Because PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional‐ and cell‐specific effects through modulation of glial functions. Methods 6‐Hydroxydopamine‐lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper‐realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively. Results As predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c‐FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho‐CREB levels, and recovery of GLAST. Striatal‐dependent motor performances were also significantly improved. Conclusion These data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS‐mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric‐field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis, protecting from excitotoxicity through the glutamate-aspartate transporter (GLAST), whose alterations have been reported in PD. Noninvasive brain stimulation using intermittent theta-burst stimulation (iTBS) acts on striatal neurons and glia, inducing neuromodulatory effects and functional recovery in experimental parkinsonism. Because PD is associated with altered astrocyte function, we hypothesized that acute iTBS, known to rescue striatal glutamatergic transmission, exerts regional- and cell-specific effects through modulation of glial functions. 6-Hydroxydopamine-lesioned rats were exposed to acute iTBS, and the areas predicted to be more responsive by a biophysical, hyper-realistic computational model that faithfully reconstructs the experimental setting were analyzed. The effects of iTBS on glial cells and motor behavior were evaluated by molecular and morphological analyses, and CatWalk and Stepping test, respectively. As predicted by the model, the hippocampus, cerebellum, and striatum displayed a marked c-FOS activation after iTBS, with the striatum showing specific morphological and molecular changes in the astrocytes, decreased phospho-CREB levels, and recovery of GLAST. Striatal-dependent motor performances were also significantly improved. These data uncover an unknown iTBS effect on astrocytes, advancing the understanding of the complex mechanisms involved in TMS-mediated functional recovery. Data on numerical dosimetry, obtained with a degree of anatomical details never before considered and validated by the biological findings, provide a framework to predict the electric-field induced in different specific brain areas and associate it with functional and molecular changes. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Author Viscomi, Maria Teresa
Liberti, Micaela
Carducci, Filippo
Colella, Micol
Palacios, Daniela
De Carluccio, Maria
Apollonio, Francesca
Lelli, Daniele
Paffi, Alessandra
Ghiglieri, Veronica
Natale, Giuseppina
Author_xml – sequence: 1
  givenname: Giuseppina
  surname: Natale
  fullname: Natale, Giuseppina
  organization: Università Cattolica del Sacro Cuore
– sequence: 2
  givenname: Micol
  surname: Colella
  fullname: Colella, Micol
  organization: Sapienza University of Rome
– sequence: 3
  givenname: Maria
  surname: De Carluccio
  fullname: De Carluccio, Maria
  organization: IRCCS San Raffaele Pisana
– sequence: 4
  givenname: Daniele
  surname: Lelli
  fullname: Lelli, Daniele
  organization: Sapienza University of Rome
– sequence: 5
  givenname: Alessandra
  surname: Paffi
  fullname: Paffi, Alessandra
  organization: Sapienza University of Rome
– sequence: 6
  givenname: Filippo
  surname: Carducci
  fullname: Carducci, Filippo
  organization: Sapienza University of Rome
– sequence: 7
  givenname: Francesca
  surname: Apollonio
  fullname: Apollonio, Francesca
  organization: Sapienza University of Rome
– sequence: 8
  givenname: Daniela
  surname: Palacios
  fullname: Palacios, Daniela
  organization: Fondazione Policlinico Universitario Agostino Gemelli IRCCS
– sequence: 9
  givenname: Maria Teresa
  surname: Viscomi
  fullname: Viscomi, Maria Teresa
  organization: Fondazione Policlinico Universitario Agostino Gemelli IRCCS
– sequence: 10
  givenname: Micaela
  surname: Liberti
  fullname: Liberti, Micaela
  organization: Sapienza University of Rome
– sequence: 11
  givenname: Veronica
  orcidid: 0000-0003-2885-8298
  surname: Ghiglieri
  fullname: Ghiglieri, Veronica
  email: veronica.ghiglieri@uniroma5.it
  organization: San Raffaele University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37700489$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFuFSEUhompsbfVhS9gSNzYxbQwMwywrLVqk9toWo1LwmUOSmXgCkyau_MRfEafROy93TS6Iod8_59z_v8A7YUYAKHnlBxTQtqTaczHrWRSPkILyjraiJbxPbQgQrCmo4Lto4OcbwihlNHhCdrvOCekF3KB7GkuKZpNAXwFeR1DhowvgvUzBAN4GY32-NxaMCXjaPGXb9HD75-_XiftAr7UXwMUZ_B1cdPsdXEx4Pr_UafvLuQYnA74Spf8FD222md4tnsP0ee355_O3jfLD-8uzk6XjemEkA1YM3JDOrICokWvB060Jj1b9fUU0dKRruowMjm2lEtDtOyZlb3k0o6tYaw7RK-2vusUf8yQi5pcNuC9DhDnrFox9APlgouKvnyA3sQ5hbqdaiXpGJcDp5V6saPm1QSjWic36bRR9wlW4GQLmBRzTmCVceUuiFIj8ooS9bcjVTtSdx1VxdEDxb3pv9id-63zsPk_qC7fXG8VfwBscqDc
CitedBy_id crossref_primary_10_1016_j_freeradbiomed_2024_10_284
crossref_primary_10_3390_brainsci14070695
crossref_primary_10_3390_biology13060387
crossref_primary_10_1016_j_parkreldis_2025_107314
crossref_primary_10_1109_JERM_2024_3468024
Cites_doi 10.1016/j.neuroscience.2008.04.024
10.1002/mds.28671
10.1111/ner.13025
10.1146/annurev.bioeng.9.061206.133100
10.1016/j.nbd.2015.11.022
10.3389/fncir.2016.00026
10.1016/j.brainres.2009.01.009
10.1186/s12974-016-0616-5
10.1097/00004691-200208000-00006
10.1523/JNEUROSCI.21-15-j0003.2001
10.1523/JNEUROSCI.1379-10.2011
10.1016/j.jphs.2020.07.011
10.3389/fncel.2016.00188
10.1016/S0197-0186(00)00019-X
10.1111/j.1471-4159.2007.05118.x
10.1007/s00221-009-1961-8
10.1007/s12035-013-8598-0
10.1046/j.1471-4159.2003.02128.x
10.1088/1361-6560/abcde7
10.18632/oncotarget.11587
10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W
10.1016/j.neuint.2007.03.012
10.1007/s00401-009-0619-8
10.3389/fnagi.2017.00263
10.1093/brain/awz260
10.1007/s00259-021-05640-5
10.1016/j.neuroimage.2014.04.001
10.1016/j.neuroscience.2008.08.022
10.1523/JNEUROSCI.2125-11.2011
10.1177/1073858417717660
10.1016/j.neuroimage.2019.116486
10.1093/cercor/bht023
10.3233/RNN-160708
10.1155/2015/976854
10.3389/fphar.2012.00066
10.1016/j.brs.2017.09.011
10.1002/glia.24246
10.3389/fnins.2022.807435
10.1074/jbc.M112.341867
10.1038/s41598-022-24934-8
10.1016/j.expneurol.2012.04.020
10.1002/brb3.1132
10.1016/j.clinph.2019.11.002
10.1016/j.brs.2019.09.015
10.1016/j.jneumeth.2020.108957
10.1016/j.neubiorev.2017.10.006
10.1088/0031-9155/51/20/009
10.1523/JNEUROSCI.2664-12.2012
10.1016/j.brs.2020.12.007
10.1016/j.clinph.2014.05.021
10.1016/j.neuropharm.2021.108678
10.1016/j.nbd.2022.105697
10.1016/j.bbi.2021.02.032
10.1073/pnas.0510797103
10.1002/mds.26982
10.1002/cne.21852
10.1038/s41598-023-31711-8
10.1186/s12974-020-01747-y
10.1038/s41598-020-74431-z
10.1093/brain/aws101
10.1016/j.clinph.2004.02.019
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
– notice: 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1002/mds.29599
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8257
EndPage 2184
ExternalDocumentID 37700489
10_1002_mds_29599
MDS29599
Genre article
Journal Article
GrantInformation_xml – fundername: Università Cattolica del Sacro Cuore
– fundername: Fresco Parkinson Institute to New York University School of Medicine and The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders
  funderid: N/A
– fundername: Fresco Parkinson Institute to New York University School of Medicine and The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders
  grantid: N/A
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
24P
31~
33P
3PY
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
YCJ
ZGI
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c3889-efcd7c030be0a84a670aa045b4088821d1b45bd59d2179c0a945f94979fd2c553
IEDL.DBID 24P
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001066815200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-3185
1531-8257
IngestDate Sun Nov 09 12:11:18 EST 2025
Sat Nov 29 14:44:59 EST 2025
Wed Feb 19 02:07:56 EST 2025
Sat Nov 29 07:07:29 EST 2025
Tue Nov 18 22:21:34 EST 2025
Wed Jan 22 16:15:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords transcranial noninvasive stimulation
GLAST
synaptic plasticity
glia
parkinson's disease
Language English
License Attribution-NonCommercial-NoDerivs
2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3889-efcd7c030be0a84a670aa045b4088821d1b45bd59d2179c0a945f94979fd2c553
Notes Relevant conflicts of interest/financial disclosures or potential conflict of interest
Giuseppina Natale and Micol Colella are equally first authors; Maria Teresa Viscomi, Micaela Liberti, and Veronica Ghiglieri are equally last authors.
Funding agencies
This work was supported by a grant from the Fresco Parkinson Institute to the New York University School of Medicine and The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, which were made possible with support from Marlene and Paolo Fresco (to V.G.). Università Cattolica del Sacro Cuore contributed to the funding of this research project (Linea D1 to M.T.V.).
The authors have no financial conflicts of interest.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2885-8298
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.29599
PMID 37700489
PQID 2903579671
PQPubID 1016421
PageCount 12
ParticipantIDs proquest_miscellaneous_2864617878
proquest_journals_2903579671
pubmed_primary_37700489
crossref_citationtrail_10_1002_mds_29599
crossref_primary_10_1002_mds_29599
wiley_primary_10_1002_mds_29599_MDS29599
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
2023-Dec
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Movement disorders
PublicationTitleAlternate Mov Disord
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 83
2012; 287
2002; 19
2021; 66
2020; 17
2009; 199
2014; 24
2020; 13
2008; 105
2020; 10
2017; 9
2020; 209
2021; 36
2018; 8
2012; 135
2010; 119
2020; 131
2017; 32
2017; 35
2007; 9
2016; 86
2021; 195
2008; 511
2008; 156
2008; 154
2014; 125
2023; 71
2003; 87
2022; 168
2014; 97
2023; 13
2006; 51
2017; 27
2021; 347
2011; 31
2016; 10
2014; 49
2020; 144
2007; 51
2009; 1260
2021; 94
2012; 32
2022; 49
2016; 13
2019; 142
2018; 24
2001; 21
2021; 14
2016; 7
2004; 115
2012; 3
2023
2000; 37
2000; 32
2022; 12
2015
2020; 23
2012; 236
2018; 11
1993; 116
2022; 16
2006; 103
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Calabresi P (e_1_2_10_52_1) 1993; 116
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Bungert A (e_1_2_10_37_1) 2017; 27
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Leergaard TB (e_1_2_10_34_1) 2023
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 13
  start-page: 157
  issue: 1
  year: 2020
  end-page: 166
  article-title: Conditions for numerically accurate TMS electric field simulation
  publication-title: Brain Stimul
– volume: 32
  start-page: 17921
  issue: 49
  year: 2012
  end-page: 17931
  article-title: Rebalance of striatal NMDA/AMPA receptor ratio underlies the reduced emergence of dyskinesia during D2‐like dopamine agonist treatment in experimental Parkinson's disease
  publication-title: J Neurosci
– volume: 1260
  start-page: 94
  year: 2009
  end-page: 99
  article-title: The effects of chronic repetitive transcranial magnetic stimulation on glutamate and gamma‐aminobutyric acid in rat brain
  publication-title: Brain Res
– volume: 347
  year: 2021
  article-title: Non‐invasive brain stimulation for Parkinson's disease: clinical evidence, latest concepts and future goals: a systematic review
  publication-title: J Neurosci Methods
– volume: 125
  start-page: 2150
  issue: 11
  year: 2014
  end-page: 2206
  article-title: Evidence‐based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)
  publication-title: Clin Neurophysiol
– volume: 14
  start-page: 183
  issue: 1
  year: 2021
  end-page: 191
  article-title: Low intensity repetitive magnetic stimulation reduces expression of genes related to inflammation and calcium signalling in cultured mouse cortical astrocytes
  publication-title: Brain Stimul
– start-page: 1
  year: 2015
  end-page: 11
  article-title: A computational model for real‐time calculation of electric field due to transcranial magnetic stimulation in clinics
  publication-title: Int J Antennas Propagation
– volume: 142
  start-page: 3116
  issue: 10
  year: 2019
  end-page: 3128
  article-title: Imidazoline 2 binding sites reflecting astroglia pathology in Parkinson's disease: an in vivo11C‐BU99008 PET study
  publication-title: Brain
– volume: 49
  start-page: 1282
  issue: 3
  year: 2014
  end-page: 1292
  article-title: Ceftriaxone increases glutamate uptake and reduces striatal tyrosine hydroxylase loss in 6‐OHDA Parkinson's model
  publication-title: Mol Neurobiol
– volume: 31
  start-page: 1193
  issue: 4
  year: 2011
  end-page: 1203
  article-title: Theta‐burst transcranial magnetic stimulation alters cortical inhibition
  publication-title: J Neurosci
– volume: 17
  start-page: 150
  issue: 1
  year: 2020
  article-title: High‐frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats
  publication-title: J Neuroinflammation
– volume: 24
  start-page: 1697
  issue: 7
  year: 2014
  end-page: 1707
  article-title: Network connectivity and individual responses to brain stimulation in the human motor system
  publication-title: Cereb Cortex
– volume: 168
  year: 2022
  article-title: Striatal glutamatergic hyperactivity in Parkinson's disease
  publication-title: Neurobiol Dis
– volume: 511
  start-page: 421
  issue: 4
  year: 2008
  end-page: 437
  article-title: Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6‐hydroxydopamine‐lesioned rats
  publication-title: J Comp Neurol
– volume: 87
  start-page: 1485
  issue: 6
  year: 2003
  end-page: 1498
  article-title: Transcriptional regulation of human excitatory amino acid transporter 1 (EAAT1): cloning of the EAAT1 promoter and characterization of its basal and inducible activity in human astrocytes
  publication-title: J Neurochem
– volume: 24
  start-page: 246
  issue: 3
  year: 2018
  end-page: 260
  article-title: Noninvasive stimulation of the human brain: activation of multiple cortical circuits
  publication-title: Neuroscientist
– volume: 8
  issue: 11
  year: 2018
  article-title: Repetitive transcranial magnetic stimulation therapy for motor recovery in Parkinson's disease: a meta‐analysis
  publication-title: Brain Behav
– volume: 36
  start-page: 2254
  issue: 10
  year: 2021
  end-page: 2263
  article-title: Transcranial magnetic stimulation exerts "rejuvenation" effects on Corticostriatal synapses after partial dopamine depletion
  publication-title: Mov Disord
– volume: 287
  start-page: 26817
  issue: 32
  year: 2012
  end-page: 26828
  article-title: GPR30 regulates glutamate transporter GLT‐1 expression in rat primary astrocytes
  publication-title: J Biol Chem
– volume: 51
  start-page: 5211
  issue: 20
  year: 2006
  end-page: 5229
  article-title: Development of novel whole‐body exposure setups for rats providing high efficiency, National Toxicology Program (NTP) compatibility and well‐characterized exposure
  publication-title: Phys Med Biol
– volume: 209
  year: 2020
  article-title: A novel approach to localize cortical TMS effects
  publication-title: Neuroimage
– volume: 10
  start-page: 26
  year: 2016
  article-title: How does transcranial magnetic stimulation influence glial cells in the central nervous system?
  publication-title: Front Neural Circuits
– volume: 3
  start-page: 66
  year: 2012
  article-title: Endocannabinoid‐dopamine interactions in striatal synaptic plasticity
  publication-title: Front Pharmacol
– volume: 71
  start-page: 44
  issue: 1
  year: 2023
  end-page: 59
  article-title: Endocannabinoid signaling in astrocytes
  publication-title: Glia
– volume: 83
  start-page: 381
  year: 2017
  end-page: 404
  article-title: Transcranial magnetic stimulation in basic and clinical neuroscience: a comprehensive review of fundamental principles and novel insights
  publication-title: Neurosci Biobehav Rev
– volume: 51
  start-page: 333
  issue: 6–7
  year: 2007
  end-page: 355
  article-title: The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention
  publication-title: Neurochem Int
– volume: 35
  start-page: 557
  issue: 6
  year: 2017
  end-page: 569
  article-title: Frequency‐specific effects of repetitive magnetic stimulation on primary astrocyte cultures
  publication-title: Restor Neurol Neurosci
– volume: 32
  start-page: 1035
  issue: 7
  year: 2017
  end-page: 1046
  article-title: Intermittent theta‐burst stimulation rescues dopamine‐dependent corticostriatal synaptic plasticity and motor behavior in experimental parkinsonism: possible role of glial activity
  publication-title: Mov Disord
– volume: 12
  start-page: 20571
  issue: 1
  year: 2022
  article-title: Low intensity repetitive transcranial magnetic stimulation modulates brain‐wide functional connectivity to promote anti‐correlated c‐Fos expression
  publication-title: Sci Rep
– volume: 16
  year: 2022
  article-title: Imaging of reactive astrogliosis by positron emission tomography
  publication-title: Front Neurosci
– volume: 7
  start-page: 58802
  issue: 37
  year: 2016
  end-page: 58812
  article-title: Repetitive transcranial magnetic stimulation (rTMS) improves behavioral and biochemical deficits in levodopa‐induced dyskinetic rats model
  publication-title: Oncotarget
– volume: 236
  start-page: 395
  issue: 2
  year: 2012
  end-page: 398
  article-title: Θ‐burst stimulation and striatal plasticity in experimental parkinsonism
  publication-title: Exp Neurol
– volume: 13
  start-page: 150
  issue: 1
  year: 2016
  article-title: Repetitive transcranial magnetic stimulation reduces remote apoptotic cell death and inflammation after focal brain injury
  publication-title: J Neuroinflammation
– volume: 21
  start-page: RC157
  issue: 15
  year: 2001
  article-title: Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus
  publication-title: J Neurosci
– volume: 11
  start-page: 166
  issue: 1
  year: 2018
  end-page: 174
  article-title: Where and what TMS activates: experiments and modeling
  publication-title: Brain Stimul
– volume: 154
  start-page: 1267
  issue: 4
  year: 2008
  end-page: 1282
  article-title: Methylprednisolone treatment delays remote cell death after focal brain lesion
  publication-title: Neuroscience
– volume: 86
  start-page: 140
  year: 2016
  end-page: 153
  article-title: Modulation of serotonergic transmission by eltoprazine in L‐DOPA‐induced dyskinesia: behavioral, molecular, and synaptic mechanisms
  publication-title: Neurobiol Dis
– volume: 115
  start-page: 1697
  issue: 7
  year: 2004
  end-page: 1708
  article-title: Electric field properties of two commercial figure‐8 coils in TMS: calculation of focality and efficiency
  publication-title: Clin Neurophysiol
– volume: 9
  start-page: 527
  year: 2007
  end-page: 565
  article-title: Noninvasive human brain stimulation
  publication-title: Annu Rev Biomed Eng
– volume: 94
  start-page: 89
  year: 2021
  end-page: 103
  article-title: Early life stress exposure worsens adult remote microglia activation, neuronal death, and functional recovery after focal brain injury
  publication-title: Brain Behav Immun
– volume: 116
  start-page: 433
  issue: 2
  year: 1993
  end-page: 452
  article-title: Electrophysiology of dopamine‐denervated striatal neurons
  publication-title: Implicat Parkinson's Dis Brain
– volume: 37
  start-page: 163
  issue: 2–3
  year: 2000
  end-page: 170
  article-title: The high‐affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms
  publication-title: Neurochem Int
– volume: 13
  start-page: 4671
  issue: 1
  year: 2023
  article-title: Quartile coefficient of variation is more robust than CV for traits calculated as a ratio
  publication-title: Sci Rep
– volume: 49
  start-page: 1275
  issue: 4
  year: 2022
  end-page: 1287
  article-title: PET imaging of reactive astrocytes in neurological disorders
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 66
  issue: 3
  year: 2021
  article-title: Effect of skin conductivity on the electric field induced by transcranial stimulation techniques in different head models
  publication-title: Phys Med Biol
– volume: 144
  start-page: 151
  issue: 3
  year: 2020
  end-page: 164
  article-title: Glutamate‐induced excitotoxicity in Parkinson's disease: the role of glial cells
  publication-title: J Pharmacol Sci
– volume: 10
  start-page: 17397
  issue: 1
  year: 2020
  article-title: Individual head models for estimating the TMS‐induced electric field in rat brain
  publication-title: Sci Rep
– volume: 10
  start-page: 188
  year: 2016
  article-title: Glia: a neglected player in non‐invasive direct current brain stimulation
  publication-title: Front Cell Neurosci
– volume: 23
  start-page: 324
  issue: 3
  year: 2020
  end-page: 334
  article-title: Design and evaluation of a rodent‐specific transcranial magnetic stimulation coil: an In Silico and In vivo validation study
  publication-title: Neuromodulation
– volume: 119
  start-page: 7
  issue: 1
  year: 2010
  end-page: 35
  article-title: Astrocytes: biology and pathology
  publication-title: Acta Neuropathol
– volume: 97
  start-page: 374
  year: 2014
  end-page: 386
  article-title: Waxholm space atlas of the Sprague Dawley rat brain
  publication-title: Neuroimage
– volume: 199
  start-page: 411
  issue: 3–4
  year: 2009
  end-page: 421
  article-title: θ burst and conventional low‐frequency rTMS differentially affect GABAergic neurotransmission in the rat cortex
  publication-title: Exp Brain Res
– volume: 32
  start-page: 1
  issue: 1
  year: 2000
  end-page: 14
  article-title: Astrocyte glutamate transport: review of properties, regulation, and physiological functions
  publication-title: Glia
– volume: 9
  start-page: 263
  year: 2017
  article-title: Reproducibility of single‐pulse, paired‐pulse, and intermittent theta‐burst TMS measures in healthy aging, Type‐2 diabetes, and Alzheimer's disease
  publication-title: Front Aging Neurosci
– year: 2023
  article-title: Waxholm space atlas of the rat brain: a 3D atlas supporting data analysis and integration
  publication-title: Research Square
– volume: 105
  start-page: 137
  issue: 1
  year: 2008
  end-page: 150
  article-title: Inhibitory regulation of glutamate aspartate transporter (GLAST) expression in astrocytes by cadmium‐induced calcium influx
  publication-title: J Neurochem
– volume: 19
  start-page: 322
  issue: 4
  year: 2002
  end-page: 343
  article-title: Basic mechanisms of TMS
  publication-title: J Clin Neurophysiol
– volume: 135
  start-page: 1884
  issue: 6
  year: 2012
  end-page: 1899
  article-title: Mechanisms underlying the impairment of hippocampal long‐term potentiation and memory in experimental Parkinson's disease
  publication-title: Brain
– volume: 103
  start-page: 8251
  issue: 21
  year: 2006
  end-page: 8256
  article-title: Frequency‐specific and D2 receptor‐mediated inhibition of glutamate release by retrograde endocannabinoid signaling
  publication-title: Proc Natl Acad Sci U S A
– volume: 131
  start-page: 474
  issue: 2
  year: 2020
  end-page: 528
  article-title: Evidence‐based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014‐2018)
  publication-title: Clin Neurophysiol
– volume: 27
  start-page: 5083
  issue: 11
  year: 2017
  end-page: 5094
  article-title: Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position
  publication-title: Cereb Cortex
– volume: 195
  year: 2021
  article-title: CB1R‐dependent regulation of astrocyte physiology and astrocyte‐neuron interactions
  publication-title: Neuropharmacology
– volume: 156
  start-page: 898
  issue: 4
  year: 2008
  end-page: 910
  article-title: Amyloid‐beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen‐activated protein kinase cascades
  publication-title: Neuroscience
– volume: 31
  start-page: 11044
  issue: 30
  year: 2011
  end-page: 11054
  article-title: Repetitive transcranial magnetic stimulation enhances BDNF‐TrkB signaling in both brain and lymphocyte
  publication-title: J Neurosci
– ident: e_1_2_10_42_1
  doi: 10.1016/j.neuroscience.2008.04.024
– ident: e_1_2_10_15_1
  doi: 10.1002/mds.28671
– ident: e_1_2_10_62_1
  doi: 10.1111/ner.13025
– ident: e_1_2_10_4_1
  doi: 10.1146/annurev.bioeng.9.061206.133100
– ident: e_1_2_10_41_1
  doi: 10.1016/j.nbd.2015.11.022
– ident: e_1_2_10_21_1
  doi: 10.3389/fncir.2016.00026
– ident: e_1_2_10_13_1
  doi: 10.1016/j.brainres.2009.01.009
– volume: 116
  start-page: 433
  issue: 2
  year: 1993
  ident: e_1_2_10_52_1
  article-title: Electrophysiology of dopamine‐denervated striatal neurons
  publication-title: Implicat Parkinson's Dis Brain
– ident: e_1_2_10_48_1
  doi: 10.1186/s12974-016-0616-5
– ident: e_1_2_10_2_1
  doi: 10.1097/00004691-200208000-00006
– ident: e_1_2_10_10_1
  doi: 10.1523/JNEUROSCI.21-15-j0003.2001
– ident: e_1_2_10_19_1
  doi: 10.1523/JNEUROSCI.1379-10.2011
– ident: e_1_2_10_30_1
  doi: 10.1016/j.jphs.2020.07.011
– ident: e_1_2_10_22_1
  doi: 10.3389/fncel.2016.00188
– ident: e_1_2_10_58_1
  doi: 10.1016/S0197-0186(00)00019-X
– ident: e_1_2_10_60_1
  doi: 10.1111/j.1471-4159.2007.05118.x
– ident: e_1_2_10_18_1
  doi: 10.1007/s00221-009-1961-8
– ident: e_1_2_10_28_1
  doi: 10.1007/s12035-013-8598-0
– ident: e_1_2_10_59_1
  doi: 10.1046/j.1471-4159.2003.02128.x
– ident: e_1_2_10_35_1
  doi: 10.1088/1361-6560/abcde7
– ident: e_1_2_10_17_1
  doi: 10.18632/oncotarget.11587
– ident: e_1_2_10_26_1
  doi: 10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W
– volume: 27
  start-page: 5083
  issue: 11
  year: 2017
  ident: e_1_2_10_37_1
  article-title: Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position
  publication-title: Cereb Cortex
– ident: e_1_2_10_27_1
  doi: 10.1016/j.neuint.2007.03.012
– ident: e_1_2_10_25_1
  doi: 10.1007/s00401-009-0619-8
– ident: e_1_2_10_8_1
  doi: 10.3389/fnagi.2017.00263
– ident: e_1_2_10_64_1
  doi: 10.1093/brain/awz260
– ident: e_1_2_10_65_1
  doi: 10.1007/s00259-021-05640-5
– ident: e_1_2_10_33_1
  doi: 10.1016/j.neuroimage.2014.04.001
– ident: e_1_2_10_49_1
  doi: 10.1016/j.neuroscience.2008.08.022
– ident: e_1_2_10_16_1
  doi: 10.1523/JNEUROSCI.2125-11.2011
– ident: e_1_2_10_9_1
  doi: 10.1177/1073858417717660
– ident: e_1_2_10_39_1
  doi: 10.1016/j.neuroimage.2019.116486
– ident: e_1_2_10_5_1
  doi: 10.1093/cercor/bht023
– ident: e_1_2_10_20_1
  doi: 10.3233/RNN-160708
– year: 2023
  ident: e_1_2_10_34_1
  article-title: Waxholm space atlas of the rat brain: a 3D atlas supporting data analysis and integration
  publication-title: Research Square
– ident: e_1_2_10_40_1
  doi: 10.1155/2015/976854
– ident: e_1_2_10_54_1
  doi: 10.3389/fphar.2012.00066
– ident: e_1_2_10_38_1
  doi: 10.1016/j.brs.2017.09.011
– ident: e_1_2_10_57_1
  doi: 10.1002/glia.24246
– ident: e_1_2_10_63_1
  doi: 10.3389/fnins.2022.807435
– ident: e_1_2_10_50_1
  doi: 10.1074/jbc.M112.341867
– ident: e_1_2_10_46_1
  doi: 10.1038/s41598-022-24934-8
– ident: e_1_2_10_31_1
  doi: 10.1016/j.expneurol.2012.04.020
– ident: e_1_2_10_12_1
  doi: 10.1002/brb3.1132
– ident: e_1_2_10_3_1
  doi: 10.1016/j.clinph.2019.11.002
– ident: e_1_2_10_45_1
  doi: 10.1016/j.brs.2019.09.015
– ident: e_1_2_10_11_1
  doi: 10.1016/j.jneumeth.2020.108957
– ident: e_1_2_10_6_1
  doi: 10.1016/j.neubiorev.2017.10.006
– ident: e_1_2_10_32_1
  doi: 10.1088/0031-9155/51/20/009
– ident: e_1_2_10_51_1
  doi: 10.1523/JNEUROSCI.2664-12.2012
– ident: e_1_2_10_23_1
  doi: 10.1016/j.brs.2020.12.007
– ident: e_1_2_10_7_1
  doi: 10.1016/j.clinph.2014.05.021
– ident: e_1_2_10_56_1
  doi: 10.1016/j.neuropharm.2021.108678
– ident: e_1_2_10_53_1
  doi: 10.1016/j.nbd.2022.105697
– ident: e_1_2_10_43_1
  doi: 10.1016/j.bbi.2021.02.032
– ident: e_1_2_10_55_1
  doi: 10.1073/pnas.0510797103
– ident: e_1_2_10_14_1
  doi: 10.1002/mds.26982
– ident: e_1_2_10_29_1
  doi: 10.1002/cne.21852
– ident: e_1_2_10_44_1
  doi: 10.1038/s41598-023-31711-8
– ident: e_1_2_10_24_1
  doi: 10.1186/s12974-020-01747-y
– ident: e_1_2_10_61_1
  doi: 10.1038/s41598-020-74431-z
– ident: e_1_2_10_47_1
  doi: 10.1093/brain/aws101
– ident: e_1_2_10_36_1
  doi: 10.1016/j.clinph.2004.02.019
SSID ssj0011516
Score 2.4812937
Snippet Background Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate...
Excessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate homeostasis,...
BackgroundExcessive glutamatergic transmission in the striatum is implicated in Parkinson's disease (PD) progression. Astrocytes maintain glutamate...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2173
SubjectTerms Astrocytes
Basal ganglia
Central nervous system diseases
Cerebellum
Computational neuroscience
Cyclic AMP response element-binding protein
Dosimetry
Excitotoxicity
GLAST
glia
Glial cells
Glutamatergic transmission
Homeostasis
Magnetic fields
Morphology
Movement disorders
Neostriatum
Neurodegenerative diseases
Neuronal-glial interactions
Parkinson's disease
Recovery of function
synaptic plasticity
transcranial noninvasive stimulation
Title Astrocyte Responses Influence Local Effects of Whole‐Brain Magnetic Stimulation in Parkinsonian Rats
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.29599
https://www.ncbi.nlm.nih.gov/pubmed/37700489
https://www.proquest.com/docview/2903579671
https://www.proquest.com/docview/2864617878
Volume 38
WOSCitedRecordID wos001066815200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1531-8257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011516
  issn: 0885-3185
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VFiEuQPndUiq34tBLaBI7sS1OLWVFpd2q2lKxt2jWdlAlmkVNisSNR-AZ-yR44iRVBUhIXKL8TOJoxpMZx57vA3iNPDd5LF2UmFhEQuUuQo0YCY4EO5k7Fyw9kcfHaj7XJyvwtq-FCfgQww838oz2e00Ojot67wY09MLWb1KdaX0H1pKEK-JtSMXJMIXgQ1keUsisLRHuYYXidG-49XYw-i3DvJ2wthFn_PC_3vURPOgSTbYfesY6rLjqMdybdlPpT6DcrxsfvL43js3COllXs6OesoRNKMaxgG1cs2XJPhGR7vWPnwfEKcGm-Lmi8kd22pxfdAxgzJ-nIuq2nsz3OjbDpn4KZ-P3H999iDrShchwWvHkSmOl8a6_cDEqgbmMEX3etxBekypNbLLwBzbT1g9mtIlRi6zUQktd2tRkGX8Gq9Wyci-AaecHN5hzkzpCobHItc8nU-kU2swKO4LdXvuF6RDJiRjjSxGwlNPC661o9TaCnUH0a4Dh-JPQZm_CovNEuhJzqreVyQi2h8veh2hiBCu3vPIyKhdUKinVCJ4H0w-tcEkEAMo_fLe18N-bL6aHp-3Oxr-LvoT7xF8f1sdswmpzeeVewV3zrTmvL7faDu23cq62YO1wNj6b_AKsh_rd
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6FgCgXHoVCSgrbikMuJo699nolLoG2SkUSVUkQuVmb3XUVqXFQ7FTqjZ_Ab-wvYcdru6oACak32zvetebhmX3MNwAfhB_K0GXa6UmXOjQKtSO4EA71BcJOhlpbSQ_ZeBzN5_y8AZ-qXBiLD1EvuKFlFP9rNHBckO7eooauVPbR4wHnD-AhNR2jlnv0vN5DML4stDFkUOQIV7hCrtetX73rjf4IMe9GrIXLOX12v499Dk_LUJP0rW68gIZOd-HxqNxMfwlJP8uN-7rONZnYk7I6I2dV0RIyRC9HLLpxRtYJ-Y6ldG9-_vqMVSXISFykmABJpvlyVdYAI-Y5plEXGWVG78hE5Nkr-HZ6MvsycMqyC4708cyTTqRi0hj_QrsioiJkrhAm8ltQw8rI66newtyogCszneHSFZwGCaec8UR5Mgj8PWim61S_AcK1md6I0JeeRhwaJXxuIkqP6UioQFHVgk7F_liWmORYGuMytmjKXmz4Fhd8a8FRTfrDAnH8jahdyTAubRFbXB8zblmvBYd1s7Ei3BoRqV5vDU0UUkyWZFELXlvZ16P4DEsARKbzTiHifw8fj46nxcX-_5O-h53BbDSMh2fjr2_hCVazt6dl2tDMN1t9AI_kVb7MNu8K7f4N2XT8QA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwEB5BQYgL_yzlZzGIA5dAmjhxLHEBuhWItkJlEdwi13ZWSJAiElbaG4_AM_IkeOIkCMFKSNySeBJHM57MOPZ8H8CO8EMZukw7LelSh0ahdgQXwqG-QNjJUGtr6S7r96Pra34-BgdVLYzFh6h_uKFnFN9rdHB9r5L9N9TQO5XteTzgfBwmKJLINGCiPehcdutVBBPNQptFBkWVcIUs5Hr79c3v49GHJPN9zloEnc7s9153DmbKZJMc2tExD2M6XYCpXrmcvgjJYZabAPYv12Rg98rqjJxWtCWki3GOWHzjjIwScoVkui9Pz0fIK0F64k-KJZDkIr-5K1nAiLmOhdRFTZkZeWQg8mwJLju_fh-fOCXxgiN93PWkE6mYNO4_1K6IqAiZK4TJ_YbUqDLyWqo1NCcq4MpMaLh0BadBwilnPFGeDAJ_GRrpKNUrQLg2ExwR-tLTiESjhM9NTukxHQkVKKqasFupP5YlKjmSY9zGFk_Zi43e4kJvTdiuRe8tFMdnQuuVDePSG7HF9bHmlrWasFU3Gz_CxRGR6tGjkYlCiuWSLGrCD2v7uhefIQlAZB6-W5j4_93HvfZFcbD6ddFNmDpvd-Luaf9sDaaRzt5ul1mHRv7wqDdgUv7Nb7KHn-XwfgUFK_1W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Astrocyte+Responses+Influence+Local+Effects+of+Whole%E2%80%90Brain+Magnetic+Stimulation+in+Parkinsonian+Rats&rft.jtitle=Movement+disorders&rft.au=Natale%2C+Giuseppina&rft.au=Colella%2C+Micol&rft.au=De+Carluccio%2C+Maria&rft.au=Lelli%2C+Daniele&rft.date=2023-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0885-3185&rft.eissn=1531-8257&rft.volume=38&rft.issue=12&rft.spage=2173&rft.epage=2184&rft_id=info:doi/10.1002%2Fmds.29599&rft.externalDBID=10.1002%252Fmds.29599&rft.externalDocID=MDS29599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon