Longitudinal Assessment of Multiple Sclerosis with the Brain‐Age Paradigm
Objective During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so‐called “brain‐age” paradigm. Here, we evaluated whether brain‐predicted age difference (brain‐PAD) was sensitive to the presence...
Gespeichert in:
| Veröffentlicht in: | Annals of neurology Jg. 88; H. 1; S. 93 - 105 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2020
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0364-5134, 1531-8249, 1531-8249 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Objective
During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so‐called “brain‐age” paradigm. Here, we evaluated whether brain‐predicted age difference (brain‐PAD) was sensitive to the presence of MS, clinical progression, and future outcomes.
Methods
In a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow‐up time: patients 3.41 years, healthy controls 1.97 years), we measured “brain‐predicted age” using T1‐weighted MRI. We compared brain‐PAD among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships between brain‐PAD and Expanded Disability Status Scale (EDSS) were explored.
Results
Patients with MS had markedly higher brain‐PAD than healthy controls (mean brain‐PAD +10.3 years; 95% confidence interval [CI] = 8.5–12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain‐PADs were in secondary‐progressive MS (+13.3 years; 95% CI = 11.3–15.3). Brain‐PAD at study entry predicted time‐to‐disability progression (hazard ratio 1.02; 95% CI = 1.01–1.03; p < 0.001); although normalized brain volume was a stronger predictor. Greater annualized brain‐PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001).
Interpretation
The brain‐age paradigm is sensitive to MS‐related atrophy and clinical progression. A higher brain‐PAD at baseline was associated with more rapid disability progression and the rate of change in brain‐PAD related to worsening disability. Potentially, “brain‐age” could be used as a prognostic biomarker in early‐stage MS, to track disease progression or stratify patients for clinical trial enrollment. ANN NEUROL 2020 ANN NEUROL 2020;88:93–105 |
|---|---|
| AbstractList | During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so-called "brain-age" paradigm. Here, we evaluated whether brain-predicted age difference (brain-PAD) was sensitive to the presence of MS, clinical progression, and future outcomes.
In a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow-up time: patients 3.41 years, healthy controls 1.97 years), we measured "brain-predicted age" using T1-weighted MRI. We compared brain-PAD among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships between brain-PAD and Expanded Disability Status Scale (EDSS) were explored.
Patients with MS had markedly higher brain-PAD than healthy controls (mean brain-PAD +10.3 years; 95% confidence interval [CI] = 8.5-12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain-PADs were in secondary-progressive MS (+13.3 years; 95% CI = 11.3-15.3). Brain-PAD at study entry predicted time-to-disability progression (hazard ratio 1.02; 95% CI = 1.01-1.03; p < 0.001); although normalized brain volume was a stronger predictor. Greater annualized brain-PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001).
The brain-age paradigm is sensitive to MS-related atrophy and clinical progression. A higher brain-PAD at baseline was associated with more rapid disability progression and the rate of change in brain-PAD related to worsening disability. Potentially, "brain-age" could be used as a prognostic biomarker in early-stage MS, to track disease progression or stratify patients for clinical trial enrollment. ANN NEUROL 2020 ANN NEUROL 2020;88:93-105. During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so-called "brain-age" paradigm. Here, we evaluated whether brain-predicted age difference (brain-PAD) was sensitive to the presence of MS, clinical progression, and future outcomes.OBJECTIVEDuring the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so-called "brain-age" paradigm. Here, we evaluated whether brain-predicted age difference (brain-PAD) was sensitive to the presence of MS, clinical progression, and future outcomes.In a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow-up time: patients 3.41 years, healthy controls 1.97 years), we measured "brain-predicted age" using T1-weighted MRI. We compared brain-PAD among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships between brain-PAD and Expanded Disability Status Scale (EDSS) were explored.METHODSIn a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow-up time: patients 3.41 years, healthy controls 1.97 years), we measured "brain-predicted age" using T1-weighted MRI. We compared brain-PAD among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships between brain-PAD and Expanded Disability Status Scale (EDSS) were explored.Patients with MS had markedly higher brain-PAD than healthy controls (mean brain-PAD +10.3 years; 95% confidence interval [CI] = 8.5-12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain-PADs were in secondary-progressive MS (+13.3 years; 95% CI = 11.3-15.3). Brain-PAD at study entry predicted time-to-disability progression (hazard ratio 1.02; 95% CI = 1.01-1.03; p < 0.001); although normalized brain volume was a stronger predictor. Greater annualized brain-PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001).RESULTSPatients with MS had markedly higher brain-PAD than healthy controls (mean brain-PAD +10.3 years; 95% confidence interval [CI] = 8.5-12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain-PADs were in secondary-progressive MS (+13.3 years; 95% CI = 11.3-15.3). Brain-PAD at study entry predicted time-to-disability progression (hazard ratio 1.02; 95% CI = 1.01-1.03; p < 0.001); although normalized brain volume was a stronger predictor. Greater annualized brain-PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001).The brain-age paradigm is sensitive to MS-related atrophy and clinical progression. A higher brain-PAD at baseline was associated with more rapid disability progression and the rate of change in brain-PAD related to worsening disability. Potentially, "brain-age" could be used as a prognostic biomarker in early-stage MS, to track disease progression or stratify patients for clinical trial enrollment. ANN NEUROL 2020 ANN NEUROL 2020;88:93-105.INTERPRETATIONThe brain-age paradigm is sensitive to MS-related atrophy and clinical progression. A higher brain-PAD at baseline was associated with more rapid disability progression and the rate of change in brain-PAD related to worsening disability. Potentially, "brain-age" could be used as a prognostic biomarker in early-stage MS, to track disease progression or stratify patients for clinical trial enrollment. ANN NEUROL 2020 ANN NEUROL 2020;88:93-105. Objective During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so‐called “brain‐age” paradigm. Here, we evaluated whether brain‐predicted age difference (brain‐PAD) was sensitive to the presence of MS, clinical progression, and future outcomes. Methods In a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow‐up time: patients 3.41 years, healthy controls 1.97 years), we measured “brain‐predicted age” using T1‐weighted MRI. We compared brain‐PAD among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships between brain‐PAD and Expanded Disability Status Scale (EDSS) were explored. Results Patients with MS had markedly higher brain‐PAD than healthy controls (mean brain‐PAD +10.3 years; 95% confidence interval [CI] = 8.5–12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain‐PADs were in secondary‐progressive MS (+13.3 years; 95% CI = 11.3–15.3). Brain‐PAD at study entry predicted time‐to‐disability progression (hazard ratio 1.02; 95% CI = 1.01–1.03; p < 0.001); although normalized brain volume was a stronger predictor. Greater annualized brain‐PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001). Interpretation The brain‐age paradigm is sensitive to MS‐related atrophy and clinical progression. A higher brain‐PAD at baseline was associated with more rapid disability progression and the rate of change in brain‐PAD related to worsening disability. Potentially, “brain‐age” could be used as a prognostic biomarker in early‐stage MS, to track disease progression or stratify patients for clinical trial enrollment. ANN NEUROL 2020 ANN NEUROL 2020;88:93–105 ObjectiveDuring the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so‐called “brain‐age” paradigm. Here, we evaluated whether brain‐predicted age difference (brain‐PAD) was sensitive to the presence of MS, clinical progression, and future outcomes.MethodsIn a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow‐up time: patients 3.41 years, healthy controls 1.97 years), we measured “brain‐predicted age” using T1‐weighted MRI. We compared brain‐PAD among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships between brain‐PAD and Expanded Disability Status Scale (EDSS) were explored.ResultsPatients with MS had markedly higher brain‐PAD than healthy controls (mean brain‐PAD +10.3 years; 95% confidence interval [CI] = 8.5–12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain‐PADs were in secondary‐progressive MS (+13.3 years; 95% CI = 11.3–15.3). Brain‐PAD at study entry predicted time‐to‐disability progression (hazard ratio 1.02; 95% CI = 1.01–1.03; p < 0.001); although normalized brain volume was a stronger predictor. Greater annualized brain‐PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001).InterpretationThe brain‐age paradigm is sensitive to MS‐related atrophy and clinical progression. A higher brain‐PAD at baseline was associated with more rapid disability progression and the rate of change in brain‐PAD related to worsening disability. Potentially, “brain‐age” could be used as a prognostic biomarker in early‐stage MS, to track disease progression or stratify patients for clinical trial enrollment. ANN NEUROL 2020 ANN NEUROL 2020;88:93–105 |
| Author | Gasperini MD, Claudio Nicholas MD, PhD, Richard Uitdehaag MD, PhD, Bernard M. J. Filippi MD, FEAN, Massimo Stromillo MD, PhD, Maria Laura Vrenken PhD, Hugo Enzinger MD, Christian Cole PhD, James H. Rovira MD, Alex Raffel MD, Joel Friede PhD, Tim De Stefano MD, PhD, Nicola Ruggieri MD, Serena Brownlee PhD, FRACP, Wallace J. Rocca MD, Maria Assunta Sastre‐Garriga MD, PhD, Jaume Chard MD, PhD, Declan Ciccarelli PhD, FRCP, Olga Eshaghi MD, PhD, Arman Pirpamer MSc, Lukas Barkhof MD PhD, Frederik |
| Author_xml | – sequence: 1 givenname: James H. orcidid: 0000-0003-1908-5588 surname: Cole PhD fullname: Cole PhD, James H. organization: Imperial College London – sequence: 2 givenname: Joel surname: Raffel MD fullname: Raffel MD, Joel organization: Imperial College London – sequence: 3 givenname: Tim surname: Friede PhD fullname: Friede PhD, Tim organization: University Medical Center Göttingen – sequence: 4 givenname: Arman orcidid: 0000-0002-6652-3512 surname: Eshaghi MD, PhD fullname: Eshaghi MD, PhD, Arman organization: UCL Institute of Neurology – sequence: 5 givenname: Wallace J. surname: Brownlee PhD, FRACP fullname: Brownlee PhD, FRACP, Wallace J. organization: UCL Institute of Neurology – sequence: 6 givenname: Declan surname: Chard MD, PhD fullname: Chard MD, PhD, Declan organization: Amsterdam University Medical Centers – sequence: 7 givenname: Nicola surname: De Stefano MD, PhD fullname: De Stefano MD, PhD, Nicola organization: University of Siena – sequence: 8 givenname: Christian surname: Enzinger MD fullname: Enzinger MD, Christian organization: Medical University of Graz – sequence: 9 givenname: Lukas surname: Pirpamer MSc fullname: Pirpamer MSc, Lukas organization: Medical University of Graz – sequence: 10 givenname: Massimo orcidid: 0000-0002-5485-0479 surname: Filippi MD, FEAN fullname: Filippi MD, FEAN, Massimo organization: Vita‐Salute San Raffaele University – sequence: 11 givenname: Claudio orcidid: 0000-0002-3959-4067 surname: Gasperini MD fullname: Gasperini MD, Claudio organization: San Camillo‐Forlanini Hospital – sequence: 12 givenname: Maria Assunta orcidid: 0000-0003-2358-4320 surname: Rocca MD fullname: Rocca MD, Maria Assunta organization: Vita‐Salute San Raffaele University – sequence: 13 givenname: Alex surname: Rovira MD fullname: Rovira MD, Alex organization: Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona – sequence: 14 givenname: Serena surname: Ruggieri MD fullname: Ruggieri MD, Serena organization: San Camillo‐Forlanini Hospital – sequence: 15 givenname: Jaume surname: Sastre‐Garriga MD, PhD fullname: Sastre‐Garriga MD, PhD, Jaume organization: Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona – sequence: 16 givenname: Maria Laura surname: Stromillo MD, PhD fullname: Stromillo MD, PhD, Maria Laura organization: University of Siena – sequence: 17 givenname: Bernard M. J. surname: Uitdehaag MD, PhD fullname: Uitdehaag MD, PhD, Bernard M. J. organization: VU University Medical Center – sequence: 18 givenname: Hugo surname: Vrenken PhD fullname: Vrenken PhD, Hugo organization: Amsterdam University Medical Centers – sequence: 19 givenname: Frederik surname: Barkhof MD PhD fullname: Barkhof MD PhD, Frederik organization: University College London Hospitals (UCLH) Biomedical Research Centre (BRC) – sequence: 20 givenname: Richard orcidid: 0000-0003-0414-1225 surname: Nicholas MD, PhD fullname: Nicholas MD, PhD, Richard email: r.nicholas@imperial.ac.uk organization: UCL Institute of Ophthalmology – sequence: 21 givenname: Olga surname: Ciccarelli PhD, FRCP fullname: Ciccarelli PhD, FRCP, Olga organization: UCL Institute of Neurology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32285956$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1O3DAUhS0EggG66AtUkbqBRcD_OMsU8SeGFgm6tjzOzWDkONPYEWLHI_CMPAmGGTaorO5ZfOdI95xttB76AAh9J_iAYEwPTTAHVBxxuYYmRDBSKsqrdTTBTPJSEMa30HaM9xjjShK8ibYYpUpUQk7Q5bQPc5fGxgXjizpGiLGDkIq-La5Gn9zCQ3FjPQx9dLF4cOmuSHdQ_BqMCy9Pz_UcimszmMbNu1200Rof4dvq7qC_pye3x-fl9M_ZxXE9LS1TSpYzqKjCDaGylWAsE9Y0VrYzxVTLLa6U4QwIBWhIxXlrwYiWyyMjBDEsC7aD9pa5i6H_N0JMunPRgvcmQD9GTZmqpFKqekN_fkLv-3HIr2aKE6EwwYRl6seKGmcdNHoxuM4Mj_qjpgwcLgGba4gDtNq6ZJLrQ8o9eE2wfhtC5yH0-xDZsf_J8RH6P3aV_uA8PH4N6vp3vXS8AoGilt0 |
| CitedBy_id | crossref_primary_10_1093_braincomms_fcaf152 crossref_primary_10_1177_13524585241256881 crossref_primary_10_3390_biomedicines12092139 crossref_primary_10_1002_hbm_26242 crossref_primary_10_1016_j_compbiomed_2024_109155 crossref_primary_10_1038_s41586_024_08334_8 crossref_primary_10_1177_17562864241229325 crossref_primary_10_1016_j_bpsc_2024_04_008 crossref_primary_10_1016_j_ebiom_2021_103600 crossref_primary_10_3348_kjr_2023_0360 crossref_primary_10_7554_eLife_87297_4 crossref_primary_10_1080_14737175_2021_1886082 crossref_primary_10_1212_WNL_0000000000012289 crossref_primary_10_1002_acn3_51782 crossref_primary_10_3389_fpsyt_2020_604478 crossref_primary_10_1038_s41582_025_01115_5 crossref_primary_10_1016_j_jcmg_2023_01_016 crossref_primary_10_1177_13524585211018116 crossref_primary_10_3389_fnagi_2022_1063721 crossref_primary_10_1007_s11910_024_01354_x crossref_primary_10_1016_j_neuroimage_2023_120469 crossref_primary_10_3389_fneur_2021_679881 crossref_primary_10_1002_hbm_26558 crossref_primary_10_1162_imag_a_00487 crossref_primary_10_3390_jpm12111850 crossref_primary_10_3389_fneur_2023_1207626 crossref_primary_10_1177_13524585251345317 crossref_primary_10_1093_brain_awae251 crossref_primary_10_1002_ana_26913 crossref_primary_10_1093_bib_bbaa310 crossref_primary_10_1186_s12883_021_02331_4 crossref_primary_10_1177_11795735241266556 crossref_primary_10_1186_s40708_024_00244_9 crossref_primary_10_1136_jnnp_2022_329680 crossref_primary_10_3389_fneur_2021_801097 crossref_primary_10_1016_S1474_4422_22_00184_3 crossref_primary_10_1038_s41598_024_54663_z crossref_primary_10_3390_bioengineering11030265 crossref_primary_10_1093_schbul_sbaf022 crossref_primary_10_1016_j_jagp_2023_09_014 crossref_primary_10_1212_WNL_0000000000209976 crossref_primary_10_1002_hbm_25133 crossref_primary_10_1016_j_msard_2025_106339 crossref_primary_10_3389_fnins_2021_714252 crossref_primary_10_1016_j_compbiomed_2024_108320 crossref_primary_10_1177_20552173221144230 crossref_primary_10_1016_j_neuroimage_2022_119503 crossref_primary_10_1016_j_neuroimage_2023_119947 crossref_primary_10_1007_s00330_023_09604_1 crossref_primary_10_1111_ene_15473 crossref_primary_10_1109_MSP_2021_3126573 crossref_primary_10_1080_14737175_2024_2398484 crossref_primary_10_1002_dad2_12493 crossref_primary_10_3389_fnagi_2021_761954 crossref_primary_10_3390_ijms231911291 crossref_primary_10_1016_j_ynirp_2022_100146 crossref_primary_10_1186_s12880_025_01897_6 crossref_primary_10_1002_mds_30109 crossref_primary_10_1016_j_jns_2024_123090 crossref_primary_10_3389_fneur_2024_1423485 crossref_primary_10_3389_fnhum_2023_1151531 crossref_primary_10_1212_WNL_0000000000210305 crossref_primary_10_1038_s42003_023_05119_z crossref_primary_10_1249_MSS_0000000000003337 crossref_primary_10_1177_13524585241231155 crossref_primary_10_1016_j_autrev_2023_103388 crossref_primary_10_1038_s41598_020_76518_z crossref_primary_10_2967_jnumed_125_270325 crossref_primary_10_1002_hbm_25368 crossref_primary_10_1038_s41582_024_01042_x crossref_primary_10_1016_j_ynirp_2025_100252 crossref_primary_10_1212_WNL_0000000000207219 crossref_primary_10_1002_jmri_29667 crossref_primary_10_1016_j_stem_2024_09_014 crossref_primary_10_2147_JPR_S384229 crossref_primary_10_1038_s41467_024_52444_w crossref_primary_10_1093_bfgp_elae042 crossref_primary_10_1016_j_neulet_2021_136398 crossref_primary_10_1016_j_gerinurse_2023_01_019 crossref_primary_10_1186_s13195_024_01491_y crossref_primary_10_1016_j_neurobiolaging_2020_03_014 crossref_primary_10_1038_s41380_022_01728_y crossref_primary_10_1097_WCO_0000000000001360 crossref_primary_10_7554_eLife_87297 crossref_primary_10_1038_s41398_022_02162_y crossref_primary_10_3390_jcm10030418 crossref_primary_10_1016_j_nicl_2022_103175 crossref_primary_10_1007_s00259_024_06784_w crossref_primary_10_1073_pnas_2311865121 crossref_primary_10_1212_NXI_0000000000200459 crossref_primary_10_1002_ana_27034 crossref_primary_10_1002_hbm_70243 crossref_primary_10_3390_brainsci14040401 crossref_primary_10_1002_hbm_25837 crossref_primary_10_3389_fnagi_2021_694982 |
| Cites_doi | 10.1016/j.tins.2017.10.001 10.1111/jon.12625 10.1016/j.nicl.2016.11.005 10.1016/j.neurobiolaging.2017.04.006 10.1177/1352458517742739 10.1016/j.neuroimage.2010.01.005 10.1038/s41593-019-0471-7 10.1007/s12021-013-9178-1 10.1016/j.neuroimage.2016.11.005 10.3389/fneur.2019.00450 10.1002/ana.24897 10.1371/journal.pone.0067346 10.1093/brain/awq076 10.1016/j.eplepsyres.2017.03.007 10.1097/WCO.0000000000000322 10.1007/s00109-018-1686-x 10.1016/j.neuroimage.2017.07.059 10.1016/j.jns.2007.01.067 10.1212/WNL.33.11.1444 10.1002/ana.25150 10.1002/hbm.21344 10.1177/1352458512451510 10.1038/nrneurol.2009.178 10.1212/WNL.0000000000003790 10.1002/ana.22366 10.1038/mp.2017.62 10.1212/WNL.0000000000000560 10.1024/1662-9647/a000074 10.1093/brain/awh721 10.1177/1352458516630396 10.1093/brain/awl007 10.1002/ana.25145 10.1073/pnas.1902376116 10.3389/fnagi.2018.00317 10.1007/978-3-030-24970-0_19 10.1212/WNL.0b013e318230a17d 10.1002/ana.24367 10.3389/fneur.2019.00789 10.1177/1352458517751049 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of American Neurological Association. 2020 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of American Neurological Association. – notice: 2020 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | MAGNIMS study group |
| CorporateAuthor_xml | – name: MAGNIMS study group |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 |
| DOI | 10.1002/ana.25746 |
| DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Toxicology Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1531-8249 |
| EndPage | 105 |
| ExternalDocumentID | 32285956 10_1002_ana_25746 ANA25746 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: UCLH Biomedical Research Centre – fundername: Multiple Sclerosis International Federation – fundername: Imperial College London – fundername: University College London – fundername: UK Research and Innovation funderid: MR/R024790/1 – fundername: University College London Hospitals Biomedical Research Centre – fundername: NIHR Imperial Biomedical Research Centre – fundername: Multiple Sclerosis Society – fundername: Biomedical Research Centre – fundername: National Institute for Health Research – fundername: Medical Research Council grantid: MR/R024790/2 – fundername: Medical Research Council grantid: MR/R024790/1 |
| GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 24P 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACRZS ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFAZI AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 |
| ID | FETCH-LOGICAL-c3886-be9280d126f6eac35cadc6fb838f4c098a43e12eed1944fcea5f467a551a34673 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 100 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530530100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0364-5134 1531-8249 |
| IngestDate | Thu Sep 04 16:52:37 EDT 2025 Thu Dec 04 03:35:15 EST 2025 Mon Jul 21 06:06:23 EDT 2025 Sat Nov 29 03:41:30 EST 2025 Tue Nov 18 21:15:46 EST 2025 Wed Jan 22 16:35:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Attribution 2020 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3886-be9280d126f6eac35cadc6fb838f4c098a43e12eed1944fcea5f467a551a34673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0414-1225 0000-0002-3959-4067 0000-0003-2358-4320 0000-0002-5485-0479 0000-0003-1908-5588 0000-0002-6652-3512 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.25746 |
| PMID | 32285956 |
| PQID | 2415801013 |
| PQPubID | 946345 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2389688897 proquest_journals_2415801013 pubmed_primary_32285956 crossref_citationtrail_10_1002_ana_25746 crossref_primary_10_1002_ana_25746 wiley_primary_10_1002_ana_25746_ANA25746 |
| PublicationCentury | 2000 |
| PublicationDate | July 2020 2020-07-00 20200701 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Minneapolis |
| PublicationTitle | Annals of neurology |
| PublicationTitleAlternate | Ann Neurol |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2017; 40 2017; 81 2019; 10 2017; 88 2015; 77 2011; 77 2018; 83 2017; 133 2018; 23 2013; 8 2014; 83 2012; 33 1983; 33 2018; 24 2013; 19 2007; 255 2013; 11 2019; 22 2020; 92 2017; 13 2017; 56 2019; 25 2010; 133 2019 2019; 116 2019; 29 2018; 96 2009; 5 2011; 69 2016; 29 2012; 25 2006; 129 2018; 10 2017; 163C 2017; 148 2010; 50 2016; 22 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 Cole JH (e_1_2_7_40_1) 2020; 92 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 19 start-page: 188 year: 2013 end-page: 198 article-title: Onset of progressive phase is an age‐dependent clinical milestone in multiple sclerosis publication-title: Mult Scler – volume: 163C start-page: 115 year: 2017 end-page: 124 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: Neuroimage – volume: 11 start-page: 319 year: 2013 end-page: 337 article-title: PRoNTo: pattern recognition for neuroimaging toolbox publication-title: Neuroinformatics – volume: 33 start-page: 2062 year: 2012 end-page: 2071 article-title: Evaluating and reducing the impact of white matter lesions on brain volume measurements publication-title: Hum Brain Mapp – volume: 8 year: 2013 article-title: BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer's disease publication-title: PLoS One – volume: 29 start-page: 237 year: 2016 end-page: 242 article-title: Whole‐brain atrophy: ready for implementation into clinical decision‐making in multiple sclerosis? publication-title: Curr Opin Neurol – volume: 83 start-page: 278 year: 2014 end-page: 286 article-title: Defining the clinical course of multiple sclerosis: the 2013 revisions publication-title: Neurology – volume: 10 year: 2019 article-title: Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained? publication-title: Front Neurol – volume: 255 start-page: 35 year: 2007 end-page: 41 article-title: Progression in multiple sclerosis: further evidence of an age dependent process publication-title: J Neurol Sci – volume: 33 start-page: 1444 year: 1983 end-page: 1452 article-title: Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS) publication-title: Neurology – volume: 116 start-page: 21213 year: 2019 end-page: 21218 article-title: Gray matter age prediction as a biomarker for risk of dementia publication-title: Proc Natl Acad Sci – volume: 22 start-page: 1617 year: 2019 end-page: 1623 article-title: Common brain disorders are associated with heritable patterns of apparent aging of the brain publication-title: Nat Neurosci – volume: 25 start-page: 541 year: 2019 end-page: 553 article-title: Pathological cut‐offs of global and regional brain volume loss in multiple sclerosis publication-title: Mult Scler – volume: 29 start-page: 527 year: 2019 end-page: 535 article-title: Aging and brain atrophy in multiple sclerosis publication-title: J Neuroimaging – volume: 69 start-page: 292 year: 2011 end-page: 302 article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria publication-title: Ann Neurol – volume: 25 start-page: 235 year: 2012 end-page: 245 article-title: Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer's disease publication-title: GeroPsych – volume: 81 start-page: 479 year: 2017 end-page: 484 article-title: The burden of neurological disease in the United States: a summary report and call to action publication-title: Ann Neurol – volume: 83 start-page: 210 year: 2018 end-page: 222 article-title: Deep gray matter volume loss drives disability worsening in multiple sclerosis publication-title: Ann Neurol – volume: 50 start-page: 883 year: 2010 end-page: 892 article-title: Estimating the age of healthy subjects from T1‐weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: Neuroimage – volume: 77 start-page: 571 year: 2015 end-page: 581 article-title: For the Alzheimer's disease neuroimaging initiative. Prediction of brain age suggests accelerated atrophy after traumatic brain injury publication-title: Ann Neurol – volume: 56 start-page: 41 year: 2017 end-page: 49 article-title: Brain‐predicted age in down syndrome is associated with β‐amyloid deposition and cognitive decline publication-title: Neurobiol Aging – volume: 129 start-page: 584 year: 2006 end-page: 594 article-title: The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease publication-title: Brain – volume: 77 start-page: 1246 year: 2011 end-page: 1252 article-title: Age and disability accumulation in multiple sclerosis publication-title: Neurology – volume: 24 start-page: 96 year: 2018 end-page: 120 article-title: ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis publication-title: Mult Scler – volume: 23 start-page: 1385 year: 2018 end-page: 1392 article-title: Brain age predicts mortality publication-title: Mol Psychiatry – volume: 10 year: 2018 article-title: A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE publication-title: Front Aging Neurosci – volume: 13 start-page: 9 year: 2017 end-page: 15 article-title: Analysis of ageing‐associated grey matter volume in patients with multiple sclerosis shows excess atrophy in subcortical regions publication-title: Neuroimage Clin – volume: 92 year: 2020 article-title: Multi‐modality neuroimaging brain‐age in UK Biobank: relationship to biomedical, lifestyle and cognitive factors publication-title: Neuro Biol – volume: 40 start-page: 681 year: 2017 end-page: 690 article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers publication-title: Trends Neurosci – volume: 133 start-page: 28 year: 2017 end-page: 32 article-title: Structural brain changes in medically refractory focal epilepsy resemble premature brain aging publication-title: Epilepsy Res – volume: 148 start-page: 179 year: 2017 end-page: 188 article-title: Predicting brain‐age from multimodal imaging data captures cognitive impairment publication-title: Neuroimage – volume: 5 start-page: 672 year: 2009 end-page: 682 article-title: Clinical prognostic factors in multiple sclerosis: a natural history review publication-title: Nat Rev Neurol – start-page: 293 year: 2019 end-page: 328 – volume: 129 start-page: 606 year: 2006 end-page: 616 article-title: Natural history of multiple sclerosis: a unifying concept publication-title: Brain – volume: 88 start-page: 1349 year: 2017 end-page: 1357 article-title: Increased brain‐predicted aging in treated HIV disease publication-title: Neurology – volume: 10 year: 2019 article-title: Cross‐sectional and longitudinal MRI brain scans reveal accelerated brain aging in multiple sclerosis publication-title: Front Neurol – volume: 83 start-page: 223 year: 2018 end-page: 234 article-title: Thalamic atrophy in multiple sclerosis: a magnetic resonance imaging marker of neurodegeneration throughout disease publication-title: Ann Neurol – volume: 22 start-page: 1750 year: 2016 end-page: 1758 article-title: The relationship of age with the clinical phenotype in multiple sclerosis publication-title: Mult Scler – volume: 96 start-page: 1153 year: 2018 end-page: 1166 article-title: Targeting senescence to delay progression of multiple sclerosis publication-title: J Mol Med (Berl) – volume: 133 start-page: 1900 year: 2010 end-page: 1913 article-title: Evidence for a two‐stage disability progression in multiple sclerosis publication-title: Brain – ident: e_1_2_7_15_1 doi: 10.1016/j.tins.2017.10.001 – ident: e_1_2_7_10_1 doi: 10.1111/jon.12625 – ident: e_1_2_7_13_1 doi: 10.1016/j.nicl.2016.11.005 – ident: e_1_2_7_23_1 doi: 10.1016/j.neurobiolaging.2017.04.006 – ident: e_1_2_7_38_1 doi: 10.1177/1352458517742739 – ident: e_1_2_7_35_1 doi: 10.1016/j.neuroimage.2010.01.005 – ident: e_1_2_7_19_1 doi: 10.1038/s41593-019-0471-7 – ident: e_1_2_7_31_1 doi: 10.1007/s12021-013-9178-1 – ident: e_1_2_7_41_1 doi: 10.1016/j.neuroimage.2016.11.005 – ident: e_1_2_7_18_1 doi: 10.3389/fneur.2019.00450 – ident: e_1_2_7_37_1 doi: 10.1002/ana.24897 – ident: e_1_2_7_25_1 doi: 10.1371/journal.pone.0067346 – ident: e_1_2_7_2_1 doi: 10.1093/brain/awq076 – ident: e_1_2_7_21_1 doi: 10.1016/j.eplepsyres.2017.03.007 – ident: e_1_2_7_14_1 doi: 10.1097/WCO.0000000000000322 – ident: e_1_2_7_9_1 doi: 10.1007/s00109-018-1686-x – ident: e_1_2_7_30_1 doi: 10.1016/j.neuroimage.2017.07.059 – ident: e_1_2_7_4_1 doi: 10.1016/j.jns.2007.01.067 – ident: e_1_2_7_29_1 doi: 10.1212/WNL.33.11.1444 – ident: e_1_2_7_12_1 doi: 10.1002/ana.25150 – ident: e_1_2_7_33_1 doi: 10.1002/hbm.21344 – ident: e_1_2_7_7_1 doi: 10.1177/1352458512451510 – volume: 92 year: 2020 ident: e_1_2_7_40_1 article-title: Multi‐modality neuroimaging brain‐age in UK Biobank: relationship to biomedical, lifestyle and cognitive factors publication-title: Neuro Biol – ident: e_1_2_7_36_1 doi: 10.1038/nrneurol.2009.178 – ident: e_1_2_7_22_1 doi: 10.1212/WNL.0000000000003790 – ident: e_1_2_7_27_1 doi: 10.1002/ana.22366 – ident: e_1_2_7_26_1 doi: 10.1038/mp.2017.62 – ident: e_1_2_7_28_1 doi: 10.1212/WNL.0000000000000560 – ident: e_1_2_7_34_1 doi: 10.1024/1662-9647/a000074 – ident: e_1_2_7_5_1 doi: 10.1093/brain/awh721 – ident: e_1_2_7_3_1 doi: 10.1177/1352458516630396 – ident: e_1_2_7_6_1 doi: 10.1093/brain/awl007 – ident: e_1_2_7_11_1 doi: 10.1002/ana.25145 – ident: e_1_2_7_24_1 doi: 10.1073/pnas.1902376116 – ident: e_1_2_7_32_1 doi: 10.3389/fnagi.2018.00317 – ident: e_1_2_7_17_1 doi: 10.1007/978-3-030-24970-0_19 – ident: e_1_2_7_8_1 doi: 10.1212/WNL.0b013e318230a17d – ident: e_1_2_7_20_1 doi: 10.1002/ana.24367 – ident: e_1_2_7_16_1 doi: 10.3389/fneur.2019.00789 – ident: e_1_2_7_39_1 doi: 10.1177/1352458517751049 |
| SSID | ssj0009610 |
| Score | 2.621191 |
| Snippet | Objective
During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled... During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the... ObjectiveDuring the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 93 |
| SubjectTerms | Adolescent Adult Age Aged Aging Aging (natural) Aging - pathology Atrophy Atrophy - diagnostic imaging Atrophy - pathology Biomarkers Brain Brain - diagnostic imaging Brain - pathology Confidence intervals Demyelinating Diseases - diagnostic imaging Demyelinating Diseases - pathology Disability Evaluation Disease control Disease Progression Female Humans Longitudinal Studies Magnetic resonance imaging Male Middle Aged Multiple sclerosis Multiple Sclerosis - diagnostic imaging Multiple Sclerosis - pathology Neuroimaging Young Adult |
| Title | Longitudinal Assessment of Multiple Sclerosis with the Brain‐Age Paradigm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.25746 https://www.ncbi.nlm.nih.gov/pubmed/32285956 https://www.proquest.com/docview/2415801013 https://www.proquest.com/docview/2389688897 |
| Volume | 88 |
| WOSCitedRecordID | wos000530530100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1531-8249 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009610 issn: 0364-5134 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC5iIpJLTHzE1SR0xEMuY2amn4On1WQR3CyLGtjb0NOPsGBmw27Wc36Cv9FfYnXP7ISgASGXoWGqH3RXVX_9-grgHUWH57gWiTO2SpiXItG-4onMrC0kl5QX8aHwUI5GajIpxmvwYfUWpuGH6DbcgmVEfx0MXFeL41vSUF3r96hvTDyCjSyjMqh0zsa3jLsiUhGEc7aEZ5StaIXS_LjLency-gth3gWsccYZPH1QW7dhqwWapN9oxg6sufoZPDlrj9Kfw5fhLIQqWtppFOsIOsnMk7P2liH5hlmx5dMFCfu1BMEi-RhiSvy--dW_cGSs59pOLy5fwPng9Punz0kbWSExVCmRVK7IVWqzXHiBnpdyo60RvlJUeWbSQmlGXZbj_JkVjHnjNPfoUTXCK00xQV_Cej2r3Ssg6Ex1ZQ2u8njKrKiUN14zmRpaVJxJ34OjVReXpqUdD9EvfpQNYXJeYueUsXN68LYTvWq4Nv4ltLcap7I1t0UZYIgKbHm0B4fdbzSUcPqhazdbogxCM4Hr_UL2YLcZ364W9GqB5w0LP4rDeH_1ZX_Uj4nX_y_6BjbzsEqPl3z3YP16vnT78Nj8vJ4u5gdRa_ErJ-oANk6-Ds6HfwCa1_FG |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RpWq50BeUpbS4VQ9cAkn8iCP1sn2sQGRXqAWJW-T4gVZqs2iX5cxP4Df2l3TsZINQW6lSb5Yyji17ZvzZY38D8J6iw7NcichqU0XMZSJSruJRlhiTZzyjPA8PhYtsPJbn5_nJCnxYvoVp-CG6AzdvGcFfewP3B9IHd6yhqlb7qHBMPIBVhmrEe7D6-evwrLgj3RWBjcCH2iKeULZkForTg67y_fXoN5B5H7OGRWf45P-6-xTWW7BJBo12PIMVWz-HR6M2nP4CjoupT1e0MJMg1pF0kqkjo_amIfmGVbHrkznxZ7YEASP56PNK_Ly5HVxYcqJmykwufmzA2fDL6afDqM2uEGkqpYgqm6cyNkkqnEDvS7lWRgtXSSod03EuFaM2SXENTXLGnLaKO_SqCiGWoligm9Crp7XdAoIOVVVG406Px8yISjrtFMtiTfOKs8z1YW85xqVuqcd9BozvZUOanJY4OGUYnD6860QvG76NPwntLCeqbE1uXnooIj1jHu3D2-4zGouPgKjaThcog_BM4J4_z_rwspngrhX0bJ7rDX--F-bx782Xg_EgFLb_XXQXHh-ejoqyOBofv4K11O_aw6XfHehdzRb2NTzU11eT-exNq8S_ABuu9Ds |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6k2Sh7WXdvtm7Txh764sa2LpahL-m2sNE0BNZC34ysSwisTkmaPe8n7Dful-xIdhxKWxj0TeAjS0g6nz7dvgPwiSLgWa5EZLUpI-YyESlX8ihLjMkznlGeh4fCo2w8lufn-aQDh-u3MLU-RLvh5j0j4LV3cHtpXH-jGqoqdYADjokteMA4YqzXdWaTjeSuCFoE_qAt4glla12hOO23Wa_PRjco5nXGGqac4c79KvsEHjdUkwzqsfEUOrZ6BtsnzWH6czgezX2wopWZBbNWopPMHTlp7hmSH5gVqz5bEr9jS5AukiMfVeLv7z-DqSUTtVBmNr14AWfDr6efv0VNbIVIUylFVNo8lbFJUuEEYi_lWhktXCmpdEzHuVSM2iTFGTTJGXPaKu4QUxUSLEUxQV9Ct5pXdhcIwqkqjcZ1Ho-ZEaV02imWxZrmJWeZ68H-uo0L3QiP-_gXP4taMjktsHGK0Dg9-NiaXtZqG7cZ7a07qmgcbll4IiK9Xh7twYf2M7qKP_9QlZ2v0AbJmcAVf5714FXdwW0piGte6Q1_vh_68e7ii8F4EBKv_9_0PWxPvgyL0ffx8Rt4lPole7jxuwfdq8XKvoWH-tfVbLl4F0bwP18z8iQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+Assessment+of+Multiple+Sclerosis+with+the+Brain%E2%80%90Age+Paradigm&rft.jtitle=Annals+of+neurology&rft.au=Cole+PhD%2C+James+H.&rft.au=Raffel+MD%2C+Joel&rft.au=Friede+PhD%2C+Tim&rft.au=Eshaghi+MD%2C+PhD%2C+Arman&rft.date=2020-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=88&rft.issue=1&rft.spage=93&rft.epage=105&rft_id=info:doi/10.1002%2Fana.25746&rft.externalDBID=10.1002%252Fana.25746&rft.externalDocID=ANA25746 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |