Longitudinal Assessment of Multiple Sclerosis with the Brain‐Age Paradigm

Objective During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so‐called “brain‐age” paradigm. Here, we evaluated whether brain‐predicted age difference (brain‐PAD) was sensitive to the presence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of neurology Jg. 88; H. 1; S. 93 - 105
Hauptverfasser: Cole PhD, James H., Raffel MD, Joel, Friede PhD, Tim, Eshaghi MD, PhD, Arman, Brownlee PhD, FRACP, Wallace J., Chard MD, PhD, Declan, De Stefano MD, PhD, Nicola, Enzinger MD, Christian, Pirpamer MSc, Lukas, Filippi MD, FEAN, Massimo, Gasperini MD, Claudio, Rocca MD, Maria Assunta, Rovira MD, Alex, Ruggieri MD, Serena, Sastre‐Garriga MD, PhD, Jaume, Stromillo MD, PhD, Maria Laura, Uitdehaag MD, PhD, Bernard M. J., Vrenken PhD, Hugo, Barkhof MD PhD, Frederik, Nicholas MD, PhD, Richard, Ciccarelli PhD, FRCP, Olga
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.07.2020
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0364-5134, 1531-8249, 1531-8249
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Objective During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so‐called “brain‐age” paradigm. Here, we evaluated whether brain‐predicted age difference (brain‐PAD) was sensitive to the presence of MS, clinical progression, and future outcomes. Methods In a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow‐up time: patients 3.41 years, healthy controls 1.97 years), we measured “brain‐predicted age” using T1‐weighted MRI. We compared brain‐PAD among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships between brain‐PAD and Expanded Disability Status Scale (EDSS) were explored. Results Patients with MS had markedly higher brain‐PAD than healthy controls (mean brain‐PAD +10.3 years; 95% confidence interval [CI] = 8.5–12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain‐PADs were in secondary‐progressive MS (+13.3 years; 95% CI = 11.3–15.3). Brain‐PAD at study entry predicted time‐to‐disability progression (hazard ratio 1.02; 95% CI = 1.01–1.03; p < 0.001); although normalized brain volume was a stronger predictor. Greater annualized brain‐PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001). Interpretation The brain‐age paradigm is sensitive to MS‐related atrophy and clinical progression. A higher brain‐PAD at baseline was associated with more rapid disability progression and the rate of change in brain‐PAD related to worsening disability. Potentially, “brain‐age” could be used as a prognostic biomarker in early‐stage MS, to track disease progression or stratify patients for clinical trial enrollment. ANN NEUROL 2020 ANN NEUROL 2020;88:93–105
AbstractList During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so-called "brain-age" paradigm. Here, we evaluated whether brain-predicted age difference (brain-PAD) was sensitive to the presence of MS, clinical progression, and future outcomes. In a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow-up time: patients 3.41 years, healthy controls 1.97 years), we measured "brain-predicted age" using T1-weighted MRI. We compared brain-PAD among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships between brain-PAD and Expanded Disability Status Scale (EDSS) were explored. Patients with MS had markedly higher brain-PAD than healthy controls (mean brain-PAD +10.3 years; 95% confidence interval [CI] = 8.5-12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain-PADs were in secondary-progressive MS (+13.3 years; 95% CI = 11.3-15.3). Brain-PAD at study entry predicted time-to-disability progression (hazard ratio 1.02; 95% CI = 1.01-1.03; p < 0.001); although normalized brain volume was a stronger predictor. Greater annualized brain-PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001). The brain-age paradigm is sensitive to MS-related atrophy and clinical progression. A higher brain-PAD at baseline was associated with more rapid disability progression and the rate of change in brain-PAD related to worsening disability. Potentially, "brain-age" could be used as a prognostic biomarker in early-stage MS, to track disease progression or stratify patients for clinical trial enrollment. ANN NEUROL 2020 ANN NEUROL 2020;88:93-105.
During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so-called "brain-age" paradigm. Here, we evaluated whether brain-predicted age difference (brain-PAD) was sensitive to the presence of MS, clinical progression, and future outcomes.OBJECTIVEDuring the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so-called "brain-age" paradigm. Here, we evaluated whether brain-predicted age difference (brain-PAD) was sensitive to the presence of MS, clinical progression, and future outcomes.In a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow-up time: patients 3.41 years, healthy controls 1.97 years), we measured "brain-predicted age" using T1-weighted MRI. We compared brain-PAD among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships between brain-PAD and Expanded Disability Status Scale (EDSS) were explored.METHODSIn a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow-up time: patients 3.41 years, healthy controls 1.97 years), we measured "brain-predicted age" using T1-weighted MRI. We compared brain-PAD among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships between brain-PAD and Expanded Disability Status Scale (EDSS) were explored.Patients with MS had markedly higher brain-PAD than healthy controls (mean brain-PAD +10.3 years; 95% confidence interval [CI] = 8.5-12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain-PADs were in secondary-progressive MS (+13.3 years; 95% CI = 11.3-15.3). Brain-PAD at study entry predicted time-to-disability progression (hazard ratio 1.02; 95% CI = 1.01-1.03; p < 0.001); although normalized brain volume was a stronger predictor. Greater annualized brain-PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001).RESULTSPatients with MS had markedly higher brain-PAD than healthy controls (mean brain-PAD +10.3 years; 95% confidence interval [CI] = 8.5-12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain-PADs were in secondary-progressive MS (+13.3 years; 95% CI = 11.3-15.3). Brain-PAD at study entry predicted time-to-disability progression (hazard ratio 1.02; 95% CI = 1.01-1.03; p < 0.001); although normalized brain volume was a stronger predictor. Greater annualized brain-PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001).The brain-age paradigm is sensitive to MS-related atrophy and clinical progression. A higher brain-PAD at baseline was associated with more rapid disability progression and the rate of change in brain-PAD related to worsening disability. Potentially, "brain-age" could be used as a prognostic biomarker in early-stage MS, to track disease progression or stratify patients for clinical trial enrollment. ANN NEUROL 2020 ANN NEUROL 2020;88:93-105.INTERPRETATIONThe brain-age paradigm is sensitive to MS-related atrophy and clinical progression. A higher brain-PAD at baseline was associated with more rapid disability progression and the rate of change in brain-PAD related to worsening disability. Potentially, "brain-age" could be used as a prognostic biomarker in early-stage MS, to track disease progression or stratify patients for clinical trial enrollment. ANN NEUROL 2020 ANN NEUROL 2020;88:93-105.
Objective During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so‐called “brain‐age” paradigm. Here, we evaluated whether brain‐predicted age difference (brain‐PAD) was sensitive to the presence of MS, clinical progression, and future outcomes. Methods In a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow‐up time: patients 3.41 years, healthy controls 1.97 years), we measured “brain‐predicted age” using T1‐weighted MRI. We compared brain‐PAD among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships between brain‐PAD and Expanded Disability Status Scale (EDSS) were explored. Results Patients with MS had markedly higher brain‐PAD than healthy controls (mean brain‐PAD +10.3 years; 95% confidence interval [CI] = 8.5–12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain‐PADs were in secondary‐progressive MS (+13.3 years; 95% CI = 11.3–15.3). Brain‐PAD at study entry predicted time‐to‐disability progression (hazard ratio 1.02; 95% CI = 1.01–1.03; p < 0.001); although normalized brain volume was a stronger predictor. Greater annualized brain‐PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001). Interpretation The brain‐age paradigm is sensitive to MS‐related atrophy and clinical progression. A higher brain‐PAD at baseline was associated with more rapid disability progression and the rate of change in brain‐PAD related to worsening disability. Potentially, “brain‐age” could be used as a prognostic biomarker in early‐stage MS, to track disease progression or stratify patients for clinical trial enrollment. ANN NEUROL 2020 ANN NEUROL 2020;88:93–105
ObjectiveDuring the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the so‐called “brain‐age” paradigm. Here, we evaluated whether brain‐predicted age difference (brain‐PAD) was sensitive to the presence of MS, clinical progression, and future outcomes.MethodsIn a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow‐up time: patients 3.41 years, healthy controls 1.97 years), we measured “brain‐predicted age” using T1‐weighted MRI. We compared brain‐PAD among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships between brain‐PAD and Expanded Disability Status Scale (EDSS) were explored.ResultsPatients with MS had markedly higher brain‐PAD than healthy controls (mean brain‐PAD +10.3 years; 95% confidence interval [CI] = 8.5–12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain‐PADs were in secondary‐progressive MS (+13.3 years; 95% CI = 11.3–15.3). Brain‐PAD at study entry predicted time‐to‐disability progression (hazard ratio 1.02; 95% CI = 1.01–1.03; p < 0.001); although normalized brain volume was a stronger predictor. Greater annualized brain‐PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001).InterpretationThe brain‐age paradigm is sensitive to MS‐related atrophy and clinical progression. A higher brain‐PAD at baseline was associated with more rapid disability progression and the rate of change in brain‐PAD related to worsening disability. Potentially, “brain‐age” could be used as a prognostic biomarker in early‐stage MS, to track disease progression or stratify patients for clinical trial enrollment. ANN NEUROL 2020 ANN NEUROL 2020;88:93–105
Author Gasperini MD, Claudio
Nicholas MD, PhD, Richard
Uitdehaag MD, PhD, Bernard M. J.
Filippi MD, FEAN, Massimo
Stromillo MD, PhD, Maria Laura
Vrenken PhD, Hugo
Enzinger MD, Christian
Cole PhD, James H.
Rovira MD, Alex
Raffel MD, Joel
Friede PhD, Tim
De Stefano MD, PhD, Nicola
Ruggieri MD, Serena
Brownlee PhD, FRACP, Wallace J.
Rocca MD, Maria Assunta
Sastre‐Garriga MD, PhD, Jaume
Chard MD, PhD, Declan
Ciccarelli PhD, FRCP, Olga
Eshaghi MD, PhD, Arman
Pirpamer MSc, Lukas
Barkhof MD PhD, Frederik
Author_xml – sequence: 1
  givenname: James H.
  orcidid: 0000-0003-1908-5588
  surname: Cole PhD
  fullname: Cole PhD, James H.
  organization: Imperial College London
– sequence: 2
  givenname: Joel
  surname: Raffel MD
  fullname: Raffel MD, Joel
  organization: Imperial College London
– sequence: 3
  givenname: Tim
  surname: Friede PhD
  fullname: Friede PhD, Tim
  organization: University Medical Center Göttingen
– sequence: 4
  givenname: Arman
  orcidid: 0000-0002-6652-3512
  surname: Eshaghi MD, PhD
  fullname: Eshaghi MD, PhD, Arman
  organization: UCL Institute of Neurology
– sequence: 5
  givenname: Wallace J.
  surname: Brownlee PhD, FRACP
  fullname: Brownlee PhD, FRACP, Wallace J.
  organization: UCL Institute of Neurology
– sequence: 6
  givenname: Declan
  surname: Chard MD, PhD
  fullname: Chard MD, PhD, Declan
  organization: Amsterdam University Medical Centers
– sequence: 7
  givenname: Nicola
  surname: De Stefano MD, PhD
  fullname: De Stefano MD, PhD, Nicola
  organization: University of Siena
– sequence: 8
  givenname: Christian
  surname: Enzinger MD
  fullname: Enzinger MD, Christian
  organization: Medical University of Graz
– sequence: 9
  givenname: Lukas
  surname: Pirpamer MSc
  fullname: Pirpamer MSc, Lukas
  organization: Medical University of Graz
– sequence: 10
  givenname: Massimo
  orcidid: 0000-0002-5485-0479
  surname: Filippi MD, FEAN
  fullname: Filippi MD, FEAN, Massimo
  organization: Vita‐Salute San Raffaele University
– sequence: 11
  givenname: Claudio
  orcidid: 0000-0002-3959-4067
  surname: Gasperini MD
  fullname: Gasperini MD, Claudio
  organization: San Camillo‐Forlanini Hospital
– sequence: 12
  givenname: Maria Assunta
  orcidid: 0000-0003-2358-4320
  surname: Rocca MD
  fullname: Rocca MD, Maria Assunta
  organization: Vita‐Salute San Raffaele University
– sequence: 13
  givenname: Alex
  surname: Rovira MD
  fullname: Rovira MD, Alex
  organization: Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona
– sequence: 14
  givenname: Serena
  surname: Ruggieri MD
  fullname: Ruggieri MD, Serena
  organization: San Camillo‐Forlanini Hospital
– sequence: 15
  givenname: Jaume
  surname: Sastre‐Garriga MD, PhD
  fullname: Sastre‐Garriga MD, PhD, Jaume
  organization: Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona
– sequence: 16
  givenname: Maria Laura
  surname: Stromillo MD, PhD
  fullname: Stromillo MD, PhD, Maria Laura
  organization: University of Siena
– sequence: 17
  givenname: Bernard M. J.
  surname: Uitdehaag MD, PhD
  fullname: Uitdehaag MD, PhD, Bernard M. J.
  organization: VU University Medical Center
– sequence: 18
  givenname: Hugo
  surname: Vrenken PhD
  fullname: Vrenken PhD, Hugo
  organization: Amsterdam University Medical Centers
– sequence: 19
  givenname: Frederik
  surname: Barkhof MD PhD
  fullname: Barkhof MD PhD, Frederik
  organization: University College London Hospitals (UCLH) Biomedical Research Centre (BRC)
– sequence: 20
  givenname: Richard
  orcidid: 0000-0003-0414-1225
  surname: Nicholas MD, PhD
  fullname: Nicholas MD, PhD, Richard
  email: r.nicholas@imperial.ac.uk
  organization: UCL Institute of Ophthalmology
– sequence: 21
  givenname: Olga
  surname: Ciccarelli PhD, FRCP
  fullname: Ciccarelli PhD, FRCP, Olga
  organization: UCL Institute of Neurology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32285956$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAUhS0EggG66AtUkbqBRcD_OMsU8SeGFgm6tjzOzWDkONPYEWLHI_CMPAmGGTaorO5ZfOdI95xttB76AAh9J_iAYEwPTTAHVBxxuYYmRDBSKsqrdTTBTPJSEMa30HaM9xjjShK8ibYYpUpUQk7Q5bQPc5fGxgXjizpGiLGDkIq-La5Gn9zCQ3FjPQx9dLF4cOmuSHdQ_BqMCy9Pz_UcimszmMbNu1200Rof4dvq7qC_pye3x-fl9M_ZxXE9LS1TSpYzqKjCDaGylWAsE9Y0VrYzxVTLLa6U4QwIBWhIxXlrwYiWyyMjBDEsC7aD9pa5i6H_N0JMunPRgvcmQD9GTZmqpFKqekN_fkLv-3HIr2aKE6EwwYRl6seKGmcdNHoxuM4Mj_qjpgwcLgGba4gDtNq6ZJLrQ8o9eE2wfhtC5yH0-xDZsf_J8RH6P3aV_uA8PH4N6vp3vXS8AoGilt0
CitedBy_id crossref_primary_10_1093_braincomms_fcaf152
crossref_primary_10_1177_13524585241256881
crossref_primary_10_3390_biomedicines12092139
crossref_primary_10_1002_hbm_26242
crossref_primary_10_1016_j_compbiomed_2024_109155
crossref_primary_10_1038_s41586_024_08334_8
crossref_primary_10_1177_17562864241229325
crossref_primary_10_1016_j_bpsc_2024_04_008
crossref_primary_10_1016_j_ebiom_2021_103600
crossref_primary_10_3348_kjr_2023_0360
crossref_primary_10_7554_eLife_87297_4
crossref_primary_10_1080_14737175_2021_1886082
crossref_primary_10_1212_WNL_0000000000012289
crossref_primary_10_1002_acn3_51782
crossref_primary_10_3389_fpsyt_2020_604478
crossref_primary_10_1038_s41582_025_01115_5
crossref_primary_10_1016_j_jcmg_2023_01_016
crossref_primary_10_1177_13524585211018116
crossref_primary_10_3389_fnagi_2022_1063721
crossref_primary_10_1007_s11910_024_01354_x
crossref_primary_10_1016_j_neuroimage_2023_120469
crossref_primary_10_3389_fneur_2021_679881
crossref_primary_10_1002_hbm_26558
crossref_primary_10_1162_imag_a_00487
crossref_primary_10_3390_jpm12111850
crossref_primary_10_3389_fneur_2023_1207626
crossref_primary_10_1177_13524585251345317
crossref_primary_10_1093_brain_awae251
crossref_primary_10_1002_ana_26913
crossref_primary_10_1093_bib_bbaa310
crossref_primary_10_1186_s12883_021_02331_4
crossref_primary_10_1177_11795735241266556
crossref_primary_10_1186_s40708_024_00244_9
crossref_primary_10_1136_jnnp_2022_329680
crossref_primary_10_3389_fneur_2021_801097
crossref_primary_10_1016_S1474_4422_22_00184_3
crossref_primary_10_1038_s41598_024_54663_z
crossref_primary_10_3390_bioengineering11030265
crossref_primary_10_1093_schbul_sbaf022
crossref_primary_10_1016_j_jagp_2023_09_014
crossref_primary_10_1212_WNL_0000000000209976
crossref_primary_10_1002_hbm_25133
crossref_primary_10_1016_j_msard_2025_106339
crossref_primary_10_3389_fnins_2021_714252
crossref_primary_10_1016_j_compbiomed_2024_108320
crossref_primary_10_1177_20552173221144230
crossref_primary_10_1016_j_neuroimage_2022_119503
crossref_primary_10_1016_j_neuroimage_2023_119947
crossref_primary_10_1007_s00330_023_09604_1
crossref_primary_10_1111_ene_15473
crossref_primary_10_1109_MSP_2021_3126573
crossref_primary_10_1080_14737175_2024_2398484
crossref_primary_10_1002_dad2_12493
crossref_primary_10_3389_fnagi_2021_761954
crossref_primary_10_3390_ijms231911291
crossref_primary_10_1016_j_ynirp_2022_100146
crossref_primary_10_1186_s12880_025_01897_6
crossref_primary_10_1002_mds_30109
crossref_primary_10_1016_j_jns_2024_123090
crossref_primary_10_3389_fneur_2024_1423485
crossref_primary_10_3389_fnhum_2023_1151531
crossref_primary_10_1212_WNL_0000000000210305
crossref_primary_10_1038_s42003_023_05119_z
crossref_primary_10_1249_MSS_0000000000003337
crossref_primary_10_1177_13524585241231155
crossref_primary_10_1016_j_autrev_2023_103388
crossref_primary_10_1038_s41598_020_76518_z
crossref_primary_10_2967_jnumed_125_270325
crossref_primary_10_1002_hbm_25368
crossref_primary_10_1038_s41582_024_01042_x
crossref_primary_10_1016_j_ynirp_2025_100252
crossref_primary_10_1212_WNL_0000000000207219
crossref_primary_10_1002_jmri_29667
crossref_primary_10_1016_j_stem_2024_09_014
crossref_primary_10_2147_JPR_S384229
crossref_primary_10_1038_s41467_024_52444_w
crossref_primary_10_1093_bfgp_elae042
crossref_primary_10_1016_j_neulet_2021_136398
crossref_primary_10_1016_j_gerinurse_2023_01_019
crossref_primary_10_1186_s13195_024_01491_y
crossref_primary_10_1016_j_neurobiolaging_2020_03_014
crossref_primary_10_1038_s41380_022_01728_y
crossref_primary_10_1097_WCO_0000000000001360
crossref_primary_10_7554_eLife_87297
crossref_primary_10_1038_s41398_022_02162_y
crossref_primary_10_3390_jcm10030418
crossref_primary_10_1016_j_nicl_2022_103175
crossref_primary_10_1007_s00259_024_06784_w
crossref_primary_10_1073_pnas_2311865121
crossref_primary_10_1212_NXI_0000000000200459
crossref_primary_10_1002_ana_27034
crossref_primary_10_1002_hbm_70243
crossref_primary_10_3390_brainsci14040401
crossref_primary_10_1002_hbm_25837
crossref_primary_10_3389_fnagi_2021_694982
Cites_doi 10.1016/j.tins.2017.10.001
10.1111/jon.12625
10.1016/j.nicl.2016.11.005
10.1016/j.neurobiolaging.2017.04.006
10.1177/1352458517742739
10.1016/j.neuroimage.2010.01.005
10.1038/s41593-019-0471-7
10.1007/s12021-013-9178-1
10.1016/j.neuroimage.2016.11.005
10.3389/fneur.2019.00450
10.1002/ana.24897
10.1371/journal.pone.0067346
10.1093/brain/awq076
10.1016/j.eplepsyres.2017.03.007
10.1097/WCO.0000000000000322
10.1007/s00109-018-1686-x
10.1016/j.neuroimage.2017.07.059
10.1016/j.jns.2007.01.067
10.1212/WNL.33.11.1444
10.1002/ana.25150
10.1002/hbm.21344
10.1177/1352458512451510
10.1038/nrneurol.2009.178
10.1212/WNL.0000000000003790
10.1002/ana.22366
10.1038/mp.2017.62
10.1212/WNL.0000000000000560
10.1024/1662-9647/a000074
10.1093/brain/awh721
10.1177/1352458516630396
10.1093/brain/awl007
10.1002/ana.25145
10.1073/pnas.1902376116
10.3389/fnagi.2018.00317
10.1007/978-3-030-24970-0_19
10.1212/WNL.0b013e318230a17d
10.1002/ana.24367
10.3389/fneur.2019.00789
10.1177/1352458517751049
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of American Neurological Association.
2020 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of American Neurological Association.
– notice: 2020 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor MAGNIMS study group
CorporateAuthor_xml – name: MAGNIMS study group
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
DOI 10.1002/ana.25746
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 105
ExternalDocumentID 32285956
10_1002_ana_25746
ANA25746
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: UCLH Biomedical Research Centre
– fundername: Multiple Sclerosis International Federation
– fundername: Imperial College London
– fundername: University College London
– fundername: UK Research and Innovation
  funderid: MR/R024790/1
– fundername: University College London Hospitals Biomedical Research Centre
– fundername: NIHR Imperial Biomedical Research Centre
– fundername: Multiple Sclerosis Society
– fundername: Biomedical Research Centre
– fundername: National Institute for Health Research
– fundername: Medical Research Council
  grantid: MR/R024790/2
– fundername: Medical Research Council
  grantid: MR/R024790/1
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
24P
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACRZS
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
ID FETCH-LOGICAL-c3886-be9280d126f6eac35cadc6fb838f4c098a43e12eed1944fcea5f467a551a34673
IEDL.DBID 24P
ISICitedReferencesCount 100
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530530100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0364-5134
1531-8249
IngestDate Thu Sep 04 16:52:37 EDT 2025
Thu Dec 04 03:35:15 EST 2025
Mon Jul 21 06:06:23 EDT 2025
Sat Nov 29 03:41:30 EST 2025
Tue Nov 18 21:15:46 EST 2025
Wed Jan 22 16:35:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
2020 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3886-be9280d126f6eac35cadc6fb838f4c098a43e12eed1944fcea5f467a551a34673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0414-1225
0000-0002-3959-4067
0000-0003-2358-4320
0000-0002-5485-0479
0000-0003-1908-5588
0000-0002-6652-3512
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.25746
PMID 32285956
PQID 2415801013
PQPubID 946345
PageCount 13
ParticipantIDs proquest_miscellaneous_2389688897
proquest_journals_2415801013
pubmed_primary_32285956
crossref_citationtrail_10_1002_ana_25746
crossref_primary_10_1002_ana_25746
wiley_primary_10_1002_ana_25746_ANA25746
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Minneapolis
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 40
2017; 81
2019; 10
2017; 88
2015; 77
2011; 77
2018; 83
2017; 133
2018; 23
2013; 8
2014; 83
2012; 33
1983; 33
2018; 24
2013; 19
2007; 255
2013; 11
2019; 22
2020; 92
2017; 13
2017; 56
2019; 25
2010; 133
2019
2019; 116
2019; 29
2018; 96
2009; 5
2011; 69
2016; 29
2012; 25
2006; 129
2018; 10
2017; 163C
2017; 148
2010; 50
2016; 22
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
Cole JH (e_1_2_7_40_1) 2020; 92
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 19
  start-page: 188
  year: 2013
  end-page: 198
  article-title: Onset of progressive phase is an age‐dependent clinical milestone in multiple sclerosis
  publication-title: Mult Scler
– volume: 163C
  start-page: 115
  year: 2017
  end-page: 124
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: Neuroimage
– volume: 11
  start-page: 319
  year: 2013
  end-page: 337
  article-title: PRoNTo: pattern recognition for neuroimaging toolbox
  publication-title: Neuroinformatics
– volume: 33
  start-page: 2062
  year: 2012
  end-page: 2071
  article-title: Evaluating and reducing the impact of white matter lesions on brain volume measurements
  publication-title: Hum Brain Mapp
– volume: 8
  year: 2013
  article-title: BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer's disease
  publication-title: PLoS One
– volume: 29
  start-page: 237
  year: 2016
  end-page: 242
  article-title: Whole‐brain atrophy: ready for implementation into clinical decision‐making in multiple sclerosis?
  publication-title: Curr Opin Neurol
– volume: 83
  start-page: 278
  year: 2014
  end-page: 286
  article-title: Defining the clinical course of multiple sclerosis: the 2013 revisions
  publication-title: Neurology
– volume: 10
  year: 2019
  article-title: Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained?
  publication-title: Front Neurol
– volume: 255
  start-page: 35
  year: 2007
  end-page: 41
  article-title: Progression in multiple sclerosis: further evidence of an age dependent process
  publication-title: J Neurol Sci
– volume: 33
  start-page: 1444
  year: 1983
  end-page: 1452
  article-title: Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS)
  publication-title: Neurology
– volume: 116
  start-page: 21213
  year: 2019
  end-page: 21218
  article-title: Gray matter age prediction as a biomarker for risk of dementia
  publication-title: Proc Natl Acad Sci
– volume: 22
  start-page: 1617
  year: 2019
  end-page: 1623
  article-title: Common brain disorders are associated with heritable patterns of apparent aging of the brain
  publication-title: Nat Neurosci
– volume: 25
  start-page: 541
  year: 2019
  end-page: 553
  article-title: Pathological cut‐offs of global and regional brain volume loss in multiple sclerosis
  publication-title: Mult Scler
– volume: 29
  start-page: 527
  year: 2019
  end-page: 535
  article-title: Aging and brain atrophy in multiple sclerosis
  publication-title: J Neuroimaging
– volume: 69
  start-page: 292
  year: 2011
  end-page: 302
  article-title: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria
  publication-title: Ann Neurol
– volume: 25
  start-page: 235
  year: 2012
  end-page: 245
  article-title: Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer's disease
  publication-title: GeroPsych
– volume: 81
  start-page: 479
  year: 2017
  end-page: 484
  article-title: The burden of neurological disease in the United States: a summary report and call to action
  publication-title: Ann Neurol
– volume: 83
  start-page: 210
  year: 2018
  end-page: 222
  article-title: Deep gray matter volume loss drives disability worsening in multiple sclerosis
  publication-title: Ann Neurol
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  article-title: Estimating the age of healthy subjects from T1‐weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: Neuroimage
– volume: 77
  start-page: 571
  year: 2015
  end-page: 581
  article-title: For the Alzheimer's disease neuroimaging initiative. Prediction of brain age suggests accelerated atrophy after traumatic brain injury
  publication-title: Ann Neurol
– volume: 56
  start-page: 41
  year: 2017
  end-page: 49
  article-title: Brain‐predicted age in down syndrome is associated with β‐amyloid deposition and cognitive decline
  publication-title: Neurobiol Aging
– volume: 129
  start-page: 584
  year: 2006
  end-page: 594
  article-title: The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease
  publication-title: Brain
– volume: 77
  start-page: 1246
  year: 2011
  end-page: 1252
  article-title: Age and disability accumulation in multiple sclerosis
  publication-title: Neurology
– volume: 24
  start-page: 96
  year: 2018
  end-page: 120
  article-title: ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis
  publication-title: Mult Scler
– volume: 23
  start-page: 1385
  year: 2018
  end-page: 1392
  article-title: Brain age predicts mortality
  publication-title: Mol Psychiatry
– volume: 10
  year: 2018
  article-title: A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE
  publication-title: Front Aging Neurosci
– volume: 13
  start-page: 9
  year: 2017
  end-page: 15
  article-title: Analysis of ageing‐associated grey matter volume in patients with multiple sclerosis shows excess atrophy in subcortical regions
  publication-title: Neuroimage Clin
– volume: 92
  year: 2020
  article-title: Multi‐modality neuroimaging brain‐age in UK Biobank: relationship to biomedical, lifestyle and cognitive factors
  publication-title: Neuro Biol
– volume: 40
  start-page: 681
  year: 2017
  end-page: 690
  article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers
  publication-title: Trends Neurosci
– volume: 133
  start-page: 28
  year: 2017
  end-page: 32
  article-title: Structural brain changes in medically refractory focal epilepsy resemble premature brain aging
  publication-title: Epilepsy Res
– volume: 148
  start-page: 179
  year: 2017
  end-page: 188
  article-title: Predicting brain‐age from multimodal imaging data captures cognitive impairment
  publication-title: Neuroimage
– volume: 5
  start-page: 672
  year: 2009
  end-page: 682
  article-title: Clinical prognostic factors in multiple sclerosis: a natural history review
  publication-title: Nat Rev Neurol
– start-page: 293
  year: 2019
  end-page: 328
– volume: 129
  start-page: 606
  year: 2006
  end-page: 616
  article-title: Natural history of multiple sclerosis: a unifying concept
  publication-title: Brain
– volume: 88
  start-page: 1349
  year: 2017
  end-page: 1357
  article-title: Increased brain‐predicted aging in treated HIV disease
  publication-title: Neurology
– volume: 10
  year: 2019
  article-title: Cross‐sectional and longitudinal MRI brain scans reveal accelerated brain aging in multiple sclerosis
  publication-title: Front Neurol
– volume: 83
  start-page: 223
  year: 2018
  end-page: 234
  article-title: Thalamic atrophy in multiple sclerosis: a magnetic resonance imaging marker of neurodegeneration throughout disease
  publication-title: Ann Neurol
– volume: 22
  start-page: 1750
  year: 2016
  end-page: 1758
  article-title: The relationship of age with the clinical phenotype in multiple sclerosis
  publication-title: Mult Scler
– volume: 96
  start-page: 1153
  year: 2018
  end-page: 1166
  article-title: Targeting senescence to delay progression of multiple sclerosis
  publication-title: J Mol Med (Berl)
– volume: 133
  start-page: 1900
  year: 2010
  end-page: 1913
  article-title: Evidence for a two‐stage disability progression in multiple sclerosis
  publication-title: Brain
– ident: e_1_2_7_15_1
  doi: 10.1016/j.tins.2017.10.001
– ident: e_1_2_7_10_1
  doi: 10.1111/jon.12625
– ident: e_1_2_7_13_1
  doi: 10.1016/j.nicl.2016.11.005
– ident: e_1_2_7_23_1
  doi: 10.1016/j.neurobiolaging.2017.04.006
– ident: e_1_2_7_38_1
  doi: 10.1177/1352458517742739
– ident: e_1_2_7_35_1
  doi: 10.1016/j.neuroimage.2010.01.005
– ident: e_1_2_7_19_1
  doi: 10.1038/s41593-019-0471-7
– ident: e_1_2_7_31_1
  doi: 10.1007/s12021-013-9178-1
– ident: e_1_2_7_41_1
  doi: 10.1016/j.neuroimage.2016.11.005
– ident: e_1_2_7_18_1
  doi: 10.3389/fneur.2019.00450
– ident: e_1_2_7_37_1
  doi: 10.1002/ana.24897
– ident: e_1_2_7_25_1
  doi: 10.1371/journal.pone.0067346
– ident: e_1_2_7_2_1
  doi: 10.1093/brain/awq076
– ident: e_1_2_7_21_1
  doi: 10.1016/j.eplepsyres.2017.03.007
– ident: e_1_2_7_14_1
  doi: 10.1097/WCO.0000000000000322
– ident: e_1_2_7_9_1
  doi: 10.1007/s00109-018-1686-x
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroimage.2017.07.059
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jns.2007.01.067
– ident: e_1_2_7_29_1
  doi: 10.1212/WNL.33.11.1444
– ident: e_1_2_7_12_1
  doi: 10.1002/ana.25150
– ident: e_1_2_7_33_1
  doi: 10.1002/hbm.21344
– ident: e_1_2_7_7_1
  doi: 10.1177/1352458512451510
– volume: 92
  year: 2020
  ident: e_1_2_7_40_1
  article-title: Multi‐modality neuroimaging brain‐age in UK Biobank: relationship to biomedical, lifestyle and cognitive factors
  publication-title: Neuro Biol
– ident: e_1_2_7_36_1
  doi: 10.1038/nrneurol.2009.178
– ident: e_1_2_7_22_1
  doi: 10.1212/WNL.0000000000003790
– ident: e_1_2_7_27_1
  doi: 10.1002/ana.22366
– ident: e_1_2_7_26_1
  doi: 10.1038/mp.2017.62
– ident: e_1_2_7_28_1
  doi: 10.1212/WNL.0000000000000560
– ident: e_1_2_7_34_1
  doi: 10.1024/1662-9647/a000074
– ident: e_1_2_7_5_1
  doi: 10.1093/brain/awh721
– ident: e_1_2_7_3_1
  doi: 10.1177/1352458516630396
– ident: e_1_2_7_6_1
  doi: 10.1093/brain/awl007
– ident: e_1_2_7_11_1
  doi: 10.1002/ana.25145
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.1902376116
– ident: e_1_2_7_32_1
  doi: 10.3389/fnagi.2018.00317
– ident: e_1_2_7_17_1
  doi: 10.1007/978-3-030-24970-0_19
– ident: e_1_2_7_8_1
  doi: 10.1212/WNL.0b013e318230a17d
– ident: e_1_2_7_20_1
  doi: 10.1002/ana.24367
– ident: e_1_2_7_16_1
  doi: 10.3389/fneur.2019.00789
– ident: e_1_2_7_39_1
  doi: 10.1177/1352458517751049
SSID ssj0009610
Score 2.621191
Snippet Objective During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled...
During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled statistically; the...
ObjectiveDuring the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects. Brain aging can be modeled...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 93
SubjectTerms Adolescent
Adult
Age
Aged
Aging
Aging (natural)
Aging - pathology
Atrophy
Atrophy - diagnostic imaging
Atrophy - pathology
Biomarkers
Brain
Brain - diagnostic imaging
Brain - pathology
Confidence intervals
Demyelinating Diseases - diagnostic imaging
Demyelinating Diseases - pathology
Disability Evaluation
Disease control
Disease Progression
Female
Humans
Longitudinal Studies
Magnetic resonance imaging
Male
Middle Aged
Multiple sclerosis
Multiple Sclerosis - diagnostic imaging
Multiple Sclerosis - pathology
Neuroimaging
Young Adult
Title Longitudinal Assessment of Multiple Sclerosis with the Brain‐Age Paradigm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.25746
https://www.ncbi.nlm.nih.gov/pubmed/32285956
https://www.proquest.com/docview/2415801013
https://www.proquest.com/docview/2389688897
Volume 88
WOSCitedRecordID wos000530530100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1531-8249
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009610
  issn: 0364-5134
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC5iIpJLTHzE1SR0xEMuY2amn4On1WQR3CyLGtjb0NOPsGBmw27Wc36Cv9FfYnXP7ISgASGXoWGqH3RXVX_9-grgHUWH57gWiTO2SpiXItG-4onMrC0kl5QX8aHwUI5GajIpxmvwYfUWpuGH6DbcgmVEfx0MXFeL41vSUF3r96hvTDyCjSyjMqh0zsa3jLsiUhGEc7aEZ5StaIXS_LjLency-gth3gWsccYZPH1QW7dhqwWapN9oxg6sufoZPDlrj9Kfw5fhLIQqWtppFOsIOsnMk7P2liH5hlmx5dMFCfu1BMEi-RhiSvy--dW_cGSs59pOLy5fwPng9Punz0kbWSExVCmRVK7IVWqzXHiBnpdyo60RvlJUeWbSQmlGXZbj_JkVjHnjNPfoUTXCK00xQV_Cej2r3Ssg6Ex1ZQ2u8njKrKiUN14zmRpaVJxJ34OjVReXpqUdD9EvfpQNYXJeYueUsXN68LYTvWq4Nv4ltLcap7I1t0UZYIgKbHm0B4fdbzSUcPqhazdbogxCM4Hr_UL2YLcZ364W9GqB5w0LP4rDeH_1ZX_Uj4nX_y_6BjbzsEqPl3z3YP16vnT78Nj8vJ4u5gdRa_ErJ-oANk6-Ds6HfwCa1_FG
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RpWq50BeUpbS4VQ9cAkn8iCP1sn2sQGRXqAWJW-T4gVZqs2iX5cxP4Df2l3TsZINQW6lSb5Yyji17ZvzZY38D8J6iw7NcichqU0XMZSJSruJRlhiTZzyjPA8PhYtsPJbn5_nJCnxYvoVp-CG6AzdvGcFfewP3B9IHd6yhqlb7qHBMPIBVhmrEe7D6-evwrLgj3RWBjcCH2iKeULZkForTg67y_fXoN5B5H7OGRWf45P-6-xTWW7BJBo12PIMVWz-HR6M2nP4CjoupT1e0MJMg1pF0kqkjo_amIfmGVbHrkznxZ7YEASP56PNK_Ly5HVxYcqJmykwufmzA2fDL6afDqM2uEGkqpYgqm6cyNkkqnEDvS7lWRgtXSSod03EuFaM2SXENTXLGnLaKO_SqCiGWoligm9Crp7XdAoIOVVVG406Px8yISjrtFMtiTfOKs8z1YW85xqVuqcd9BozvZUOanJY4OGUYnD6860QvG76NPwntLCeqbE1uXnooIj1jHu3D2-4zGouPgKjaThcog_BM4J4_z_rwspngrhX0bJ7rDX--F-bx782Xg_EgFLb_XXQXHh-ejoqyOBofv4K11O_aw6XfHehdzRb2NTzU11eT-exNq8S_ABuu9Ds
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6k2Sh7WXdvtm7Txh764sa2LpahL-m2sNE0BNZC34ysSwisTkmaPe8n7Dful-xIdhxKWxj0TeAjS0g6nz7dvgPwiSLgWa5EZLUpI-YyESlX8ihLjMkznlGeh4fCo2w8lufn-aQDh-u3MLU-RLvh5j0j4LV3cHtpXH-jGqoqdYADjokteMA4YqzXdWaTjeSuCFoE_qAt4glla12hOO23Wa_PRjco5nXGGqac4c79KvsEHjdUkwzqsfEUOrZ6BtsnzWH6czgezX2wopWZBbNWopPMHTlp7hmSH5gVqz5bEr9jS5AukiMfVeLv7z-DqSUTtVBmNr14AWfDr6efv0VNbIVIUylFVNo8lbFJUuEEYi_lWhktXCmpdEzHuVSM2iTFGTTJGXPaKu4QUxUSLEUxQV9Ct5pXdhcIwqkqjcZ1Ho-ZEaV02imWxZrmJWeZ68H-uo0L3QiP-_gXP4taMjktsHGK0Dg9-NiaXtZqG7cZ7a07qmgcbll4IiK9Xh7twYf2M7qKP_9QlZ2v0AbJmcAVf5714FXdwW0piGte6Q1_vh_68e7ii8F4EBKv_9_0PWxPvgyL0ffx8Rt4lPole7jxuwfdq8XKvoWH-tfVbLl4F0bwP18z8iQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+Assessment+of+Multiple+Sclerosis+with+the+Brain%E2%80%90Age+Paradigm&rft.jtitle=Annals+of+neurology&rft.au=Cole+PhD%2C+James+H.&rft.au=Raffel+MD%2C+Joel&rft.au=Friede+PhD%2C+Tim&rft.au=Eshaghi+MD%2C+PhD%2C+Arman&rft.date=2020-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=88&rft.issue=1&rft.spage=93&rft.epage=105&rft_id=info:doi/10.1002%2Fana.25746&rft.externalDBID=10.1002%252Fana.25746&rft.externalDocID=ANA25746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon