Development and validation of a deep‐learning algorithm for the detection of neovascular age‐related macular degeneration from colour fundus photographs

Importance Detection of early onset neovascular age‐related macular degeneration (AMD) is critical to protecting vision. Background To describe the development and validation of a deep‐learning algorithm (DLA) for the detection of neovascular age‐related macular degeneration. Design Development and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical & experimental ophthalmology Jg. 47; H. 8; S. 1009 - 1018
Hauptverfasser: Keel, Stuart, Li, Zhixi, Scheetz, Jane, Robman, Liubov, Phung, James, Makeyeva, Galina, Aung, KhinZaw, Liu, Chi, Yan, Xixi, Meng, Wei, Guymer, Robyn, Chang, Robert, He, Mingguang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Melbourne John Wiley & Sons Australia, Ltd 01.11.2019
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1442-6404, 1442-9071, 1442-9071
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Importance Detection of early onset neovascular age‐related macular degeneration (AMD) is critical to protecting vision. Background To describe the development and validation of a deep‐learning algorithm (DLA) for the detection of neovascular age‐related macular degeneration. Design Development and validation of a DLA using retrospective datasets. Participants We developed and trained the DLA using 56 113 retinal images and an additional 86 162 images from an independent dataset to externally validate the DLA. All images were non‐stereoscopic and retrospectively collected. Methods The internal validation dataset was derived from real‐world clinical settings in China. Gold standard grading was assigned when consensus was reached by three individual ophthalmologists. The DLA classified 31 247 images as gradable and 24 866 as ungradable (poor quality or poor field definition). These ungradable images were used to create a classification model for image quality. Efficiency and diagnostic accuracy were tested using 86 162 images derived from the Melbourne Collaborative Cohort Study. Neovascular AMD and/or ungradable outcome in one or both eyes was considered referable. Main Outcome Measures Area under the receiver operating characteristic curve (AUC), sensitivity and specificity. Results In the internal validation dataset, the AUC, sensitivity and specificity of the DLA for neovascular AMD was 0.995, 96.7%, 96.4%, respectively. Testing against the independent external dataset achieved an AUC, sensitivity and specificity of 0.967, 100% and 93.4%, respectively. More than 60% of false positive cases displayed other macular pathologies. Amongst the false negative cases (internal validation dataset only), over half (57.2%) proved to be undetected detachment of the neurosensory retina or RPE layer. Conclusions and Relevance This DLA shows robust performance for the detection of neovascular AMD amongst retinal images from a multi‐ethnic sample and under different imaging protocols. Further research is warranted to investigate where this technology could be best utilized within screening and research settings.
AbstractList Importance Detection of early onset neovascular age‐related macular degeneration (AMD) is critical to protecting vision. Background To describe the development and validation of a deep‐learning algorithm (DLA) for the detection of neovascular age‐related macular degeneration. Design Development and validation of a DLA using retrospective datasets. Participants We developed and trained the DLA using 56 113 retinal images and an additional 86 162 images from an independent dataset to externally validate the DLA. All images were non‐stereoscopic and retrospectively collected. Methods The internal validation dataset was derived from real‐world clinical settings in China. Gold standard grading was assigned when consensus was reached by three individual ophthalmologists. The DLA classified 31 247 images as gradable and 24 866 as ungradable (poor quality or poor field definition). These ungradable images were used to create a classification model for image quality. Efficiency and diagnostic accuracy were tested using 86 162 images derived from the Melbourne Collaborative Cohort Study. Neovascular AMD and/or ungradable outcome in one or both eyes was considered referable. Main Outcome Measures Area under the receiver operating characteristic curve (AUC), sensitivity and specificity. Results In the internal validation dataset, the AUC, sensitivity and specificity of the DLA for neovascular AMD was 0.995, 96.7%, 96.4%, respectively. Testing against the independent external dataset achieved an AUC, sensitivity and specificity of 0.967, 100% and 93.4%, respectively. More than 60% of false positive cases displayed other macular pathologies. Amongst the false negative cases (internal validation dataset only), over half (57.2%) proved to be undetected detachment of the neurosensory retina or RPE layer. Conclusions and Relevance This DLA shows robust performance for the detection of neovascular AMD amongst retinal images from a multi‐ethnic sample and under different imaging protocols. Further research is warranted to investigate where this technology could be best utilized within screening and research settings.
Detection of early onset neovascular age-related macular degeneration (AMD) is critical to protecting vision.IMPORTANCEDetection of early onset neovascular age-related macular degeneration (AMD) is critical to protecting vision.To describe the development and validation of a deep-learning algorithm (DLA) for the detection of neovascular age-related macular degeneration.BACKGROUNDTo describe the development and validation of a deep-learning algorithm (DLA) for the detection of neovascular age-related macular degeneration.Development and validation of a DLA using retrospective datasets.DESIGNDevelopment and validation of a DLA using retrospective datasets.We developed and trained the DLA using 56 113 retinal images and an additional 86 162 images from an independent dataset to externally validate the DLA. All images were non-stereoscopic and retrospectively collected.PARTICIPANTSWe developed and trained the DLA using 56 113 retinal images and an additional 86 162 images from an independent dataset to externally validate the DLA. All images were non-stereoscopic and retrospectively collected.The internal validation dataset was derived from real-world clinical settings in China. Gold standard grading was assigned when consensus was reached by three individual ophthalmologists. The DLA classified 31 247 images as gradable and 24 866 as ungradable (poor quality or poor field definition). These ungradable images were used to create a classification model for image quality. Efficiency and diagnostic accuracy were tested using 86 162 images derived from the Melbourne Collaborative Cohort Study. Neovascular AMD and/or ungradable outcome in one or both eyes was considered referable.METHODSThe internal validation dataset was derived from real-world clinical settings in China. Gold standard grading was assigned when consensus was reached by three individual ophthalmologists. The DLA classified 31 247 images as gradable and 24 866 as ungradable (poor quality or poor field definition). These ungradable images were used to create a classification model for image quality. Efficiency and diagnostic accuracy were tested using 86 162 images derived from the Melbourne Collaborative Cohort Study. Neovascular AMD and/or ungradable outcome in one or both eyes was considered referable.Area under the receiver operating characteristic curve (AUC), sensitivity and specificity.MAIN OUTCOME MEASURESArea under the receiver operating characteristic curve (AUC), sensitivity and specificity.In the internal validation dataset, the AUC, sensitivity and specificity of the DLA for neovascular AMD was 0.995, 96.7%, 96.4%, respectively. Testing against the independent external dataset achieved an AUC, sensitivity and specificity of 0.967, 100% and 93.4%, respectively. More than 60% of false positive cases displayed other macular pathologies. Amongst the false negative cases (internal validation dataset only), over half (57.2%) proved to be undetected detachment of the neurosensory retina or RPE layer.RESULTSIn the internal validation dataset, the AUC, sensitivity and specificity of the DLA for neovascular AMD was 0.995, 96.7%, 96.4%, respectively. Testing against the independent external dataset achieved an AUC, sensitivity and specificity of 0.967, 100% and 93.4%, respectively. More than 60% of false positive cases displayed other macular pathologies. Amongst the false negative cases (internal validation dataset only), over half (57.2%) proved to be undetected detachment of the neurosensory retina or RPE layer.This DLA shows robust performance for the detection of neovascular AMD amongst retinal images from a multi-ethnic sample and under different imaging protocols. Further research is warranted to investigate where this technology could be best utilized within screening and research settings.CONCLUSIONS AND RELEVANCEThis DLA shows robust performance for the detection of neovascular AMD amongst retinal images from a multi-ethnic sample and under different imaging protocols. Further research is warranted to investigate where this technology could be best utilized within screening and research settings.
ImportanceDetection of early onset neovascular age‐related macular degeneration (AMD) is critical to protecting vision.BackgroundTo describe the development and validation of a deep‐learning algorithm (DLA) for the detection of neovascular age‐related macular degeneration.DesignDevelopment and validation of a DLA using retrospective datasets.ParticipantsWe developed and trained the DLA using 56 113 retinal images and an additional 86 162 images from an independent dataset to externally validate the DLA. All images were non‐stereoscopic and retrospectively collected.MethodsThe internal validation dataset was derived from real‐world clinical settings in China. Gold standard grading was assigned when consensus was reached by three individual ophthalmologists. The DLA classified 31 247 images as gradable and 24 866 as ungradable (poor quality or poor field definition). These ungradable images were used to create a classification model for image quality. Efficiency and diagnostic accuracy were tested using 86 162 images derived from the Melbourne Collaborative Cohort Study. Neovascular AMD and/or ungradable outcome in one or both eyes was considered referable.Main Outcome MeasuresArea under the receiver operating characteristic curve (AUC), sensitivity and specificity.ResultsIn the internal validation dataset, the AUC, sensitivity and specificity of the DLA for neovascular AMD was 0.995, 96.7%, 96.4%, respectively. Testing against the independent external dataset achieved an AUC, sensitivity and specificity of 0.967, 100% and 93.4%, respectively. More than 60% of false positive cases displayed other macular pathologies. Amongst the false negative cases (internal validation dataset only), over half (57.2%) proved to be undetected detachment of the neurosensory retina or RPE layer.Conclusions and RelevanceThis DLA shows robust performance for the detection of neovascular AMD amongst retinal images from a multi‐ethnic sample and under different imaging protocols. Further research is warranted to investigate where this technology could be best utilized within screening and research settings.
Detection of early onset neovascular age-related macular degeneration (AMD) is critical to protecting vision. To describe the development and validation of a deep-learning algorithm (DLA) for the detection of neovascular age-related macular degeneration. Development and validation of a DLA using retrospective datasets. We developed and trained the DLA using 56 113 retinal images and an additional 86 162 images from an independent dataset to externally validate the DLA. All images were non-stereoscopic and retrospectively collected. The internal validation dataset was derived from real-world clinical settings in China. Gold standard grading was assigned when consensus was reached by three individual ophthalmologists. The DLA classified 31 247 images as gradable and 24 866 as ungradable (poor quality or poor field definition). These ungradable images were used to create a classification model for image quality. Efficiency and diagnostic accuracy were tested using 86 162 images derived from the Melbourne Collaborative Cohort Study. Neovascular AMD and/or ungradable outcome in one or both eyes was considered referable. Area under the receiver operating characteristic curve (AUC), sensitivity and specificity. In the internal validation dataset, the AUC, sensitivity and specificity of the DLA for neovascular AMD was 0.995, 96.7%, 96.4%, respectively. Testing against the independent external dataset achieved an AUC, sensitivity and specificity of 0.967, 100% and 93.4%, respectively. More than 60% of false positive cases displayed other macular pathologies. Amongst the false negative cases (internal validation dataset only), over half (57.2%) proved to be undetected detachment of the neurosensory retina or RPE layer. This DLA shows robust performance for the detection of neovascular AMD amongst retinal images from a multi-ethnic sample and under different imaging protocols. Further research is warranted to investigate where this technology could be best utilized within screening and research settings.
Author Li, Zhixi
Scheetz, Jane
Chang, Robert
Makeyeva, Galina
Meng, Wei
Keel, Stuart
Phung, James
Liu, Chi
He, Mingguang
Yan, Xixi
Aung, KhinZaw
Guymer, Robyn
Robman, Liubov
Author_xml – sequence: 1
  givenname: Stuart
  orcidid: 0000-0001-6756-348X
  surname: Keel
  fullname: Keel, Stuart
  organization: University of Melbourne
– sequence: 2
  givenname: Zhixi
  surname: Li
  fullname: Li, Zhixi
  organization: Zhongshan Ophthalmic Center, Sun Yat‐Sen University
– sequence: 3
  givenname: Jane
  orcidid: 0000-0003-0523-1927
  surname: Scheetz
  fullname: Scheetz, Jane
  organization: University of Melbourne
– sequence: 4
  givenname: Liubov
  surname: Robman
  fullname: Robman, Liubov
  organization: Monash University Melbourne
– sequence: 5
  givenname: James
  surname: Phung
  fullname: Phung, James
  organization: Monash University Melbourne
– sequence: 6
  givenname: Galina
  surname: Makeyeva
  fullname: Makeyeva, Galina
  organization: University of Melbourne
– sequence: 7
  givenname: KhinZaw
  surname: Aung
  fullname: Aung, KhinZaw
  organization: University of Melbourne
– sequence: 8
  givenname: Chi
  surname: Liu
  fullname: Liu, Chi
  organization: Healgoo Interactive Medical Technology Co. Ltd
– sequence: 9
  givenname: Xixi
  surname: Yan
  fullname: Yan, Xixi
  organization: University of Melbourne
– sequence: 10
  givenname: Wei
  surname: Meng
  fullname: Meng, Wei
  organization: Healgoo Interactive Medical Technology Co. Ltd
– sequence: 11
  givenname: Robyn
  surname: Guymer
  fullname: Guymer, Robyn
  organization: University of Melbourne
– sequence: 12
  givenname: Robert
  surname: Chang
  fullname: Chang, Robert
  organization: Byers Eye Institute at Stanford University
– sequence: 13
  givenname: Mingguang
  surname: He
  fullname: He, Mingguang
  email: mingguang.he@unimelb.edu.au
  organization: Zhongshan Ophthalmic Center, Sun Yat‐Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31215760$$D View this record in MEDLINE/PubMed
BookMark eNp1kctu1DAUhi1URC-w4AWQJTawmNa3OMkSDeUiVeoG1pYTH2dSOXawnUHd8Qg8AE_Hk2CamU0F3vjI-v7_HJ__HJ344AGhl5Rc0nKuegiXlFd19QSdUSHYpiU1PTnUUhBxis5TuiOEVIzLZ-iUU0arWpIz9Os97MGFeQKfsfYG77Ubjc5j8DhYrLEBmH__-OlARz_6AWs3hDjm3YRtiDjvoBAZ-qPAQ9jr1C9OR6wHKMoITmcweNLrq4EBPMS1hY1hwn1wYYnYLt4sCc-7kMMQ9bxLz9FTq12CF4f7An39cP1l-2lzc_vx8_bdzabnTVNt6qYiVBjZkK6WtBINEdBYXhvatDXrpOGV6VtZ2Y63tpXUdB0jglHLSakt8Av0ZvWdY_i2QMpqGlMPzunynSUpxgQXLWWMFPT1I_SuzO7LdIpxzlvOaSML9epALd0ERs1xnHS8V8e9F-BqBfoYUopgVT_mh5XkqEenKFF_k1UlWfWQbFG8faQ4mv6LPbh_Hx3c_x9U2-vbVfEHpLe17w
CitedBy_id crossref_primary_10_1038_s41433_024_03085_2
crossref_primary_10_1371_journal_pone_0237352
crossref_primary_10_1016_j_preteyeres_2020_100900
crossref_primary_10_1002_14651858_CD015522_pub2
crossref_primary_10_1097_IIO_0000000000000334
crossref_primary_10_1136_bmjhci_2023_100757
crossref_primary_10_1007_s11548_021_02498_8
crossref_primary_10_1038_s41746_020_00350_y
crossref_primary_10_1038_s41746_021_00438_z
crossref_primary_10_1136_bjo_2025_327447
crossref_primary_10_1097_ICU_0000000000000676
crossref_primary_10_1097_ICU_0000000000000679
crossref_primary_10_1007_s11831_022_09720_z
crossref_primary_10_1016_j_ijmedinf_2020_104363
crossref_primary_10_1038_s41598_023_38610_y
crossref_primary_10_3390_diagnostics13182965
crossref_primary_10_1016_j_bspc_2024_106263
crossref_primary_10_1038_s41598_021_94178_5
crossref_primary_10_1371_journal_pone_0290278
crossref_primary_10_3389_fmed_2021_710329
crossref_primary_10_3390_diagnostics12010134
crossref_primary_10_1055_a_2413_6782
crossref_primary_10_1186_s40662_022_00285_3
crossref_primary_10_1016_j_cmpb_2023_107358
crossref_primary_10_3928_23258160_20220817_01
crossref_primary_10_1016_j_preteyeres_2025_101353
crossref_primary_10_3390_life12070973
crossref_primary_10_1016_j_oret_2020_03_007
crossref_primary_10_1186_s40662_024_00385_2
crossref_primary_10_1097_APO_0000000000000301
crossref_primary_10_1111_ceo_13881
crossref_primary_10_1038_s41746_024_01018_7
crossref_primary_10_1111_ceo_13968
crossref_primary_10_1097_IAE_0000000000003878
crossref_primary_10_1080_08164622_2021_2022961
crossref_primary_10_1097_OPX_0000000000001845
crossref_primary_10_1111_jce_15171
crossref_primary_10_1016_j_xcrm_2025_102187
crossref_primary_10_1038_s41746_025_01768_y
crossref_primary_10_1080_02713683_2023_2215984
crossref_primary_10_1186_s40942_024_00554_4
crossref_primary_10_1080_08820538_2021_1889617
crossref_primary_10_3389_fmed_2023_1115032
crossref_primary_10_1111_ceo_14147
crossref_primary_10_1097_APO_0000000000000404
crossref_primary_10_1016_j_cmpb_2021_106048
crossref_primary_10_1007_s10462_024_10883_3
crossref_primary_10_1007_s10278_023_00775_3
crossref_primary_10_1038_s41746_022_00571_3
Cites_doi 10.1016/j.ophtha.2016.11.014
10.1001/jamaophthalmol.2018.4118
10.1038/538020a
10.1016/j.ophtha.2018.01.023
10.1167/iovs.12-9576
10.1093/ije/dyx085
10.3109/09286586.2015.1010688
10.1167/iovs.10-7075
10.1016/S2214-109X(13)70145-1
10.1016/j.compbiomed.2014.07.015
10.1001/jamaophthalmol.2017.3782
10.1038/s41598-018-22612-2
10.1001/jama.2016.17563
10.1371/journal.pone.0133628
10.1001/archopht.1984.01040031330019
10.1016/S0140-6736(07)61104-0
10.1016/j.ophtha.2012.10.036
10.1016/j.ophtha.2018.11.015
10.1001/jama.2017.18152
10.2337/dc18-0147
10.1016/j.compbiomed.2017.01.018
10.1016/j.ophtha.2018.02.037
10.1080/09286580902864419
10.1016/S0140-6736(12)60282-7
10.1001/jama.2016.17216
ContentType Journal Article
Copyright 2019 Royal Australian and New Zealand College of Ophthalmologists
2019 Royal Australian and New Zealand College of Ophthalmologists.
Copyright_xml – notice: 2019 Royal Australian and New Zealand College of Ophthalmologists
– notice: 2019 Royal Australian and New Zealand College of Ophthalmologists.
DBID AAYXX
CITATION
NPM
7TK
K9.
7X8
DOI 10.1111/ceo.13575
DatabaseName CrossRef
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1442-9071
EndPage 1018
ExternalDocumentID 31215760
10_1111_ceo_13575
CEO13575
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29B
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
KTM
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOQ
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
7TK
K9.
7X8
ID FETCH-LOGICAL-c3885-785014d680b76154804e8f37d18972b6d35dc965fb39f961dbb20421f301dbfe3
IEDL.DBID DRFUL
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000479387700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1442-6404
1442-9071
IngestDate Wed Oct 01 14:58:58 EDT 2025
Sat Nov 29 15:09:12 EST 2025
Thu Apr 03 07:05:57 EDT 2025
Tue Nov 18 21:57:38 EST 2025
Sat Nov 29 03:30:33 EST 2025
Wed Jan 22 16:37:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords age-related macular degeneration
deep-learning algorithm
retinal-imaging
Language English
License 2019 Royal Australian and New Zealand College of Ophthalmologists.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3885-785014d680b76154804e8f37d18972b6d35dc965fb39f961dbb20421f301dbfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-0523-1927
0000-0001-6756-348X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ceo.13575
PMID 31215760
PQID 2333933186
PQPubID 1006520
PageCount 10
ParticipantIDs proquest_miscellaneous_2243491220
proquest_journals_2333933186
pubmed_primary_31215760
crossref_citationtrail_10_1111_ceo_13575
crossref_primary_10_1111_ceo_13575
wiley_primary_10_1111_ceo_13575_CEO13575
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
2019-Nov
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: Australia
– name: Surry Hills
PublicationTitle Clinical & experimental ophthalmology
PublicationTitleAlternate Clin Exp Ophthalmol
PublicationYear 2019
Publisher John Wiley & Sons Australia, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons Australia, Ltd
– name: Wiley Subscription Services, Inc
References 2017; 318
2018; 8
2017; 82
2014; 2
2007; 370
1984; 102
2016; 538
2016; 316
2017; 46
2015; 22
2018; 125
2018; 136
2015; 10
2019; 126
2011; 52
2018; 41
2013; 120
2012; 379
2017; 135
2017; 124
2009; 16
2012; 53
2014; 53
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 120
  start-page: 844
  year: 2013
  end-page: 851
  article-title: Clinical classification of age‐related macular degeneration
  publication-title: Ophthalmology
– volume: 126
  start-page: 565
  year: 2019
  end-page: 575
– volume: 10
  year: 2015
  article-title: The clinical effectiveness and cost‐effectiveness of screening for age‐related macular degeneration in Japan: a Markov modeling study
  publication-title: PLoS One
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 318
  start-page: 2211
  year: 2017
  end-page: 2223
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
– volume: 316
  start-page: 2366
  year: 2016
  end-page: 2367
  article-title: Artificial intelligence with deep learning technology looks into diabetic retinopathy screening
  publication-title: JAMA
– volume: 52
  start-page: 5862
  year: 2011
  end-page: 5871
  article-title: Automatic detection of diabetic retinopathy and age‐related macular degeneration in digital fundus images
  publication-title: Invest Ophthalmol Vis Sci
– volume: 379
  start-page: 1728
  year: 2012
  end-page: 1738
  article-title: Age‐related macular degeneration
  publication-title: Lancet
– volume: 8
  start-page: 4330
  year: 2018
  article-title: Feasibility and patient acceptability of a novel artificial intelligence‐based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study
  publication-title: Sci Rep
– volume: 16
  start-page: 254
  year: 2009
  end-page: 261
  article-title: Non‐mydriatic digital macular photography: how good is the second eye photograph?
  publication-title: Ophthalmic Epidemiol
– volume: 22
  start-page: 75
  year: 2015
  end-page: 84
  article-title: Age‐related macular degeneration in ethnically diverse Australia: Melbourne collaborative cohort study
  publication-title: Ophthalmic Epidemiol
– volume: 53
  start-page: 55
  year: 2014
  end-page: 64
  article-title: Automated diagnosis of age‐related macular degeneration using greyscale features from digital fundus images
  publication-title: Comput Biol Med
– volume: 46
  start-page: 1757
  year: 2017
  end-page: 1757i
  article-title: Cohort profile: the Melbourne collaborative cohort study (health 2020)
  publication-title: Int J Epidemiol
– volume: 8
  start-page: 4330
  year: 2018
  article-title: Feasibility and patient acceptability of a novel artificial intelligence‐based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study
  publication-title: Scientific Rep
– volume: 41
  start-page: 2509
  year: 2018
  end-page: 2516
  article-title: An automated grading system for detection of vision‐threatening referable diabetic retinopathy on the basis of color fundus photographs
  publication-title: Diabetes Care
– volume: 124
  start-page: 343
  year: 2017
  end-page: 351
  article-title: Automated diabetic retinopathy image assessment software: diagnostic accuracy and cost‐effectiveness compared with human graders
  publication-title: Ophthalmology
– volume: 370
  start-page: 204
  year: 2007
  end-page: 206
  article-title: Clinical update: new treatments for age‐related macular degeneration
  publication-title: Lancet
– volume: 2
  year: 2014
  end-page: e116
  article-title: Global prevalence of age‐related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta‐analysis
  publication-title: Lancet Glob Health
– volume: 135
  start-page: 1170
  year: 2017
  end-page: 1176
  article-title: Automated grading of age‐related macular degeneration from color fundus images using deep convolutional neural networks
  publication-title: JAMA Ophthalmol
– volume: 53
  start-page: 8310
  year: 2012
  end-page: 8318
  article-title: Automated "disease/no disease" grading of age‐related macular degeneration by an image mining approach
  publication-title: Invest Ophthalmol Vis Sci
– volume: 102
  start-page: 1640
  year: 1984
  end-page: 1642
  article-title: Age‐related macular degeneration and blindness due to neovascular maculopathy
  publication-title: Arch Ophthalmol
– volume: 125
  start-page: 1199
  year: 2018
  end-page: 1206
  article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
  publication-title: Ophthalmology
– volume: 82
  start-page: 80
  year: 2017
  end-page: 86
  article-title: Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis
  publication-title: Comput Biol Med
– volume: 136
  start-page: 1359
  year: 2018
  end-page: 1366
– volume: 538
  start-page: 20
  year: 2016
– volume: 125
  start-page: 1410
  year: 2018
  end-page: 1420
  article-title: A deep learning algorithm for prediction of age‐related eye disease study severity scale for age‐related macular degeneration from color fundus photography
  publication-title: Ophthalmology
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ophtha.2016.11.014
– ident: e_1_2_8_21_1
  doi: 10.1001/jamaophthalmol.2018.4118
– ident: e_1_2_8_22_1
  doi: 10.1038/538020a
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ophtha.2018.01.023
– ident: e_1_2_8_19_1
  doi: 10.1167/iovs.12-9576
– ident: e_1_2_8_14_1
  doi: 10.1093/ije/dyx085
– ident: e_1_2_8_16_1
  doi: 10.3109/09286586.2015.1010688
– ident: e_1_2_8_17_1
  doi: 10.1167/iovs.10-7075
– ident: e_1_2_8_2_1
  doi: 10.1016/S2214-109X(13)70145-1
– ident: e_1_2_8_18_1
  doi: 10.1016/j.compbiomed.2014.07.015
– ident: e_1_2_8_5_1
  doi: 10.1001/jamaophthalmol.2017.3782
– ident: e_1_2_8_25_1
  doi: 10.1038/s41598-018-22612-2
– ident: e_1_2_8_27_1
  doi: 10.1038/s41598-018-22612-2
– ident: e_1_2_8_23_1
  doi: 10.1001/jama.2016.17563
– ident: e_1_2_8_24_1
  doi: 10.1371/journal.pone.0133628
– ident: e_1_2_8_3_1
  doi: 10.1001/archopht.1984.01040031330019
– ident: e_1_2_8_8_1
  doi: 10.1016/S0140-6736(07)61104-0
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ophtha.2012.10.036
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ophtha.2018.11.015
– ident: e_1_2_8_12_1
  doi: 10.1001/jama.2017.18152
– ident: e_1_2_8_26_1
  doi: 10.2337/dc18-0147
– ident: e_1_2_8_4_1
  doi: 10.1016/j.compbiomed.2017.01.018
– ident: e_1_2_8_6_1
  doi: 10.1016/j.ophtha.2018.02.037
– ident: e_1_2_8_15_1
  doi: 10.1080/09286580902864419
– ident: e_1_2_8_7_1
  doi: 10.1016/S0140-6736(12)60282-7
– ident: e_1_2_8_10_1
  doi: 10.1001/jama.2016.17216
SSID ssj0005236
Score 2.4901323
Snippet Importance Detection of early onset neovascular age‐related macular degeneration (AMD) is critical to protecting vision. Background To describe the development...
Detection of early onset neovascular age-related macular degeneration (AMD) is critical to protecting vision. To describe the development and validation of a...
ImportanceDetection of early onset neovascular age‐related macular degeneration (AMD) is critical to protecting vision.BackgroundTo describe the development...
Detection of early onset neovascular age-related macular degeneration (AMD) is critical to protecting vision.IMPORTANCEDetection of early onset neovascular...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1009
SubjectTerms Age
age‐related macular degeneration
Algorithms
Datasets
Deep learning
deep‐learning algorithm
Macular degeneration
Retina
retinal‐imaging
Title Development and validation of a deep‐learning algorithm for the detection of neovascular age‐related macular degeneration from colour fundus photographs
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fceo.13575
https://www.ncbi.nlm.nih.gov/pubmed/31215760
https://www.proquest.com/docview/2333933186
https://www.proquest.com/docview/2243491220
Volume 47
WOSCitedRecordID wos000479387700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1442-9071
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005236
  issn: 1442-6404
  databaseCode: DRFUL
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB61W4S48P-zUCqDOPQSaWMnsS1OqHTFoRSEKNpbZMf2dqU2WW2yPfcReACejidhbGejrQAJiVsUz8iRPTMeZ2a-AXjjfOzF0CrJU0eTTKJKaZPKRHEnmNOTzIa6tW8n_PRUzGby8w683dTCRHyI4Yeb14xgr72CK91uKXllG9-0gee7sEdRbvMR7L3_Mj072crwYLG4KKNJkU2yHljIJ_IMzDePo998zJsuazhzpvf-62vvw93e1STvomw8gB1bP4TbH_tg-iP4sZUwRFRtCArdIrZYIo0jihhrlz-vv_eNJeZEXcyb1aI7vyTo6RL0HJGiC6lcgaG2Q14rQSuFnKFQxhpyqeJbY-cB5Tpw-MIW4jGz1yuCp6tZt2R53nQRQrt9DGfT469HH5K-WUNSMSHyhAsfoTSFmGhe-HsQbrNwjJtUSE51YVhuKlnkTjPpZJEarSkajNShhTHaWfYERnVT22dAKuN4YYV0yuVZJYSqXKaFkJprmRrjxnC42bOy6pHMfUONi3Jzo8HVLsNqj-H1QLqM8B1_ItrfbHzZa3BbUsaYZGjxijG8GoZR93xAReGKrpGGZiyTKaWTMTyNAjPMwjxsBy9w5DDIxd-nL4-OP4WH5_9O-gLuoOcmY1HkPoy61dq-hFvVVbdoVwewy2fioFeHX6uOEOw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VFgEXfgssFDCIQy-RNrbjH4kLKl0VsV0QalFvURzb25XaZLWb5cwj8AA8HU_C2MlGWwESErcomZEje2Y89sx8A_Dah9iLpWWSpZ4mXKNKGZvqpJBeMW-G3MW6tS9jOZmoszP9aQverGthWnyI_sItaEa010HBw4X0hpaXrg5dG2R2DXY4ihHK9867z6PT8UaKB2urizhNBB_yDlkoZPL0zFf3o9-czKs-a9x0Rnf-73fvwu3O2SRvW-m4B1uuug83jrtw-gP4sZEyRIrKEhS7WdtkidSeFMQ6N__57XvXWmJKiotpvZg155cEfV2CviNSNDGZKzJUrs9sJWinkDOWyjhLLov2rXXTiHMdOUJpCwmo2asFwf3VrpZkfl43LYj2chdOR4cnB0dJ164hKZlSWSJViFFaoYZGinASwoVWnkmbKi2pEZZlttQi84Zpr0VqjaFoMlKPNsYa79hD2K7qyj0GUlovhVPaFz7jpVJF6blRShtpdGqtH8D-etHyssMyDy01LvL1mQZnO4-zPYBXPem8BfD4E9HeeuXzToeXOWWMaYY2TwzgZf8ZtS-EVAqc0RXSUM64TikdDuBRKzH9KCwAd0iBX_ajYPx9-Pzg8GN8ePLvpC_g5tHJ8Tgfv598eAq30I_TbYnkHmw3i5V7BtfLr81suXjeacUvfk4T9A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VFFVceD8CBRbEoRdL8e56HxIX1DYCEUKFKOrN8r7SSK0dJQ5nfgI_gF_HL2EfjpUKkJC4Wd4ZrbU7MzvrmfkG4JULsReDdVbkDmdUepVSJpdZxZ0gTo2ojXVrXyZ8OhVnZ_JkB15vamESPkT_wy1oRrTXQcHtwrgtLde2CV0beHENdmloIjOA3aNP49PJVooHSdVFFGeMjmiHLBQyeXrmq-fRb07mVZ81HjrjW__3ubfhZudsojdJOu7Ajq3vwt6HLpx-D35spQyhqjbIi908NVlCjUMVMtYufn773rWWmKHqYtYs5-35JfK-LvK-o6doYzJXZKhtn9mKvJ3ynLFUxhp0WaW3xs4iznXkCKUtKKBmr5fIn69mvUKL86ZNINqr-3A6Pv58-Dbr2jVkmghRZFyEGKVhYqQ4Czchv9HCEW5yITlWzJDCaMkKp4h0kuVGKexNRu68jTHKWfIABnVT20eAtHGcWSFd5Qqqhai0o0oIqbiSuTFuCAebTSt1h2UeWmpclJs7jV_tMq72EF72pIsE4PEnov3NzpedDq9KTAiRxNs8NoQX_bDXvhBSqfyKrj0NpoTKHOPREB4mielnIQG4gzM_chAF4-_Tl4fHH-PD438nfQ57J0fjcvJu-v4J3PBunEwVkvswaJdr-xSu66_tfLV81inFL-5UE28
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+of+a+deep-learning+algorithm+for+the+detection+of+neovascular+age-related+macular+degeneration+from+colour+fundus+photographs&rft.jtitle=Clinical+%26+experimental+ophthalmology&rft.au=Keel%2C+Stuart&rft.au=Li%2C+Zhixi&rft.au=Scheetz%2C+Jane&rft.au=Robman%2C+Liubov&rft.date=2019-11-01&rft.issn=1442-9071&rft.eissn=1442-9071&rft.volume=47&rft.issue=8&rft.spage=1009&rft_id=info:doi/10.1111%2Fceo.13575&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-6404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-6404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-6404&client=summon