A journey into the world of small RNAs in the arbuscular mycorrhizal symbiosis

Summary Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange of nutrients. AM development is a tightly regulated process that encompasses molecular communication for reciprocal recognition, fungal accomm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist Jg. 242; H. 4; S. 1534 - 1544
Hauptverfasser: Ledford, William Conrad, Silvestri, Alessandro, Fiorilli, Valentina, Roth, Ronelle, Rubio‐Somoza, Ignacio, Lanfranco, Luisa
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Wiley Subscription Services, Inc 01.05.2024
Schlagworte:
ISSN:0028-646X, 1469-8137, 1469-8137
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Summary Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange of nutrients. AM development is a tightly regulated process that encompasses molecular communication for reciprocal recognition, fungal accommodation in root tissues and activation of symbiotic function. As such, a complex network of transcriptional regulation and molecular signaling underlies the cellular and metabolic reprogramming of host cells upon AM fungal colonization. In addition to transcription factors, small RNAs (sRNAs) are emerging as important regulators embedded in the gene network that orchestrates AM development. In addition to controlling cell‐autonomous processes, plant sRNAs also function as mobile signals capable of moving to different organs and even to different plants or organisms that interact with plants. AM fungi also produce sRNAs; however, their function in the AM symbiosis remains largely unknown. Here, we discuss the contribution of host sRNAs in the development of AM symbiosis by considering their role in the transcriptional reprogramming of AM fungal colonized cells. We also describe the characteristics of AM fungal‐derived sRNAs and emerging evidence for the bidirectional transfer of functional sRNAs between the two partners to mutually modulate gene expression and control the symbiosis.
AbstractList Summary Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange of nutrients. AM development is a tightly regulated process that encompasses molecular communication for reciprocal recognition, fungal accommodation in root tissues and activation of symbiotic function. As such, a complex network of transcriptional regulation and molecular signaling underlies the cellular and metabolic reprogramming of host cells upon AM fungal colonization. In addition to transcription factors, small RNAs (sRNAs) are emerging as important regulators embedded in the gene network that orchestrates AM development. In addition to controlling cell‐autonomous processes, plant sRNAs also function as mobile signals capable of moving to different organs and even to different plants or organisms that interact with plants. AM fungi also produce sRNAs; however, their function in the AM symbiosis remains largely unknown. Here, we discuss the contribution of host sRNAs in the development of AM symbiosis by considering their role in the transcriptional reprogramming of AM fungal colonized cells. We also describe the characteristics of AM fungal‐derived sRNAs and emerging evidence for the bidirectional transfer of functional sRNAs between the two partners to mutually modulate gene expression and control the symbiosis.
Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange of nutrients. AM development is a tightly regulated process that encompasses molecular communication for reciprocal recognition, fungal accommodation in root tissues and activation of symbiotic function. As such, a complex network of transcriptional regulation and molecular signaling underlies the cellular and metabolic reprogramming of host cells upon AM fungal colonization. In addition to transcription factors, small RNAs (sRNAs) are emerging as important regulators embedded in the gene network that orchestrates AM development. In addition to controlling cell-autonomous processes, plant sRNAs also function as mobile signals capable of moving to different organs and even to different plants or organisms that interact with plants. AM fungi also produce sRNAs; however, their function in the AM symbiosis remains largely unknown. Here, we discuss the contribution of host sRNAs in the development of AM symbiosis by considering their role in the transcriptional reprogramming of AM fungal colonized cells. We also describe the characteristics of AM fungal-derived sRNAs and emerging evidence for the bidirectional transfer of functional sRNAs between the two partners to mutually modulate gene expression and control the symbiosis.Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange of nutrients. AM development is a tightly regulated process that encompasses molecular communication for reciprocal recognition, fungal accommodation in root tissues and activation of symbiotic function. As such, a complex network of transcriptional regulation and molecular signaling underlies the cellular and metabolic reprogramming of host cells upon AM fungal colonization. In addition to transcription factors, small RNAs (sRNAs) are emerging as important regulators embedded in the gene network that orchestrates AM development. In addition to controlling cell-autonomous processes, plant sRNAs also function as mobile signals capable of moving to different organs and even to different plants or organisms that interact with plants. AM fungi also produce sRNAs; however, their function in the AM symbiosis remains largely unknown. Here, we discuss the contribution of host sRNAs in the development of AM symbiosis by considering their role in the transcriptional reprogramming of AM fungal colonized cells. We also describe the characteristics of AM fungal-derived sRNAs and emerging evidence for the bidirectional transfer of functional sRNAs between the two partners to mutually modulate gene expression and control the symbiosis.
Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange of nutrients. AM development is a tightly regulated process that encompasses molecular communication for reciprocal recognition, fungal accommodation in root tissues and activation of symbiotic function. As such, a complex network of transcriptional regulation and molecular signaling underlies the cellular and metabolic reprogramming of host cells upon AM fungal colonization. In addition to transcription factors, small RNAs (sRNAs) are emerging as important regulators embedded in the gene network that orchestrates AM development. In addition to controlling cell-autonomous processes, plant sRNAs also function as mobile signals capable of moving to different organs and even to different plants or organisms that interact with plants. AM fungi also produce sRNAs; however, their function in the AM symbiosis remains largely unknown. Here, we discuss the contribution of host sRNAs in the development of AM symbiosis by considering their role in the transcriptional reprogramming of AM fungal colonized cells. We also describe the characteristics of AM fungal-derived sRNAs and emerging evidence for the bidirectional transfer of functional sRNAs between the two partners to mutually modulate gene expression and control the symbiosis.
Author Roth, Ronelle
Silvestri, Alessandro
Lanfranco, Luisa
Ledford, William Conrad
Fiorilli, Valentina
Rubio‐Somoza, Ignacio
Author_xml – sequence: 1
  givenname: William Conrad
  orcidid: 0000-0001-7130-2960
  surname: Ledford
  fullname: Ledford, William Conrad
  organization: CSIC‐IRTA‐UAB‐UB
– sequence: 2
  givenname: Alessandro
  orcidid: 0000-0002-1635-7050
  surname: Silvestri
  fullname: Silvestri, Alessandro
  organization: CSIC‐IRTA‐UAB‐UB
– sequence: 3
  givenname: Valentina
  orcidid: 0000-0001-9805-1559
  surname: Fiorilli
  fullname: Fiorilli, Valentina
  organization: University of Turin
– sequence: 4
  givenname: Ronelle
  orcidid: 0000-0001-5566-8954
  surname: Roth
  fullname: Roth, Ronelle
  organization: University of Oxford
– sequence: 5
  givenname: Ignacio
  orcidid: 0000-0003-0754-816X
  surname: Rubio‐Somoza
  fullname: Rubio‐Somoza, Ignacio
  email: ignacio.rubio@cragenomica.es
  organization: Consejo Superior de Investigaciones Científicas (CSIC)
– sequence: 6
  givenname: Luisa
  orcidid: 0000-0002-3961-2552
  surname: Lanfranco
  fullname: Lanfranco, Luisa
  email: luisa.lanfranco@unito.it
  organization: University of Turin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37985403$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLLDEQhYMoOj4W_gEJuNFFa57dyXIYvHpBRhEFdyGdSZhIujMm3Uj76-07M27kWpta1HcOVXUOwW4bWwvAKUZXeKzrdrW8wpJKtgMmmJWyEJhWu2CCEBFFycrXA3CY8xtCSPKS7IMDWknBGaITMJ_Ct9in1g7Qt12E3dLCj5jCAkYHc6NDgE_zaR6H65FOdZ9NH3SCzWBiSkv_qQPMQ1P7mH0-BntOh2xPtv0IvPy5eZ7dFfcPt39n0_vCUCFYoYmTRhuGkROOE1FxwTmS2NRsQZnDhJdG1iWvCSVOV1hKqsVCOoetQwJV9AhcbHxXKb73Nneq8dnYEHRrY58VEZKQilBBR_T8B7o-eNxOUcSYYIJLNFJnW6qvG7tQq-QbnQb1_akRuN4AJsWck3XK-E53PrZd0j4ojNS_LNSYhVpnMSoufyi-Tf_Hbt0_fLDD76CaP95tFF93Z5bD
CitedBy_id crossref_primary_10_1111_nph_70269
crossref_primary_10_1111_plb_70027
crossref_primary_10_1111_nph_19541
crossref_primary_10_1016_j_pmpp_2025_102565
crossref_primary_10_3390_ijms26178611
crossref_primary_10_1111_nph_70085
crossref_primary_10_1146_annurev_phyto_121423_042014
crossref_primary_10_1186_s13062_024_00501_1
crossref_primary_10_1016_j_cub_2025_04_003
crossref_primary_10_1093_ismeco_ycae120
crossref_primary_10_1111_nph_19758
crossref_primary_10_1111_nph_20273
crossref_primary_10_1111_pbi_70242
crossref_primary_10_1093_g3journal_jkae055
Cites_doi 10.1038/s41467-020-16634-6
10.1016/j.mib.2018.02.003
10.1371/journal.ppat.1008090
10.1016/j.cub.2012.09.044
10.1111/nph.15676
10.1042/EBC20200060
10.1146/annurev-micro-092611-150138
10.1016/j.molp.2016.08.011
10.1371/journal.ppat.1002022
10.1093/plphys/kiad141
10.1105/tpc.111.089813
10.1111/nph.18946
10.1038/nplants.2016.153
10.1186/s12864-017-3988-8
10.1038/s41467-023-40093-4
10.1101/2023.06.02.543307
10.3390/ijms21249348
10.1111/nph.17842
10.1371/journal.pgen.1007238
10.1016/j.pbi.2019.05.004
10.1371/journal.pgen.1005168
10.1093/jxb/erab354
10.1098/rsbl.2017.0407
10.1371/journal.pone.0212371
10.1038/s41477-021-01005-w
10.1016/j.chom.2018.11.007
10.1371/journal.ppat.1003883
10.1104/pp.114.255430
10.3390/v13091837
10.1038/s41598-022-11403-5
10.1038/s41564-023-01495-8
10.1111/nph.15553
10.1038/s41477-019-0365-4
10.1007/s10658-017-1222-9
10.1146/annurev-micro-090816-093352
10.1038/srep44898
10.1094/MPMI-23-7-0915
10.1093/gbe/evy002
10.1186/s12864-019-5561-0
10.1111/plb.12917
10.1111/nph.19122
10.1038/s41467-018-06865-z
10.1186/s40168-020-00966-y
10.1038/nplants.2016.151
10.1093/pcp/pcy024
10.1038/nature25027
10.1111/nph.19155
10.1038/s41477-019-0364-5
10.1126/science.1126088
10.1080/20013078.2018.1535750
10.1094/MPMI-09-22-0189-FI
10.1038/s41598-018-27622-8
10.3390/ijms19103201
10.3389/fmicb.2020.00395
10.1111/nph.17236
10.1093/plcell/koac165
10.1038/s41477-020-00829-2
10.1016/j.mib.2023.102357
10.1111/nph.17945
10.1038/ncomms6488
10.1104/pp.17.00464
10.1016/j.chom.2019.07.021
10.1111/nph.14016
10.1093/plcell/koad093
10.1016/j.xplc.2022.100429
10.1111/tpj.12178
10.1126/science.1107130
10.1104/pp.109.151803
10.1104/pp.114.246595
10.1111/j.1365-313X.2012.05099.x
10.1126/science.aar4142
10.1111/nph.18697
10.1038/s41467-022-27976-8
10.1093/plcell/koac043
10.3389/fmicb.2018.00091
10.1094/MPMI-10-15-0234-R
10.1073/pnas.2114583119
10.1104/pp.111.172627
10.1038/s41580-022-00496-5
10.1038/nplants.2015.208
10.1096/fba.2021-00040
10.1016/j.xplc.2021.100167
10.1016/j.cell.2021.09.030
10.1186/s12870-014-0199-1
10.1038/s42003-021-02414-5
10.1093/g3journal/jkad077
10.1101/2022.12.13.520224
10.1111/nph.16245
10.1111/pbi.14006
10.3389/fpls.2017.00273
10.1371/journal.pgen.1004487
10.1038/nrmicro2990
10.1186/s12864-018-5338-x
10.1038/s41579-020-0402-3
10.1111/tpj.15615
10.1371/journal.pgen.1008611
10.1073/pnas.2103527119
10.1038/ng.2525
10.1186/s13059-014-0457-4
10.1101/gr.275752.121
10.1016/j.cell.2008.02.034
10.1105/tpc.17.00555
10.1111/j.1399-3054.2009.01320.x
10.1016/j.pbi.2022.102259
10.1126/science.1159505
10.1126/science.1239705
10.1093/pcp/pcn043
10.1126/science.aav8907
10.21203/rs.3.rs-3363027/v1
10.3389/fpls.2022.1034419
10.3389/fmicb.2018.02068
ContentType Journal Article
Copyright 2023 The Authors. © 2023 New Phytologist Foundation
2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
2023. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. © 2023 New Phytologist Foundation
– notice: 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
– notice: 2023. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
DOI 10.1111/nph.19394
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1544
ExternalDocumentID 37985403
10_1111_nph_19394
NPH19394
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Next Generation EU
  funderid: CN_00000033
– fundername: Royal Society
– fundername: ERDF A way of making Europe
  funderid: RTI2018‐097262‐B‐I00
– fundername: ERDF A way of making Europe
  grantid: RTI2018-097262-B-I00
– fundername: Next Generation EU
  grantid: CN_00000033
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABGDZ
ABSQW
ABUFD
ADXHL
AEFGJ
AEYWJ
AGHNM
AGUYK
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3884-a2f9cac410f8f52875855091cb4d34f1256c9b65b232fa71993a8d9ff1ef08073
IEDL.DBID 24P
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001107489700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-646X
1469-8137
IngestDate Fri Sep 05 14:49:18 EDT 2025
Thu Nov 06 14:31:27 EST 2025
Thu Apr 03 06:53:22 EDT 2025
Sat Nov 29 07:38:06 EST 2025
Tue Nov 18 21:06:50 EST 2025
Wed Jan 22 17:19:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cross‐kingdom RNA interference
RNA interference
small RNA
plant–microbe interactions
arbuscular mycorrhizal symbiosis
Language English
License Attribution
2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3884-a2f9cac410f8f52875855091cb4d34f1256c9b65b232fa71993a8d9ff1ef08073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3961-2552
0000-0001-5566-8954
0000-0002-1635-7050
0000-0001-9805-1559
0000-0003-0754-816X
0000-0001-7130-2960
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19394
PMID 37985403
PQID 3044848590
PQPubID 2026848
PageCount 11
ParticipantIDs proquest_miscellaneous_2892272383
proquest_journals_3044848590
pubmed_primary_37985403
crossref_citationtrail_10_1111_nph_19394
crossref_primary_10_1111_nph_19394
wiley_primary_10_1111_nph_19394_NPH19394
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
2024-May
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 75
2021; 65
2018a; 46
2019; 10
2019; 15
2019; 14
2022; 23
2020; 16
2020; 11
2021; 72
2020; 18
2010; 23
2018; 7
2018; 9
2018; 8
2017; 71
2019; 20
2019; 21
2019; 26
2019; 25
2022; 34
2014; 15
2014; 14
2012; 22
2014; 10
2022; 233
2018; 221
2019; 5
2013; 342
2022; 119
2011; 7
2019; 222
2016; 4
2018; 19
2016; 7
2016; 2
2022; 6
2008; 49
2013; 74
2022; 12
2022; 13
2016; 211
2020; 21
2022; 109
2008; 133
2018; 10
2017; 149
2016; 9
2018; 14
2017; 7
2017; 8
2023; 35
2023; 36
2019; 50
2023; 4
2023; 8
2022; 64
2011; 156
2019; 365
2012; 72
2014; 5
2021; 31
2013; 11
2010; 152
2005; 307
2021; 230
2016; 83
2011; 23
2014; 166
2012; 66
2021; 9
2021; 7
2017; 20
2023; 13
2021; 4
2023; 14
2021; 3
2021; 2
2023; 240
2013; 45
2015; 167
2015; 11
2020; 225
2021; 184
2017; 174
2022; 317
2008; 321
2006; 312
2021; 13
2023; 192
2018b; 360
2023
2022
2010; 138
2018; 553
2017; 10
2017; 13
2023; 236
2017; 18
2023; 239
2018; 59
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
Mewalal R (e_1_2_10_53_1) 2019; 10
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
Mendoza‐Soto AB (e_1_2_10_52_1) 2022; 317
e_1_2_10_10_1
e_1_2_10_33_1
Ye W (e_1_2_10_108_1) 2016; 83
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
Couzigou JM (e_1_2_10_17_1) 2017; 20
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
Wu P (e_1_2_10_103_1) 2016; 7
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 74
  start-page: 920
  year: 2013
  end-page: 934
  article-title: miR396 affects mycorrhization and root meristem activity in the legume
  publication-title: The Plant Journal
– volume: 10
  start-page: 2319
  year: 2017
  end-page: 2335
  article-title: Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis
  publication-title: Plant Cell
– volume: 25
  start-page: 153
  year: 2019
  end-page: 165
  article-title: A Phytophthora effector suppresses trans‐kingdom RNAi to promote disease susceptibility
  publication-title: Cell Host & Microbe
– volume: 2
  start-page: 16153
  year: 2016
  article-title: Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen
  publication-title: Nature Plants
– volume: 23
  start-page: 645
  year: 2022
  end-page: 662
  article-title: Roles of RNA silencing in viral and non‐viral plant immunity and in the crosstalk between disease resistance systems
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 72
  start-page: 512
  year: 2012
  end-page: 522
  article-title: The microRNA miR171h modulates arbuscular mycorrhizal colonization of by targeting NSP2
  publication-title: The Plant Journal
– volume: 230
  start-page: 1142
  year: 2021
  end-page: 1155
  article-title: A nuclear‐targeted effector of interferes with histone 2B mono‐ubiquitination to promote arbuscular mycorrhisation
  publication-title: New Phytologist
– volume: 14
  year: 2019
  article-title: Arbuscular mycorrhizal fungi induce the expression of specific retrotransposons in roots of sunflower ( L.)
  publication-title: PLoS ONE
– volume: 167
  start-page: 854
  year: 2015
  end-page: 871
  article-title: Network of GRAS transcription factors involved in the control of arbuscule development in
  publication-title: Plant Physiology
– volume: 21
  start-page: 9348
  year: 2020
  article-title: The evolutionary significance of RNAi in the fungal kingdom
  publication-title: International Journal of Molecular Sciences
– volume: 119
  year: 2022
  article-title: The ectomycorrhizal fungus encodes a microRNA involved in cross‐kingdom gene silencing during symbiosis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 34
  start-page: 1863
  year: 2022
  end-page: 1881
  article-title: Arabidopsis apoplastic fluid contains sRNA‐ and circular RNA–protein complexes that are located outside extracellular vesicles
  publication-title: Plant Cell
– volume: 13
  year: 2022
  article-title: Argonaute5 and its associated small RNAs modulate the transcriptional response during the rhizobia‐ symbiosis
  publication-title: Frontiers in Plant Science
– volume: 14
  start-page: 4383
  year: 2023
  article-title: Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin‐mediated endocytosis
  publication-title: Nature Communications
– volume: 11
  start-page: 395
  year: 2020
  article-title: Different genetic sources contribute to the small RNA population in the arbuscular mycorrhizal fungus
  publication-title: Frontiers in Microbiology
– volume: 15
  start-page: 457
  year: 2014
  article-title: The small RNA diversity from roots under biotic interactions evidences the environmental plasticity of the miRNAome
  publication-title: Genome Biology
– volume: 21
  start-page: 278
  year: 2019
  end-page: 283
  article-title: Arbuscular mycorrhizal fungi change host plant DNA methylation systemically
  publication-title: Plant Biology
– volume: 10
  year: 2014
  article-title: The Arabidopsis miR472‐RDR6 silencing pathway modulates PAMP‐ and effector‐triggered immunity through the post‐transcriptional control of disease resistance genes
  publication-title: PLoS Pathogens
– volume: 34
  start-page: 3183
  year: 2022
  end-page: 3199
  article-title: Molecular mechanisms underlying host‐induced gene silencing
  publication-title: Plant Cell
– volume: 133
  start-page: 116
  year: 2008
  end-page: 127
  article-title: Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide
  publication-title: Cell
– year: 2022
– volume: 8
  start-page: 2142
  year: 2023
  end-page: 2453
  article-title: Arbuscular mycorrhizal fungi heterokayons have two nuclear populations with distinct roles in host plant interactions
  publication-title: Nature Microbiology
– volume: 16
  year: 2020
  article-title: A non‐canonical RNAi pathway controls virulence and genome stability in Mucorales
  publication-title: PLoS Genetics
– volume: 3
  start-page: 657
  year: 2021
  end-page: 664
  article-title: Plant extracellular vesicles: Trojan horses of cross‐kingdom warfare
  publication-title: FASEB Bioadvances
– volume: 13
  year: 2023
  article-title: A highly contiguous genome assembly reveals sources of genomic novelty in the symbiotic fungus
  publication-title: G3: Genes, Genomes, Genetics
– volume: 72
  start-page: 7316
  year: 2021
  end-page: 7334
  article-title: miR825‐5p targets the TIR‐NBS‐LRR gene MIST1 and down‐regulates basal immunity against in Arabidopsis
  publication-title: Journal of Experimental Botany
– volume: 13
  start-page: 477
  year: 2022
  article-title: Phosphate starvation response transcription factors enable arbuscular mycorrhiza symbiosis
  publication-title: Nature Communications
– volume: 321
  start-page: 964
  year: 2008
  end-page: 967
  article-title: Suppression of the microRNA pathway by bacterial effector proteins
  publication-title: Science
– volume: 19
  start-page: 3201
  year: 2018
  article-title: Identification of arbuscular mycorrhiza fungi responsive microRNAs and their regulatory network in maize
  publication-title: International Journal of Molecular Sciences
– volume: 20
  start-page: 169
  year: 2019
  article-title: analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant
  publication-title: BMC Genomics
– volume: 7
  start-page: 44898
  year: 2017
  article-title: The Arabidopsis miR396 mediates pathogen‐associated molecular pattern‐triggered immune responses against fungal pathogens
  publication-title: Scientific Reports
– volume: 7
  year: 2018
  article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
  publication-title: Journal of Extracellular Vesicles
– volume: 7
  start-page: 50
  year: 2021
  end-page: 59
  article-title: Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts
  publication-title: Nature Plants
– volume: 5
  start-page: 204
  year: 2019
  end-page: 211
  article-title: Arbuscular cell invasion coincides with extracellular vesicles and membrane tubules
  publication-title: Nature Plants
– volume: 11
  start-page: 2912
  year: 2020
  article-title: Dicer‐like 5 deficiency confers temperature‐sensitive male sterility in maize
  publication-title: Nature Communications
– volume: 11
  start-page: 252
  year: 2013
  end-page: 263
  article-title: Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants
  publication-title: Nature Reviews Microbiology
– volume: 50
  start-page: 132
  year: 2019
  end-page: 139
  article-title: Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis
  publication-title: Current Opinion in Plant Biology
– volume: 23
  start-page: 915
  year: 2010
  end-page: 926
  article-title: Expression pattern suggests a role of miR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis
  publication-title: Molecular Plant–Microbe Interactions
– volume: 240
  start-page: 382
  year: 2023
  end-page: 398
  article-title: Argonaute7 (AGO7) optimizes arbuscular mycorrhizal fungal associations and enhances competitive growth in
  publication-title: New Phytologist
– volume: 14
  year: 2018
  article-title: EAT1 transcription factor, a non‐cell‐autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum
  publication-title: PLoS Genetics
– volume: 192
  start-page: 1183
  year: 2023
  end-page: 1203
  article-title: Phylogenetic analyses of seven protein families refine the evolution of small RNA pathways in green plants
  publication-title: Plant Physiology
– volume: 4
  start-page: 866
  year: 2023
  end-page: 883
  article-title: Host‐ and virus‐induced gene silencing of HOG1‐MAPK cascade genes in inhibit arbuscule development and reduce resistance of plants to drought stress
  publication-title: Plant Biotechnology Journal
– volume: 46
  start-page: 58
  year: 2018a
  end-page: 64
  article-title: Cross‐kingdom RNA trafficking and environmental RNAi‐nature's blueprint for modern crop protection strategies
  publication-title: Current Opinion in Microbiology
– volume: 149
  start-page: 771
  year: 2017
  end-page: 777
  article-title: effector Pi14054 is a novel candidate suppressor of host silencing mechanisms
  publication-title: European Journal of Plant Pathology
– volume: 65
  start-page: 685
  year: 2021
  end-page: 696
  article-title: Circular RNAs as microRNA sponges: evidence and controversies
  publication-title: Essays in Biochemistry
– volume: 9
  start-page: 1583
  year: 2016
  end-page: 1608
  article-title: Arbuscular mycorrhizal symbiosis requires a phosphate transceptor in the fungal symbiont
  publication-title: Molecular Plant
– volume: 6
  start-page: 2503
  year: 2022
  end-page: 2519
  article-title: A fungal microRNA‐like RNA subverts host immunity and facilitates pathogen infection by silencing two host receptor‐like kinase genes
  publication-title: New Phytologist
– volume: 7
  start-page: 429
  year: 2016
  article-title: Identification of arbuscular mycorrhiza (AM)‐responsive microRNAs in tomato
  publication-title: Frontiers in Plant Science
– volume: 233
  start-page: 1097
  year: 2022
  end-page: 1107
  article-title: Long reads and Hi‐C sequencing illuminate the two‐compartment genome of the model arbuscular mycorrhizal symbiont
  publication-title: New Phytologist
– volume: 12
  start-page: 7855
  year: 2022
  article-title: Coat protein of partitiviruses isolated from mycorrhizal fungi functions as an RNA silencing suppressor in plants and fungi
  publication-title: Scientific Reports
– volume: 83
  start-page: 669
  year: 2016
  end-page: 679
  article-title: The effector AVR3a of manipulates RNA silencing to facilitate infection
  publication-title: The Plant Journal
– volume: 31
  start-page: 2290
  year: 2021
  end-page: 2302
  article-title: Transcriptional activity and epigenetic regulation of transposable elements in the symbiotic fungus
  publication-title: Genome Research
– volume: 36
  start-page: 235
  year: 2023
  end-page: 244
  article-title: Extracellular vesicles in the arbuscular mycorrhizal symbiosis: current understanding and future perspectives
  publication-title: Molecular Plant–Microbe Interactions
– volume: 18
  start-page: 649
  year: 2020
  end-page: 660
  article-title: Unique and common traits in mycorrhizal symbioses
  publication-title: Nature Reviews Microbiology
– volume: 10
  year: 2014
  article-title: Comparative phylogenomics uncovers the impact of microbial symbionts on host genome evolution
  publication-title: PLoS Genetics
– volume: 13
  start-page: 1837
  year: 2021
  article-title: Investigating the viral suppressor HC‐Pro inhibiting small RNA methylation through functional comparison of HEN1 in Angiosperm and Bryophyte
  publication-title: Viruses
– volume: 49
  start-page: 493
  year: 2008
  end-page: 500
  article-title: The mechanism selecting the guide strand from small RNA duplexes is different among Argonaute proteins
  publication-title: Plant Cell Physiology
– volume: 11
  year: 2015
  article-title: A non‐canonical RNA silencing pathway promotes mRNA degradation in basal fungi
  publication-title: PLoS Genetics
– volume: 20
  start-page: 1339
  year: 2017
  end-page: 1350
  article-title: Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal symbiosis
  publication-title: Cell Reports
– volume: 236
  start-page: 2316
  year: 2023
  end-page: 2331
  article-title: Long‐lasting impact of chitooligosaccharide application on strigolactone biosynthesis and fungal accommodation promotes arbuscular mycorrhiza in
  publication-title: New Phytologist
– volume: 19
  start-page: 937
  year: 2018
  article-title: Complex regulation of microRNAs in roots of competitively‐grown isogenic plants with different capacities to interact with arbuscular mycorrhizal fungi
  publication-title: BMC Genomics
– volume: 64
  year: 2022
  article-title: Distinguishing friends from foes: can smRNAs modulate plant interactions with beneficial and pathogenic organisms?
  publication-title: Current Opinion in Plant Biology
– volume: 174
  start-page: 2469
  year: 2017
  end-page: 2486
  article-title: The microRNA390/TAS3 pathway mediates symbiotic nodulation and lateral root growth
  publication-title: Plant Physiology
– volume: 240
  start-page: 68
  year: 2023
  end-page: 79
  article-title: A perspective on cross‐kingdom RNA interference in mutualistic symbioses
  publication-title: New Phytologist
– volume: 317
  year: 2022
  article-title: Mycorrhizal colonization induces systemic changes in miRNA expression and targets in tomato leaves
  publication-title: Plant Science
– volume: 9
  start-page: 91
  year: 2018
  article-title: Arbuscular mycorrhizal fungal 14‐3‐3 proteins are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis
  publication-title: Frontiers in Microbiology
– volume: 4
  year: 2023
  article-title: The RNAome landscape of tomato during arbuscular mycorrhizal symbiosis reveals an evolving RNA layer symbiotic regulatory network
  publication-title: Plant Communications
– volume: 8
  start-page: 9625
  year: 2018
  article-title: Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat
  publication-title: Scientific Reports
– volume: 166
  start-page: 281
  year: 2014
  end-page: 292
  article-title: Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis
  publication-title: Plant Physiology
– volume: 2
  year: 2021
  article-title: Trans‐kingdom RNAs and their fates in recipient cells: advances, utilization, and perspectives
  publication-title: Plant Communications
– volume: 45
  start-page: 330
  year: 2013
  end-page: 333
  article-title: Oomycete pathogens encode RNA silencing suppressors
  publication-title: Nature Genetics
– volume: 7
  start-page: 1379
  year: 2021
  end-page: 1388
  article-title: Exogenous miRNAs induce post‐transcriptional gene silencing in plants
  publication-title: Nature Plants
– volume: 10
  start-page: 372
  year: 2019
  article-title: Identification of populus small RNAs responsive to mutualistic interactions with mycorrhizal fungi, and
  publication-title: Frontiers in Plant Science
– volume: 109
  start-page: 1086
  year: 2022
  end-page: 1097
  article-title: Origin, evolution and diversification of plant ARGONAUTE proteins
  publication-title: The Plant Journal
– volume: 22
  start-page: 2236
  year: 2012
  end-page: 2241
  article-title: A GRAS‐type transcription factor with a specific function in mycorrhizal signaling
  publication-title: Current Biology
– volume: 10
  start-page: 328
  year: 2018
  end-page: 343
  article-title: Conserved proteins of the RNA Interference system in the arbuscular mycorrhizal fungus provide new insight into the evolutionary history of Glomeromycota
  publication-title: Genome Biology and Evolution
– volume: 59
  start-page: 673
  year: 2018
  end-page: 690
  article-title: Transcriptional regulation of arbuscular mycorrhiza development
  publication-title: Plant Cell Physiology
– volume: 71
  start-page: 371
  year: 2017
  end-page: 391
  article-title: RNAi in fungi: a varied landscape of small RNAs and biological functions
  publication-title: Annual Review of Microbiology
– volume: 138
  start-page: 226
  year: 2010
  end-page: 237
  article-title: Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in
  publication-title: Physiologia Plantarum
– volume: 184
  start-page: 5527
  year: 2021
  end-page: 5540
  article-title: A phosphate starvation response‐centered network regulates mycorrhizal symbiosis
  publication-title: Cell
– volume: 119
  year: 2022
  article-title: A fungal effector suppresses the nuclear export of AGO1‐miRNA complex to promote infection in plants
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 4
  start-page: 901
  year: 2021
  article-title: The methylome of the model arbuscular mycorrhizal fungus, , shares characteristics with early diverging fungi and Dikarya
  publication-title: Communications Biology
– volume: 66
  start-page: 305
  year: 2012
  end-page: 323
  article-title: RNA interference pathways in fungi: mechanisms and functions
  publication-title: Annual Review of Microbiology
– volume: 7
  year: 2011
  article-title: Viral small interfering RNAs target host genes to mediate disease symptoms in plants
  publication-title: PLoS Pathogens
– volume: 18
  start-page: 589
  year: 2017
  article-title: Role of the GRAS transcription factor ATA/RAM1 in the transcriptional reprogramming of arbuscular mycorrhiza in
  publication-title: BMC Genomics
– volume: 312
  start-page: 436
  year: 2006
  end-page: 439
  article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling
  publication-title: Science
– volume: 9
  start-page: 57
  year: 2021
  article-title: Dicer‐like proteins influence Arabidopsis root microbiota independent of RNA‐directed DNA methylation
  publication-title: Microbiome
– volume: 75
  year: 2023
  article-title: Lessons from arbuscular mycorrhizal fungal genomes
  publication-title: Current Opinion in Microbiology
– volume: 239
  start-page: 271
  year: 2023
  end-page: 285
  article-title: The mycorrhizal root‐shoot axis elicits growth under low phosphate conditions
  publication-title: New Phytologist
– volume: 221
  start-page: 2213
  year: 2018
  end-page: 2227
  article-title: Accumulation of phosphoinositides in distinct regions of the periarbuscular membrane
  publication-title: New Phytologist
– volume: 13
  year: 2017
  article-title: Paternal arbuscular mycorrhizal fungal status affects DNA methylation in seeds
  publication-title: Biology Letters
– volume: 225
  start-page: 448
  year: 2020
  end-page: 460
  article-title: A lysin motif effector subverts chitin‐ triggered immunity to facilitate arbuscular mycorrhizal symbiosis
  publication-title: New Phytologist
– volume: 5
  start-page: 194
  year: 2019
  end-page: 203
  article-title: Extensive membrane systems at the host–arbuscular mycorrhizal fungus interface
  publication-title: Nature Plants
– volume: 2
  start-page: 15208
  year: 2016
  article-title: Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics
  publication-title: Nature Plants
– volume: 23
  start-page: 3812
  year: 2011
  end-page: 3823
  article-title: A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus sp. is crucial for the symbiotic relationship with plants
  publication-title: Plant Cell
– volume: 15
  year: 2019
  article-title: Small RNAs and extracellular vesicles: new mechanisms of cross‐species communication and innovative tools for disease control
  publication-title: PLoS Pathogens
– volume: 156
  start-page: 1990
  year: 2011
  end-page: 2010
  article-title: Stars and symbiosis: microRNA‐ and microRNA*‐mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis
  publication-title: Plant Physiology
– volume: 211
  start-page: 1202
  year: 2016
  end-page: 1208
  article-title: Aquaporin‐mediated long‐distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus‐induced gene silencing
  publication-title: New Phytologist
– volume: 35
  start-page: 1868
  year: 2023
  end-page: 1887
  article-title: Small RNAs >26 nt in length associate with AGO1 and are upregulated by nutrient deprivation in the alga Chlamydomonas
  publication-title: Plant Cell
– volume: 9
  start-page: 2068
  year: 2018
  article-title: RiCRN1, a crinkler effector from the arbuscular mycorrhizal fungus , functions in arbuscule development
  publication-title: Frontiers in Microbiology
– volume: 14
  start-page: 199
  year: 2014
  article-title: MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in
  publication-title: BMC Plant Biology
– volume: 26
  start-page: 173
  year: 2019
  end-page: 182
  article-title: Small RNAs – big players in plant–microbe interactions
  publication-title: Cell Host & Microbe
– volume: 222
  start-page: 1566
  year: 2019
  end-page: 1577
  article-title: A novel fungal effector from suppressing RNA silencing and plant defense responses
  publication-title: New Phytologist
– volume: 152
  start-page: 2222
  year: 2010
  end-page: 2231
  article-title: Identification of microRNAs involved in pathogen‐associated molecular pattern‐triggered plant innate immunity
  publication-title: Plant Physiology
– volume: 360
  start-page: 1126
  year: 2018b
  end-page: 1129
  article-title: Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes
  publication-title: Science
– volume: 307
  start-page: 932
  year: 2005
  end-page: 935
  article-title: Methylation as a crucial step in plant microRNA biogenesis
  publication-title: Science
– volume: 2
  start-page: 16151
  year: 2016
  article-title: Bidirectional cross‐kingdom RNAi and fungal uptake of external RNAs confer plant protection
  publication-title: Nature Plants
– year: 2023
– volume: 9
  start-page: 4677
  year: 2018
  article-title: A rice serine/threonine receptor‐like kinase regulates arbuscular mycorrhizal symbiosis at the peri‐arbuscular membrane
  publication-title: Nature Communications
– volume: 8
  start-page: 273
  year: 2017
  article-title: Evolutionary analyses of GRAS transcription factors in angiosperms
  publication-title: Frontiers in Plant Science
– volume: 553
  start-page: 82
  year: 2018
  end-page: 85
  article-title: MicroRNAs from the parasitic plant target host messenger RNAs
  publication-title: Nature
– volume: 5
  start-page: 5488
  year: 2014
  article-title: Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity
  publication-title: Nature Communications
– volume: 365
  start-page: 919
  year: 2019
  end-page: 922
  article-title: Rhizobial tRNA‐derived small RNAs are signal molecules regulating plant nodulation
  publication-title: Science
– volume: 342
  start-page: 118
  year: 2013
  end-page: 123
  article-title: Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways
  publication-title: Science
– volume: 4
  start-page: 277
  year: 2016
  end-page: 286
  article-title: Strigolactone‐induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus
  publication-title: Molecular Plant–Microbe Interactions
– volume: 83
  start-page: 669
  year: 2016
  ident: e_1_2_10_108_1
  article-title: The effector AVR3a of Phytophthora infestans manipulates RNA silencing to facilitate infection
  publication-title: The Plant Journal
– ident: e_1_2_10_86_1
  doi: 10.1038/s41467-020-16634-6
– ident: e_1_2_10_9_1
  doi: 10.1016/j.mib.2018.02.003
– ident: e_1_2_10_10_1
  doi: 10.1371/journal.ppat.1008090
– ident: e_1_2_10_26_1
  doi: 10.1016/j.cub.2012.09.044
– ident: e_1_2_10_110_1
  doi: 10.1111/nph.15676
– ident: e_1_2_10_60_1
  doi: 10.1042/EBC20200060
– ident: e_1_2_10_13_1
  doi: 10.1146/annurev-micro-092611-150138
– ident: e_1_2_10_104_1
  doi: 10.1016/j.molp.2016.08.011
– ident: e_1_2_10_81_1
  doi: 10.1371/journal.ppat.1002022
– ident: e_1_2_10_3_1
  doi: 10.1093/plphys/kiad141
– ident: e_1_2_10_30_1
  doi: 10.1105/tpc.111.089813
– ident: e_1_2_10_16_1
  doi: 10.1111/nph.18946
– ident: e_1_2_10_116_1
  doi: 10.1038/nplants.2016.153
– ident: e_1_2_10_70_1
  doi: 10.1186/s12864-017-3988-8
– ident: e_1_2_10_29_1
  doi: 10.1038/s41467-023-40093-4
– ident: e_1_2_10_15_1
  doi: 10.1101/2023.06.02.543307
– ident: e_1_2_10_42_1
  doi: 10.3390/ijms21249348
– ident: e_1_2_10_109_1
  doi: 10.1111/nph.17842
– ident: e_1_2_10_61_1
  doi: 10.1371/journal.pgen.1007238
– ident: e_1_2_10_56_1
  doi: 10.1016/j.pbi.2019.05.004
– ident: e_1_2_10_89_1
  doi: 10.1371/journal.pgen.1005168
– ident: e_1_2_10_49_1
  doi: 10.1093/jxb/erab354
– ident: e_1_2_10_92_1
  doi: 10.1098/rsbl.2017.0407
– ident: e_1_2_10_91_1
  doi: 10.1371/journal.pone.0212371
– volume: 10
  start-page: 372
  year: 2019
  ident: e_1_2_10_53_1
  article-title: Identification of populus small RNAs responsive to mutualistic interactions with mycorrhizal fungi, Laccaria bicolor and Rhizophagus irregularis
  publication-title: Frontiers in Plant Science
– ident: e_1_2_10_4_1
  doi: 10.1038/s41477-021-01005-w
– ident: e_1_2_10_34_1
  doi: 10.1016/j.chom.2018.11.007
– ident: e_1_2_10_5_1
  doi: 10.1371/journal.ppat.1003883
– ident: e_1_2_10_107_1
  doi: 10.1104/pp.114.255430
– ident: e_1_2_10_74_1
  doi: 10.3390/v13091837
– ident: e_1_2_10_77_1
  doi: 10.1038/s41598-022-11403-5
– ident: e_1_2_10_83_1
  doi: 10.1038/s41564-023-01495-8
– ident: e_1_2_10_37_1
  doi: 10.1111/nph.15553
– volume: 317
  year: 2022
  ident: e_1_2_10_52_1
  article-title: Mycorrhizal colonization induces systemic changes in miRNA expression and targets in tomato leaves
  publication-title: Plant Science
– ident: e_1_2_10_72_1
  doi: 10.1038/s41477-019-0365-4
– ident: e_1_2_10_95_1
  doi: 10.1007/s10658-017-1222-9
– volume: 7
  start-page: 429
  year: 2016
  ident: e_1_2_10_103_1
  article-title: Identification of arbuscular mycorrhiza (AM)‐responsive microRNAs in tomato
  publication-title: Frontiers in Plant Science
– ident: e_1_2_10_88_1
  doi: 10.1146/annurev-micro-090816-093352
– ident: e_1_2_10_82_1
  doi: 10.1038/srep44898
– ident: e_1_2_10_6_1
  doi: 10.1094/MPMI-23-7-0915
– ident: e_1_2_10_43_1
  doi: 10.1093/gbe/evy002
– ident: e_1_2_10_78_1
  doi: 10.1186/s12864-019-5561-0
– ident: e_1_2_10_93_1
  doi: 10.1111/plb.12917
– ident: e_1_2_10_67_1
  doi: 10.1111/nph.19122
– ident: e_1_2_10_71_1
  doi: 10.1038/s41467-018-06865-z
– ident: e_1_2_10_38_1
  doi: 10.1186/s40168-020-00966-y
– ident: e_1_2_10_98_1
  doi: 10.1038/nplants.2016.151
– ident: e_1_2_10_64_1
  doi: 10.1093/pcp/pcy024
– ident: e_1_2_10_75_1
  doi: 10.1038/nature25027
– ident: e_1_2_10_65_1
  doi: 10.1111/nph.19155
– ident: e_1_2_10_36_1
  doi: 10.1038/s41477-019-0364-5
– ident: e_1_2_10_57_1
  doi: 10.1126/science.1126088
– ident: e_1_2_10_87_1
  doi: 10.1080/20013078.2018.1535750
– ident: e_1_2_10_33_1
  doi: 10.1094/MPMI-09-22-0189-FI
– ident: e_1_2_10_23_1
  doi: 10.1038/s41598-018-27622-8
– ident: e_1_2_10_106_1
  doi: 10.3390/ijms19103201
– ident: e_1_2_10_80_1
  doi: 10.3389/fmicb.2020.00395
– ident: e_1_2_10_99_1
  doi: 10.1111/nph.17236
– ident: e_1_2_10_113_1
  doi: 10.1093/plcell/koac165
– ident: e_1_2_10_44_1
  doi: 10.1038/s41477-020-00829-2
– ident: e_1_2_10_40_1
  doi: 10.1016/j.mib.2023.102357
– ident: e_1_2_10_105_1
  doi: 10.1111/nph.17945
– ident: e_1_2_10_8_1
  doi: 10.1038/ncomms6488
– ident: e_1_2_10_31_1
  doi: 10.1104/pp.17.00464
– ident: e_1_2_10_35_1
  doi: 10.1016/j.chom.2019.07.021
– ident: e_1_2_10_39_1
  doi: 10.1111/nph.14016
– ident: e_1_2_10_45_1
  doi: 10.1093/plcell/koad093
– ident: e_1_2_10_115_1
  doi: 10.1016/j.xplc.2022.100429
– ident: e_1_2_10_2_1
  doi: 10.1111/tpj.12178
– ident: e_1_2_10_111_1
  doi: 10.1126/science.1107130
– ident: e_1_2_10_46_1
  doi: 10.1104/pp.109.151803
– ident: e_1_2_10_22_1
  doi: 10.1104/pp.114.246595
– ident: e_1_2_10_41_1
  doi: 10.1111/j.1365-313X.2012.05099.x
– ident: e_1_2_10_11_1
  doi: 10.1126/science.aar4142
– ident: e_1_2_10_96_1
  doi: 10.1111/nph.18697
– ident: e_1_2_10_19_1
  doi: 10.1038/s41467-022-27976-8
– ident: e_1_2_10_112_1
  doi: 10.1093/plcell/koac043
– ident: e_1_2_10_84_1
  doi: 10.3389/fmicb.2018.00091
– ident: e_1_2_10_90_1
  doi: 10.1094/MPMI-10-15-0234-R
– ident: e_1_2_10_118_1
  doi: 10.1073/pnas.2114583119
– ident: e_1_2_10_21_1
  doi: 10.1104/pp.111.172627
– ident: e_1_2_10_48_1
  doi: 10.1038/s41580-022-00496-5
– ident: e_1_2_10_7_1
  doi: 10.1038/nplants.2015.208
– ident: e_1_2_10_28_1
  doi: 10.1096/fba.2021-00040
– ident: e_1_2_10_117_1
  doi: 10.1016/j.xplc.2021.100167
– ident: e_1_2_10_76_1
  doi: 10.1016/j.cell.2021.09.030
– ident: e_1_2_10_32_1
  doi: 10.1186/s12870-014-0199-1
– ident: e_1_2_10_14_1
  doi: 10.1038/s42003-021-02414-5
– ident: e_1_2_10_51_1
  doi: 10.1093/g3journal/jkad077
– ident: e_1_2_10_94_1
  doi: 10.1101/2022.12.13.520224
– ident: e_1_2_10_114_1
  doi: 10.1111/nph.16245
– ident: e_1_2_10_100_1
  doi: 10.1111/pbi.14006
– ident: e_1_2_10_12_1
  doi: 10.3389/fpls.2017.00273
– ident: e_1_2_10_20_1
  doi: 10.1371/journal.pgen.1004487
– ident: e_1_2_10_59_1
  doi: 10.1038/nrmicro2990
– ident: e_1_2_10_62_1
  doi: 10.1186/s12864-018-5338-x
– ident: e_1_2_10_25_1
  doi: 10.1038/s41579-020-0402-3
– ident: e_1_2_10_47_1
  doi: 10.1111/tpj.15615
– ident: e_1_2_10_63_1
  doi: 10.1371/journal.pgen.1008611
– ident: e_1_2_10_102_1
  doi: 10.1073/pnas.2103527119
– ident: e_1_2_10_68_1
  doi: 10.1038/ng.2525
– ident: e_1_2_10_24_1
  doi: 10.1186/s13059-014-0457-4
– ident: e_1_2_10_18_1
  doi: 10.1101/gr.275752.121
– ident: e_1_2_10_54_1
  doi: 10.1016/j.cell.2008.02.034
– ident: e_1_2_10_50_1
  doi: 10.1105/tpc.17.00555
– ident: e_1_2_10_79_1
– ident: e_1_2_10_27_1
  doi: 10.1111/j.1399-3054.2009.01320.x
– ident: e_1_2_10_66_1
  doi: 10.1016/j.pbi.2022.102259
– ident: e_1_2_10_58_1
  doi: 10.1126/science.1159505
– ident: e_1_2_10_101_1
  doi: 10.1126/science.1239705
– ident: e_1_2_10_85_1
  doi: 10.1093/pcp/pcn043
– volume: 20
  start-page: 1339
  year: 2017
  ident: e_1_2_10_17_1
  article-title: Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal symbiosis
  publication-title: Cell Reports
– ident: e_1_2_10_69_1
  doi: 10.1126/science.aav8907
– ident: e_1_2_10_55_1
  doi: 10.21203/rs.3.rs-3363027/v1
– ident: e_1_2_10_73_1
  doi: 10.3389/fpls.2022.1034419
– ident: e_1_2_10_97_1
  doi: 10.3389/fmicb.2018.02068
SSID ssj0009562
Score 2.521266
SecondaryResourceType review_article
Snippet Summary Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange...
Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1534
SubjectTerms arbuscular mycorrhizal symbiosis
Arbuscular mycorrhizas
Body organs
cross‐kingdom RNA interference
Fungi
Gene expression
Gene Expression Regulation, Plant
Gene regulation
Mycorrhizae - genetics
Mycorrhizae - physiology
Nutrients
Plant tissues
Plants
plant–microbe interactions
RNA interference
RNA, Small Untranslated - genetics
small RNA
Symbionts
Symbiosis
Symbiosis - genetics
Transcription
Transcription factors
Title A journey into the world of small RNAs in the arbuscular mycorrhizal symbiosis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19394
https://www.ncbi.nlm.nih.gov/pubmed/37985403
https://www.proquest.com/docview/3044848590
https://www.proquest.com/docview/2892272383
Volume 242
WOSCitedRecordID wos001107489700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS-xAEC7cDl7cnk_HjVY8eJnHpNNJuvE0LoOChEGUN7fQWRoDM4lMj8L4663uLCjvCYKXkFCddKil66tOpQrgFFe8BN0W68aB2a3y0RQl9SQKJI0ZuiDFlLTNJoIw5KORGC7AefMvTFUfot1wM5Zh12tj4DLWH4y8eH76g-hDsEVYdhw3MCpN2fBDxV2fNiWYfeaP6rJCJo2nvfWzM_oHYX4GrNbjDNZ_9K4bsFYDTdKvNGMTFrJiC1YuSgSD818Q9onVomxO8mJWEoSBxBZPJaUieiLHY3If9jUSLUki76uMVTKZY7w6fcrf8OF6PonzUud6Gx4H1w-XN926tUI3cTlKRlIlEpkwp6e48jBq8kxhM-EkMUtdphD1-ImIfS9GwKVkYLL8JE-FUk6mEGMG7m9YKsoi2wViIGaWxo5ArM7SNBBU9gIqJfd5ljKlOnDW8DhK6rrjpv3FOGriD-ROZLnTgZN26HNVbON_gw4aQUW1venI7WGYybgneh04bsloKebzhyyy8kVHGFpSanqsuR3YqQTczoLqwxG7IuXMyvHr6aNweGNP9r4_dB9WKWKhKk_yAJZm05fsEFaS11mup0dWbfEYjPgRLF_dDx7v8OrvbfgOranw8A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60FfTF-6hWXcUHXyptsjkWfKlHqViDFIW-hc2xGGgTaVqh_npnNwctKgi-BWaTDXPsfrOZfANwgSuej9sWbXiWPK0yMRS5ZnA0SOBR3IIEFVw1m7Acxx4M2PMSXBf_wmT8EOWBm4wMtV7LAJcH0nNRHr-_XSH8YHQZqhTdyKhA9a7fee3Nke6aWsHCbFJzkDMLyUqe8ubF_egbyFzErGrT6Wz873U3YT0Hm6SdeccWLIXxNqzcJAgIZzvgtInypHBGoniSEISCRBGokkSQdMSHQ9J32ikKlYij_rOqVTKaYc46fos-8eHpbORFSRqlu_DauX-57Tby9goNX7fROlwTzOc-bTWFLQzMnAxJbsZavkcDnQpEPqbPPNPwEHQJbslKP24HTIhWKBBnWvoeVOIkDg-ASJgZBl6LIV6nQWAxjTctjXPbtMOAClGDy0LJrp9zj8sWGEO3yEFQO67STg3Oy6HvGeHGT4PqhaXcPOZSV29iqkltgzVrcFaKMVrkJxAeh8k0dTG91DTZZ02vwX5m4XIW3WI24leUXCpD_j696zx31cXh34eewmr35ann9h6cxyNY0xAbZXWTdahMxtPwGFb8j0mUjk9yL_4CixPy1g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qFvHi-1GtuoqHXiptsnkseKmPoiihiEJvYZPsYqBNSlOF-uud3TxQVBC8BWaTDTM7O99sJt8AnOGOF2LYou3AUadVNroiNyyOBokCiiFIUsl1swnH89zhkA1qcFH-C5PzQ1QHbsoz9H6tHFxMIvnJy5PJyznCD0YXYIlauMcqXmc6-ES5axslB7NN7WHBK6TqeKpbv0ajbxDzK2LVIae_9r-XXYfVAmqSXr42NqAmkk2oX6YIB-db4PWIXkdiTuJklhIEgkTTp5JUkmzMRyPy6PUyFGoRR-3nNatkPMeMdfoSv-PDs_k4iNMszrbhuX_zdHXbLportEPTRdtwQ7KQh7Tbka60MG-yFLUZ64YBjUwqEffYIQtsK0DIJbmj6vy4GzEpu0IiynTMHVhM0kTsAVEgU0RBlyFap1HkMIN3HINz13ZFRKVsQKtUsh8WzOOqAcbILzMQ1I6vtdOA02roJKfb-GlQs7SUX3hc5psdTDSpa7FOA04qMfqK-gDCE5G-Zj4ml4ahuqyZDdjNLVzNYjrMRfSKkpY25O_T-97gVl_s_33oMSwPrvv-w513fwArBgKjvGiyCYuz6as4hHr4Nouz6ZFewh_TW_C_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+journey+into+the+world+of+small+RNAs+in+the+arbuscular+mycorrhizal+symbiosis&rft.jtitle=The+New+phytologist&rft.au=Ledford%2C+William+Conrad&rft.au=Silvestri%2C+Alessandro&rft.au=Fiorilli%2C+Valentina&rft.au=Roth%2C+Ronelle&rft.date=2024-05-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=242&rft.issue=4&rft.spage=1534&rft_id=info:doi/10.1111%2Fnph.19394&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon