Segmentation and classification of skin lesions using hybrid deep learning method in the Internet of Medical Things

Introduction Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy and efficiency of skin lesion analysis, CAD systems play a crucial role. To segment and classify skin lesions from dermoscopy images, this s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Skin research and technology Ročník 29; číslo 11; s. e13524 - n/a
Hlavní autoři: Akram, Arslan, Rashid, Javed, Jaffar, Muhammad Arfan, Faheem, Muhammad, Amin, Riaz ul
Médium: Journal Article
Jazyk:angličtina
Vydáno: England John Wiley & Sons, Inc 01.11.2023
Témata:
ISSN:0909-752X, 1600-0846, 1600-0846
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Introduction Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy and efficiency of skin lesion analysis, CAD systems play a crucial role. To segment and classify skin lesions from dermoscopy images, this study focuses on using hybrid deep learning techniques. Method This research uses a hybrid deep learning model that combines two cutting‐edge approaches: Mask Region‐based Convolutional Neural Network (MRCNN) for semantic segmentation and ResNet50 for lesion detection. To pinpoint the precise location of a skin lesion, the MRCNN is used for border delineation. We amass a huge, annotated collection of dermoscopy images for thorough model training. The hybrid deep learning model to capture subtle representations of the images is trained from start to finish using this dataset. Results The experimental results using dermoscopy images show that the suggested hybrid method outperforms the current state‐of‐the‐art methods. The model's capacity to segment lesions into distinct groups is demonstrated by a segmentation accuracy measurement of 95.49 percent. In addition, the classification of skin lesions shows great accuracy and dependability, which is a notable advancement over traditional methods. The model is put through its paces on the ISIC 2020 Challenge dataset, scoring a perfect 96.75% accuracy. Compared to current best practices in IoMT, segmentation and classification models perform exceptionally well. Conclusion In conclusion, this paper's hybrid deep learning strategy is highly effective in skin lesion segmentation and classification. The results show that the model has the potential to improve diagnostic accuracy in the setting of IoMT, and it outperforms the current gold standards. The excellent results obtained on the ISIC 2020 Challenge dataset further confirm the viability and superiority of the suggested methodology for skin lesion analysis.
AbstractList Introduction Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy and efficiency of skin lesion analysis, CAD systems play a crucial role. To segment and classify skin lesions from dermoscopy images, this study focuses on using hybrid deep learning techniques. Method This research uses a hybrid deep learning model that combines two cutting‐edge approaches: Mask Region‐based Convolutional Neural Network (MRCNN) for semantic segmentation and ResNet50 for lesion detection. To pinpoint the precise location of a skin lesion, the MRCNN is used for border delineation. We amass a huge, annotated collection of dermoscopy images for thorough model training. The hybrid deep learning model to capture subtle representations of the images is trained from start to finish using this dataset. Results The experimental results using dermoscopy images show that the suggested hybrid method outperforms the current state‐of‐the‐art methods. The model's capacity to segment lesions into distinct groups is demonstrated by a segmentation accuracy measurement of 95.49 percent. In addition, the classification of skin lesions shows great accuracy and dependability, which is a notable advancement over traditional methods. The model is put through its paces on the ISIC 2020 Challenge dataset, scoring a perfect 96.75% accuracy. Compared to current best practices in IoMT, segmentation and classification models perform exceptionally well. Conclusion In conclusion, this paper's hybrid deep learning strategy is highly effective in skin lesion segmentation and classification. The results show that the model has the potential to improve diagnostic accuracy in the setting of IoMT, and it outperforms the current gold standards. The excellent results obtained on the ISIC 2020 Challenge dataset further confirm the viability and superiority of the suggested methodology for skin lesion analysis.
Introduction Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy and efficiency of skin lesion analysis, CAD systems play a crucial role. To segment and classify skin lesions from dermoscopy images, this study focuses on using hybrid deep learning techniques. Method This research uses a hybrid deep learning model that combines two cutting‐edge approaches: Mask Region‐based Convolutional Neural Network (MRCNN) for semantic segmentation and ResNet50 for lesion detection. To pinpoint the precise location of a skin lesion, the MRCNN is used for border delineation. We amass a huge, annotated collection of dermoscopy images for thorough model training. The hybrid deep learning model to capture subtle representations of the images is trained from start to finish using this dataset. Results The experimental results using dermoscopy images show that the suggested hybrid method outperforms the current state‐of‐the‐art methods. The model's capacity to segment lesions into distinct groups is demonstrated by a segmentation accuracy measurement of 95.49 percent. In addition, the classification of skin lesions shows great accuracy and dependability, which is a notable advancement over traditional methods. The model is put through its paces on the ISIC 2020 Challenge dataset, scoring a perfect 96.75% accuracy. Compared to current best practices in IoMT, segmentation and classification models perform exceptionally well. Conclusion In conclusion, this paper's hybrid deep learning strategy is highly effective in skin lesion segmentation and classification. The results show that the model has the potential to improve diagnostic accuracy in the setting of IoMT, and it outperforms the current gold standards. The excellent results obtained on the ISIC 2020 Challenge dataset further confirm the viability and superiority of the suggested methodology for skin lesion analysis.
Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy and efficiency of skin lesion analysis, CAD systems play a crucial role. To segment and classify skin lesions from dermoscopy images, this study focuses on using hybrid deep learning techniques.INTRODUCTIONParticularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy and efficiency of skin lesion analysis, CAD systems play a crucial role. To segment and classify skin lesions from dermoscopy images, this study focuses on using hybrid deep learning techniques.This research uses a hybrid deep learning model that combines two cutting-edge approaches: Mask Region-based Convolutional Neural Network (MRCNN) for semantic segmentation and ResNet50 for lesion detection. To pinpoint the precise location of a skin lesion, the MRCNN is used for border delineation. We amass a huge, annotated collection of dermoscopy images for thorough model training. The hybrid deep learning model to capture subtle representations of the images is trained from start to finish using this dataset.METHODThis research uses a hybrid deep learning model that combines two cutting-edge approaches: Mask Region-based Convolutional Neural Network (MRCNN) for semantic segmentation and ResNet50 for lesion detection. To pinpoint the precise location of a skin lesion, the MRCNN is used for border delineation. We amass a huge, annotated collection of dermoscopy images for thorough model training. The hybrid deep learning model to capture subtle representations of the images is trained from start to finish using this dataset.The experimental results using dermoscopy images show that the suggested hybrid method outperforms the current state-of-the-art methods. The model's capacity to segment lesions into distinct groups is demonstrated by a segmentation accuracy measurement of 95.49 percent. In addition, the classification of skin lesions shows great accuracy and dependability, which is a notable advancement over traditional methods. The model is put through its paces on the ISIC 2020 Challenge dataset, scoring a perfect 96.75% accuracy. Compared to current best practices in IoMT, segmentation and classification models perform exceptionally well.RESULTSThe experimental results using dermoscopy images show that the suggested hybrid method outperforms the current state-of-the-art methods. The model's capacity to segment lesions into distinct groups is demonstrated by a segmentation accuracy measurement of 95.49 percent. In addition, the classification of skin lesions shows great accuracy and dependability, which is a notable advancement over traditional methods. The model is put through its paces on the ISIC 2020 Challenge dataset, scoring a perfect 96.75% accuracy. Compared to current best practices in IoMT, segmentation and classification models perform exceptionally well.In conclusion, this paper's hybrid deep learning strategy is highly effective in skin lesion segmentation and classification. The results show that the model has the potential to improve diagnostic accuracy in the setting of IoMT, and it outperforms the current gold standards. The excellent results obtained on the ISIC 2020 Challenge dataset further confirm the viability and superiority of the suggested methodology for skin lesion analysis.CONCLUSIONIn conclusion, this paper's hybrid deep learning strategy is highly effective in skin lesion segmentation and classification. The results show that the model has the potential to improve diagnostic accuracy in the setting of IoMT, and it outperforms the current gold standards. The excellent results obtained on the ISIC 2020 Challenge dataset further confirm the viability and superiority of the suggested methodology for skin lesion analysis.
Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy and efficiency of skin lesion analysis, CAD systems play a crucial role. To segment and classify skin lesions from dermoscopy images, this study focuses on using hybrid deep learning techniques. This research uses a hybrid deep learning model that combines two cutting-edge approaches: Mask Region-based Convolutional Neural Network (MRCNN) for semantic segmentation and ResNet50 for lesion detection. To pinpoint the precise location of a skin lesion, the MRCNN is used for border delineation. We amass a huge, annotated collection of dermoscopy images for thorough model training. The hybrid deep learning model to capture subtle representations of the images is trained from start to finish using this dataset. The experimental results using dermoscopy images show that the suggested hybrid method outperforms the current state-of-the-art methods. The model's capacity to segment lesions into distinct groups is demonstrated by a segmentation accuracy measurement of 95.49 percent. In addition, the classification of skin lesions shows great accuracy and dependability, which is a notable advancement over traditional methods. The model is put through its paces on the ISIC 2020 Challenge dataset, scoring a perfect 96.75% accuracy. Compared to current best practices in IoMT, segmentation and classification models perform exceptionally well. In conclusion, this paper's hybrid deep learning strategy is highly effective in skin lesion segmentation and classification. The results show that the model has the potential to improve diagnostic accuracy in the setting of IoMT, and it outperforms the current gold standards. The excellent results obtained on the ISIC 2020 Challenge dataset further confirm the viability and superiority of the suggested methodology for skin lesion analysis.
Author Faheem, Muhammad
Akram, Arslan
Jaffar, Muhammad Arfan
Rashid, Javed
Amin, Riaz ul
Author_xml – sequence: 1
  givenname: Arslan
  surname: Akram
  fullname: Akram, Arslan
  organization: MLC Research Lab
– sequence: 2
  givenname: Javed
  surname: Rashid
  fullname: Rashid, Javed
  organization: University of Okara
– sequence: 3
  givenname: Muhammad Arfan
  surname: Jaffar
  fullname: Jaffar, Muhammad Arfan
  organization: Superior University Lahore
– sequence: 4
  givenname: Muhammad
  orcidid: 0000-0003-4628-4486
  surname: Faheem
  fullname: Faheem, Muhammad
  email: muhammad.faheem@uwasa.fi
  organization: University of Vaasa
– sequence: 5
  givenname: Riaz ul
  surname: Amin
  fullname: Amin, Riaz ul
  organization: University of Okara
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38009016$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUha2KCgbooi9QWWJDFwH_JI6zRIi2SFRIMEjdRYl9w5gmzuDrCM3b19MACyTwxvI53z268tknO370QMhXzk54OqcY4gmXhcg_kQVXjGVM52qHLFjFqqwsxJ89so_4wBgrKi53yZ7ULHlcLQjewv0APjbRjZ423lLTN4iuc2aWxo7iX-dpD5ieSCd0_p6uNm1wllqAdXKa4LfiAHE1WprguAJ66SMED3Gb8BtsyuvpcpU4PCSfu6ZH-PJ8H5C7HxfL81_Z1fXPy_Ozq8xIrfNM6cqKoityIwSzSitRGm1yZqDMtTGGq-RKrlRrkqR5VyrDWiu1KVtuSyUPyPGcuw7j4wQY68Ghgb5vPIwT1kJXuVRccZbQozfowzgFn7bbUlJVuRBFor49U1M7gK3XwQ1N2NQv35mA7zNgwogYoHtFOKu3VdWpqvp_VYk9fcMaN9cQQ-P6jyaeXA-b96Pr25vlPPEPvnuk5Q
CitedBy_id crossref_primary_10_1007_s44196_025_00919_z
crossref_primary_10_1371_journal_pone_0304995
crossref_primary_10_1111_1556_4029_70076
crossref_primary_10_1111_1556_4029_70033
crossref_primary_10_1007_s12065_024_00977_w
crossref_primary_10_1049_cit2_12351
crossref_primary_10_1109_ACCESS_2025_3569170
crossref_primary_10_1002_hsr2_70802
crossref_primary_10_4015_S1016237225500073
crossref_primary_10_1007_s11042_024_19188_7
crossref_primary_10_1049_cit2_12278
crossref_primary_10_1049_cit2_70004
crossref_primary_10_1049_wss2_12100
crossref_primary_10_1049_htl2_12073
crossref_primary_10_3390_diagnostics15050582
crossref_primary_10_1371_journal_pone_0330632
crossref_primary_10_1016_j_bspc_2024_107193
crossref_primary_10_1007_s12672_025_03501_3
crossref_primary_10_1111_srt_13611
crossref_primary_10_1111_srt_13698
crossref_primary_10_1002_ima_70065
crossref_primary_10_1049_tje2_70078
crossref_primary_10_1111_srt_13878
crossref_primary_10_1111_srt_13783
crossref_primary_10_1109_ACCESS_2024_3524732
crossref_primary_10_1038_s41598_025_98205_7
crossref_primary_10_3390_electronics14122364
crossref_primary_10_3390_jimaging10110265
crossref_primary_10_32604_cmc_2023_040512
crossref_primary_10_1016_j_compbiomed_2025_110533
crossref_primary_10_1007_s13369_025_10528_9
Cites_doi 10.32604/cmc.2023.032005
10.3390/s19235072
10.1002/ett.3963
10.1007/978-3-031-18896-1_7
10.1007/978-981-10-6614-6_12
10.1049/htl2.12049
10.1111/coin.12458
10.1007/978-981-33-4367-2_6
10.3390/jimaging7040067
10.1117/12.2682553
10.3389/fphys.2023.1126780
10.3390/diagnostics11050811
10.1007/s10278‐021‐00552‐0
10.1016/j.jnca.2020.102873
10.3390/app12115714
10.1111/srt.13150
10.3390/biomedicines11061733
10.1016/j.dib.2023.108940
10.1109/CVPRW59228.2023.00454
10.1007/978-3-319-49655-9_57
10.1038/s41598-023-30930-3
10.1109/ICSPIS57063.2022.10002541
10.1007/s11042‐020‐09067‐2
10.1117/1.JMI.6.2.024001
10.1109/JTEHM.2023.3282104
10.1111/srt.12920
10.3390/s23073548
10.21595/jve.2022.22271
10.1109/TMI.2020.2972964
10.1016/j.eswa.2020.113742
10.1108/WJE‐09‐2020‐0456
10.1049/cit2.12261
10.1109/ICDCS48716.2020.243558
10.1038/sdata.2018.161
10.3390/diagnostics11081390
10.1093/eurpub/ckz216
10.1016/j.media.2021.102293
10.1016/j.cmpb.2019.105241
10.1016/j.compbiomed.2022.105545
10.32604/cmc.2023.035287
10.1186/s40537-023-00769-6
10.1016/j.neucom.2022.03.042
10.1016/j.engappai.2023.106445
10.1016/j.eswa.2015.04.034
10.1007/978-3-030-87193-2_20
10.1002/ijc.33588
10.1007/s11276‐021‐02713‐z
10.1016/j.asoc.2022.109906
10.1111/srt.12817
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023 The Authors. Skin Research and Technology published by John Wiley & Sons Ltd.
2023. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023 The Authors. Skin Research and Technology published by John Wiley & Sons Ltd.
– notice: 2023. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1111/srt.13524
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1600-0846
EndPage n/a
ExternalDocumentID 38009016
10_1111_srt_13524
SRT13524
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
31~
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAKAS
AAMMB
AANHP
AAONW
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCMX
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADPDF
ADXAS
ADZCM
ADZMN
AEFGJ
AEGXH
AEIMD
AENEX
AFBPY
AFEBI
AFGKR
AFKRA
AFRAH
AFZJQ
AGQPQ
AGXDD
AHEFC
AHMBA
AIACR
AIDQK
AIDYY
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
FEDTE
FUBAC
FYUFA
FZ0
G-S
G.N
GODZA
H.X
HF~
HMCUK
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RPM
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
UKHRP
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
O8X
PHGZM
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3884-689d25f54c220d68627c8c40ce748ccc1625f3166bcce781f76c0bd38c7b1d763
IEDL.DBID 24P
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001101568700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0909-752X
1600-0846
IngestDate Sun Nov 09 09:19:03 EST 2025
Thu Oct 16 08:24:06 EDT 2025
Thu Apr 03 06:54:13 EDT 2025
Tue Nov 18 21:06:50 EST 2025
Thu Nov 27 00:45:58 EST 2025
Sun Jul 06 04:46:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords melanoma skin cancer
deep learning
ResNet50
MRCNN
ISIC-2020
Internet of Medical Things
Language English
License Attribution
2023 The Authors. Skin Research and Technology published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3884-689d25f54c220d68627c8c40ce748ccc1625f3166bcce781f76c0bd38c7b1d763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4628-4486
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.13524
PMID 38009016
PQID 2893694225
PQPubID 1106343
PageCount 14
ParticipantIDs proquest_miscellaneous_2894361610
proquest_journals_2893694225
pubmed_primary_38009016
crossref_primary_10_1111_srt_13524
crossref_citationtrail_10_1111_srt_13524
wiley_primary_10_1111_srt_13524_SRT13524
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
2023-Nov
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Copenhagen
PublicationTitle Skin research and technology
PublicationTitleAlternate Skin Res Technol
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2023; 75
2023; 10
2021; 27
2021; 7
2023; 74
2023; 13
2023; 14
2023; 11
2019; 6
2021; 2
2022; 491
2020; 186
2023; 15
2023; 8
2021; 149
2023; 123
2020; 161
2020; 39
2022; 24
2019; 19
2020; 79
2022; 28
2021; 32
2023; 47
2018; 5
2023; 23
2021; 11
2023
2020; 30
2022; 4
2022
2023; 29
2021
2020
2015; 42
2023; 133
2022; 12
2019
2022; 35
2018
2021; 173
2020; 26
2017
2022; 75
2022; 38
2012; 42
2022; 146
2022; 19
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Sheha MA (e_1_2_11_14_1) 2012; 42
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_17_1
Ullah KA (e_1_2_11_22_1) 2023; 11
e_1_2_11_38_1
e_1_2_11_19_1
Khan SA (e_1_2_11_46_1) 2023; 23
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
Albert N (e_1_2_11_15_1) 2022; 4
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
Kaur R (e_1_2_11_58_1) 2023; 15
Rashid J (e_1_2_11_20_1) 2023; 10
e_1_2_11_39_1
References_xml – start-page: 206
  year: 2021
  end-page: 216
  article-title: Boundary‐aware transformers for skin lesion segmentation
– volume: 10
  start-page: 105
  issue: 1
  year: 2023
  article-title: Skin‐Net: a novel deep residual network for skin lesions classification using multilevel feature extraction and cross‐channel correlation with detection of outlier
  publication-title: J Big Data
– start-page: 111
  year: 2018
  end-page: 119
  article-title: Melanoma skin cancer detection using image processing
– volume: 47
  year: 2023
  article-title: Datasets for training and validating a deep learning‐based system to detect microfossil fish teeth from slide images
  publication-title: Data in Brief
– volume: 161
  year: 2020
  article-title: Skin lesion segmentation using fully convolutional networks: a comparative experimental study
  publication-title: Expert Syst Appl
– volume: 42
  start-page: 6578
  issue: 19
  year: 2015
  end-page: 6585
  article-title: MED‐NODE: A computer‐assisted melanoma diagnosis system using non‐dermoscopic images
  publication-title: Expert Syst Appl
– volume: 23
  start-page: 33
  issue: 1
  year: 2023
  article-title: A novel thresholding for prediction analytics with machine learning techniques
  publication-title: Int J Comput Sci Netw Secur
– start-page: 101
  year: 2020
  end-page: 104
  article-title: Internet of Medical Things (IoMT)—an overview
– volume: 19
  start-page: 459
  issue: 4
  year: 2022
  end-page: 466
  article-title: Image splicing detection using discriminative robust local binary pattern and support vector machine
  publication-title: World J Eng
– volume: 11
  start-page: 1390
  issue: 8
  year: 2021
  article-title: Machine learning and deep learning methods for skin lesion classification and diagnosis: a systematic review
  publication-title: Diagnostics
– start-page: 97
  year: 2022
  end-page: 102
  article-title: DeepSkinNet: a deep learning model for skin cancer detection
– volume: 491
  start-page: 206
  year: 2022
  end-page: 216
  article-title: CS‐AF: a cost‐sensitive multi‐classifier active fusion framework for skin lesion classification
  publication-title: Neurocomputing
– volume: 149
  start-page: 778
  issue: 4
  year: 2021
  end-page: 789
  article-title: Cancer statistics for the year 2020: an overview
  publication-title: Int J Cancer
– volume: 15
  start-page: 1
  year: 2023
  end-page: 9
  article-title: Improving accuracy of convolutional neural network‐based skin lesion segmentation using group normalization and combined loss function
  publication-title: Int J Inf Technol
– volume: 7
  start-page: 67
  issue: 4
  year: 2021
  article-title: Skin lesion segmentation using deep learning with auxiliary task
  publication-title: J Imaging
– volume: 26
  start-page: 413
  issue: 3
  year: 2020
  end-page: 421
  article-title: Ros‐NET: a deep convolutional neural network for automatic identification of rosacea lesions
  publication-title: Skin Res Technol
– volume: 19
  start-page: 5072
  issue: 23
  year: 2019
  article-title: A multiobjective, lion mating optimization inspired routing protocol for wireless body area sensor network based healthcare applications
  publication-title: Sensors
– volume: 14
  start-page: 160
  year: 2023
  article-title: Fundus image classification using Inception V3 and ResNet‐50 for the early diagnostics of fundus diseases
  publication-title: Front Physiol
– volume: 10
  start-page: 1
  year: 2023
  end-page: 19
  article-title: Mouth and oral disease classification using InceptionResNetV2 method
  publication-title: Multimed Tools Appl
– volume: 75
  start-page: 1863
  issue: 1
  year: 2023
  end-page: 1881
  article-title: Deep learning method to detect the road cracks and potholes for smart cities
  publication-title: Comput Mater Contin
– volume: 8
  start-page: 755
  issue: 3
  year: 2023
  end-page: 769
  article-title: D2PAM: epileptic seizures prediction using adversarial deep dual patch attention mechanism
  publication-title: CAAI Trans Intell Technol
– volume: 11
  start-page: 811
  issue: 5
  year: 2021
  article-title: Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization
  publication-title: Diagnostics
– volume: 186
  year: 2020
  article-title: Skin lesion segmentation using high‐resolution convolutional neural network
  publication-title: Comput Methods Programs Biomed
– volume: 11
  start-page: 341
  year: 2023
  end-page: 350
  article-title: A Hybrid convolutional neural network model for automatic diabetic retinopathy classification from fundus images
  publication-title: IEEE J Transl Eng Health Med
– year: 2022
– volume: 35
  start-page: 258
  issue: 2
  year: 2022
  end-page: 280
  article-title: Refined residual deep convolutional network for skin lesion classification
  publication-title: J Digit Imaging
– start-page: 377
  year: 2023
  end-page: 382
– volume: 30
  start-page: 1026
  issue: 5
  year: 2020
  end-page: 1027
  article-title: Cancer statistics: a comparison between world health organization (WHO) and global burden of disease (GBD)
  publication-title: Eur J Public Health
– volume: 79
  start-page: 24029
  issue: 33
  year: 2020
  end-page: 24055
  article-title: Skin melanoma classification using ROI and data augmentation with deep convolutional neural networks
  publication-title: Multimed Tools Appl
– year: 2019
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  end-page: 9
  article-title: The HAM10000 dataset, a large collection of multi‐source dermatoscopic images of common pigmented skin lesions
  publication-title: Sci Data
– volume: 29
  start-page: 1507
  issue: 4
  year: 2023
  end-page: 1521
  article-title: Boosting and rectifying few‐shot learning prototype network for skin lesion classification based on the internet of medical things
  publication-title: Wireless Netw
– volume: 133
  year: 2023
  article-title: Detection of Covid‐19 and other pneumonia cases from CT and X‐ray chest images using deep learning based on feature reuse residual block and depthwise dilated convolutions neural network
  publication-title: Appl Soft Comput
– volume: 28
  start-page: 571
  issue: 4
  year: 2022
  end-page: 576
  article-title: A deep learning approach to detect blood vessels in basal cell carcinoma
  publication-title: Skin Res Technol
– volume: 146
  year: 2022
  article-title: NCRNet: neighborhood context refinement network for skin lesion segmentation
  publication-title: Comput Biol Med
– volume: 10
  start-page: 87
  issue: 4
  year: 2023
  end-page: 98
  article-title: Secure medical image transmission using deep neural network in e‐health applications
  publication-title: Healthc Technol Lett
– start-page: 4314
  year: 2023
  end-page: 4324
  article-title: An ensemble method with edge awareness for abnormally shaped nuclei segmentation
– volume: 75
  year: 2022
  article-title: Ms RED: a novel multi‐scale residual encoding and decoding network for skin lesion segmentation
  publication-title: Med Image Anal
– volume: 11
  start-page: 1
  issue: 1
  year: 2023
  end-page: 8
  article-title: Machine learning based prediction of osteoporosis in postmenopausal women with clinical examined features: a quantitative clinical study
  publication-title: Health Sci Rep
– volume: 6
  issue: 2
  year: 2019
  article-title: Automatic skin lesion segmentation by coupling deep fully convolutional networks and shallow network with textons
  publication-title: J Med Imaging
– volume: 12
  start-page: 5714
  issue: 11
  year: 2022
  article-title: Skin cancer disease detection using transfer learning technique
  publication-title: Appl Sci
– volume: 24
  start-page: 666
  issue: 4
  year: 2022
  end-page: 678
  article-title: A convolutional neural network method based on Adam optimizer with power‐exponential learning rate for bearing fault diagnosis
  publication-title: J Vibroengineering
– volume: 4
  issue: 3
  year: 2022
  article-title: An automatic helmet detection system using convolution neural network
  publication-title: Int J Adv Sci Innov
– volume: 2
  start-page: 55
  year: 2021
  end-page: 62
  article-title: Skin cancer classification through transfer learning using ResNet‐50
– volume: 13
  start-page: 6765
  issue: 1
  year: 2023
  article-title: Assessment of experimental OpenCV tracking algorithms for ultrasound videos
  publication-title: Sci Rep
– volume: 23
  start-page: 3548
  issue: 7
  year: 2023
  article-title: An IoMT‐based melanoma lesion segmentation using conditional generative adversarial networks
  publication-title: Sensors
– volume: 173
  year: 2021
  article-title: IoT‐based telemedicine for disease prevention and health promotion: state‐of‐the‐art
  publication-title: J Netw Comput Appl
– volume: 42
  start-page: 22
  issue: 20
  year: 2012
  end-page: 26
  article-title: Automatic detection of melanoma skin cancer using texture analysis
  publication-title: Int J Comput Appl
– volume: 123
  year: 2023
  article-title: Enhancing detection performance for robotic harvesting systems through RandAugment
  publication-title: Eng Appl Artif Intell
– volume: 32
  issue: 7
  year: 2021
  article-title: An internet of health things‐driven deep learning framework for detection and classification of skin cancer using transfer learning
  publication-title: Trans Emerg Telecommun Technol
– volume: 39
  start-page: 2482
  issue: 7
  year: 2020
  end-page: 2493
  article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification
  publication-title: IEEE Trans Med Imaging
– volume: 38
  start-page: 229
  issue: 1
  year: 2022
  end-page: 248
  article-title: Telemedicine virtual reality based skin image in children's dermatology medical system
  publication-title: Comput Intell
– volume: 11
  start-page: 1733
  issue: 6
  year: 2023
  article-title: MSF‐Net: a lightweight multi‐scale feature fusion network for skin lesion segmentation
  publication-title: Biomedicines
– start-page: 79
  year: 2023
  end-page: 91
– volume: 74
  start-page: 1235
  issue: 1
  year: 2023
  end-page: 1257
  article-title: Real‐time multiple guava leaf disease detection from a single leaf using hybrid deep learning technique
  publication-title: Comput Mater Contin
– volume: 27
  start-page: 126
  issue: 2
  year: 2021
  end-page: 137
  article-title: Proposing a novel unsupervised stack ensemble of deep and conventional image segmentation (SEDCIS) method for localizing vitiligo lesions in skin images
  publication-title: Skin Res Technol
– start-page: 468
  year: 2017
  end-page: 475
– ident: e_1_2_11_21_1
  doi: 10.32604/cmc.2023.032005
– ident: e_1_2_11_12_1
  doi: 10.3390/s19235072
– ident: e_1_2_11_38_1
  doi: 10.1002/ett.3963
– ident: e_1_2_11_7_1
  doi: 10.1007/978-3-031-18896-1_7
– ident: e_1_2_11_2_1
  doi: 10.1007/978-981-10-6614-6_12
– ident: e_1_2_11_6_1
  doi: 10.1049/htl2.12049
– ident: e_1_2_11_11_1
  doi: 10.1111/coin.12458
– ident: e_1_2_11_26_1
  doi: 10.1007/978-981-33-4367-2_6
– volume: 23
  start-page: 33
  issue: 1
  year: 2023
  ident: e_1_2_11_46_1
  article-title: A novel thresholding for prediction analytics with machine learning techniques
  publication-title: Int J Comput Sci Netw Secur
– ident: e_1_2_11_54_1
  doi: 10.3390/jimaging7040067
– ident: e_1_2_11_45_1
  doi: 10.1117/12.2682553
– ident: e_1_2_11_41_1
  doi: 10.3389/fphys.2023.1126780
– ident: e_1_2_11_37_1
  doi: 10.3390/diagnostics11050811
– ident: e_1_2_11_30_1
  doi: 10.1007/s10278‐021‐00552‐0
– ident: e_1_2_11_9_1
  doi: 10.1016/j.jnca.2020.102873
– ident: e_1_2_11_19_1
  doi: 10.3390/app12115714
– ident: e_1_2_11_16_1
  doi: 10.1111/srt.13150
– volume: 11
  start-page: 1
  issue: 1
  year: 2023
  ident: e_1_2_11_22_1
  article-title: Machine learning based prediction of osteoporosis in postmenopausal women with clinical examined features: a quantitative clinical study
  publication-title: Health Sci Rep
– ident: e_1_2_11_57_1
  doi: 10.3390/biomedicines11061733
– ident: e_1_2_11_47_1
  doi: 10.1016/j.dib.2023.108940
– ident: e_1_2_11_40_1
  doi: 10.1109/CVPRW59228.2023.00454
– ident: e_1_2_11_28_1
  doi: 10.1007/978-3-319-49655-9_57
– ident: e_1_2_11_44_1
  doi: 10.1038/s41598-023-30930-3
– ident: e_1_2_11_25_1
  doi: 10.1109/ICSPIS57063.2022.10002541
– ident: e_1_2_11_32_1
  doi: 10.1007/s11042‐020‐09067‐2
– ident: e_1_2_11_36_1
  doi: 10.1117/1.JMI.6.2.024001
– ident: e_1_2_11_8_1
  doi: 10.1109/JTEHM.2023.3282104
– ident: e_1_2_11_23_1
  doi: 10.1111/srt.12920
– ident: e_1_2_11_13_1
  doi: 10.3390/s23073548
– volume: 4
  issue: 3
  year: 2022
  ident: e_1_2_11_15_1
  article-title: An automatic helmet detection system using convolution neural network
  publication-title: Int J Adv Sci Innov
– ident: e_1_2_11_49_1
  doi: 10.21595/jve.2022.22271
– ident: e_1_2_11_34_1
  doi: 10.1109/TMI.2020.2972964
– ident: e_1_2_11_52_1
  doi: 10.1016/j.eswa.2020.113742
– ident: e_1_2_11_18_1
  doi: 10.1108/WJE‐09‐2020‐0456
– ident: e_1_2_11_10_1
  doi: 10.1049/cit2.12261
– volume: 15
  start-page: 1
  year: 2023
  ident: e_1_2_11_58_1
  article-title: Improving accuracy of convolutional neural network‐based skin lesion segmentation using group normalization and combined loss function
  publication-title: Int J Inf Technol
– ident: e_1_2_11_5_1
  doi: 10.1109/ICDCS48716.2020.243558
– ident: e_1_2_11_33_1
  doi: 10.1038/sdata.2018.161
– volume: 42
  start-page: 22
  issue: 20
  year: 2012
  ident: e_1_2_11_14_1
  article-title: Automatic detection of melanoma skin cancer using texture analysis
  publication-title: Int J Comput Appl
– ident: e_1_2_11_31_1
  doi: 10.3390/diagnostics11081390
– ident: e_1_2_11_3_1
  doi: 10.1093/eurpub/ckz216
– ident: e_1_2_11_55_1
  doi: 10.1016/j.media.2021.102293
– ident: e_1_2_11_51_1
  doi: 10.1016/j.cmpb.2019.105241
– ident: e_1_2_11_56_1
  doi: 10.1016/j.compbiomed.2022.105545
– ident: e_1_2_11_24_1
  doi: 10.32604/cmc.2023.035287
– ident: e_1_2_11_43_1
  doi: 10.1186/s40537-023-00769-6
– ident: e_1_2_11_35_1
  doi: 10.1016/j.neucom.2022.03.042
– ident: e_1_2_11_42_1
  doi: 10.1016/j.engappai.2023.106445
– ident: e_1_2_11_27_1
  doi: 10.1016/j.eswa.2015.04.034
– ident: e_1_2_11_53_1
  doi: 10.1007/978-3-030-87193-2_20
– volume: 10
  start-page: 1
  year: 2023
  ident: e_1_2_11_20_1
  article-title: Mouth and oral disease classification using InceptionResNetV2 method
  publication-title: Multimed Tools Appl
– ident: e_1_2_11_4_1
  doi: 10.1002/ijc.33588
– ident: e_1_2_11_39_1
  doi: 10.1007/s11276‐021‐02713‐z
– ident: e_1_2_11_29_1
– ident: e_1_2_11_48_1
  doi: 10.1016/j.asoc.2022.109906
– ident: e_1_2_11_50_1
– ident: e_1_2_11_17_1
  doi: 10.1111/srt.12817
SSID ssj0005913
Score 2.5513318
Snippet Introduction Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy...
Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy and...
Introduction Particularly within the Internet of Medical Things (IoMT) context, skin lesion analysis is critical for precise diagnosis. To improve the accuracy...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e13524
SubjectTerms Accuracy
Artificial neural networks
Best practice
Classification
Datasets
Deep Learning
Dermoscopy - methods
Humans
Image segmentation
Internet
Internet of Medical Things
ISIC‐2020
Lesions
Machine learning
Medical imaging
Melanoma - pathology
melanoma skin cancer
MRCNN
Neural networks
ResNet50
Semantic segmentation
Skin cancer
Skin diseases
Skin Diseases - diagnostic imaging
Skin lesions
Skin Neoplasms - diagnostic imaging
Skin Neoplasms - pathology
Title Segmentation and classification of skin lesions using hybrid deep learning method in the Internet of Medical Things
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.13524
https://www.ncbi.nlm.nih.gov/pubmed/38009016
https://www.proquest.com/docview/2893694225
https://www.proquest.com/docview/2894361610
Volume 29
WOSCitedRecordID wos001101568700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005913
  issn: 0909-752X
  databaseCode: 7X7
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005913
  issn: 0909-752X
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005913
  issn: 0909-752X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005913
  issn: 0909-752X
  databaseCode: 24P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFiE48CgFFkplEAcukeLEsR1x4tEVh7JabVu0t8ivLBUlW222SPx7xo8NrQAJiUsSOZPYsmc8Y3tmPoBX1CghKDNZWZZFxhxvM507l3GN6oc7VLkBOuHzkZhM5HxeT7fgzSYWJuaHGDbcvGSE-doLuNL9FSHvV2sP2lCwG7BDaSk9bkPBpr_8O-qIjVzndSaqYp7SCnk3nuHT68roNwvzusEaNM743n-19T7cTYYmeRs54wFsuW4X7lxJP7gLtz6lg_WH0B-7xbcUhtQR1VlivFnt_Yhi0bIl_dezjpw7v73WE-8vvyBffviAL2KduyAJf2JBIig1QWI0LknccnRr_4d0KkQiWOgenI4PT95_zBIeQ2ZKKVnGZW2Lqq2YKYrc-tASYaRhuXGCSWMMxbVUW1LOtcEiSVvBTa5tKY3Q1OJE9gi2u2XnngChitrKajQ_mWKVFiq3lRJK2JbmuqZ6BK83A9OYlKzcY2acN5tFC3ZpE7p0BC8H0ouYoeNPRPub0W2SkPYNrjVLXjOc0UbwYniN4uXPTFTnlpeBhpUczeJ8BI8jVwy1IM8hd1GOjQ2D__fqm-PZSXh4-u-kz-C2h7aPcY_7sL1eXbrncNN8X5_1q4PA63gVcxGu8gB23h1OpjO8f5iNT49-AiWRBl4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NMgF7gH0BhbF50x72EimOHTuR9oIQ0xBdNbEy9S2KP9JNjHRqWiT-e86xGzYxJCTeIucSW7bP9_PZdz-AQ6pLKSnXEWMsibgVVaRiayOh0PwIiya3pU64HMjhMBuP8_MVOF7Gwvj8EJ3DzWlGu147BXcO6Tta3szmjrUh4Y_gMUcr42Z5ws9_X_DIPTlyHueRTJNxyCvk7vF0n963Rn9AzPuItTU5Jy_-r7Hr8DxATfLez40NWLH1JqzdSUC4CU_OwtH6FjQXdvI9BCLVpKwN0Q5Yu5tEvmhakebbdU1urHOwNcTdmJ-Qq58u5IsYa29JYKCYEE9LTVAY4SXxTkc7d38I50LE04Vuw9eTj6MPp1FgZIg0yzIeiSw3SVqlXCdJbFxwidSZ5rG2kmdaa4q7qYpRIZTGooxWUuhYGZZpqajBpewl9OppbV8DoSU1qVEIQHnJUyXL2KSlLKWpaKxyqvpwtByZQod05Y4146ZYbluwS4u2S_tw0Ine-hwdDwntLIe3CGraFLjbZCLnuKb1Yb97jQrmTk3K2k4XrQxnAoFx3IdXflp0tTCE2wioBDa2Hf2_V19cfBm1D2_-XXQPnp6OzgbF4NPw81t45ojufRTkDvTms4V9B6v6x_y6me22E_8XGW8FQA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BQYg98A0rMPCmPewlUhw7diLtBcGqTSsV4kt9i-KPlApIq6ZM2n8_O3YDaCAh8RY5l9iyfb6f7bv7AXzFMuccUxkQQqKAalYEItQ6YMKYH6aNya2pE667vNdL-v30bA6-z2JhXH6I5sDNaka9XlsF12NVPNHyajK1rA0RnYcFaklkWrBwct656j66eKSOHjkN04DHUd9nFrKePM3Hz-3RfyDzOWatjU5n9X3NXYMVDzbRkZsd6zCnyw348CQF4QYsnfrL9U2oLvTg3ocilSgvFZIWWltfIlc0KlB1OyzRnbZHbBWyPvMDdPPXBn0hpfUYeQ6KAXLE1MgIG4CJ3LGjnto_-Jsh5AhDt-Cq8-Py-GfgORkCSZKEBixJVRQXMZVRFCobXsJlImkoNaeJlBKb_VRBMGNCmqIEF5zJUCiSSC6wMovZNrTKUak_AsI5VrESBoLSnMaC56GKc55zVeBQpFi04dtsZDLpE5Zb3oy7bLZxMV2a1V3ahi-N6Nhl6XhJaH82vJlX1Coz-03CUmpWtTZ8bl4bFbP3JnmpRw-1DCXMQOOwDTtuWjS1EAO4DaRiprH16L9efXZxflk_7L5d9BCWzk46WfdX7_ceLFumexcGuQ-t6eRBf4JF-Wc6rCYHfub_A1-EBlY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+and+classification+of+skin+lesions+using+hybrid+deep+learning+method+in+the+Internet+of+Medical+Things&rft.jtitle=Skin+research+and+technology&rft.au=Akram%2C+Arslan&rft.au=Rashid%2C+Javed&rft.au=Jaffar%2C+Muhammad+Arfan&rft.au=Faheem%2C+Muhammad&rft.date=2023-11-01&rft.issn=1600-0846&rft.eissn=1600-0846&rft.volume=29&rft.issue=11&rft.spage=e13524&rft_id=info:doi/10.1111%2Fsrt.13524&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0909-752X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0909-752X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0909-752X&client=summon