MRI‐based transfer function determination for the assessment of implant safety

Purpose We introduce a new MR‐based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant‐specific measures that relate the incident tangential electric field on an (elongated) implant to a scatt...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 78; no. 6; pp. 2449 - 2459
Main Authors: Tokaya, J.P., Raaijmakers, A.J.E., Luijten, P.R., Bakker, J.F., Berg, C.A.T.
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.12.2017
Subjects:
ISSN:0740-3194, 1522-2594, 1522-2594
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose We introduce a new MR‐based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant‐specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images. Theory and Methods The principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low‐flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant‐specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison. Results TFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R ≥ 0.7 between measurements and simulations, and a difference in field at the tip ΔEtip ≤ 19%) from relatively quick (t < 20 minutes) MRI acquisitions with (several) millimeter spatial resolution. Conclusion Transfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR‐based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449–2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine
AbstractList We introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant-specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images.PURPOSEWe introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant-specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images.The principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low-flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant-specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison.THEORY AND METHODSThe principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low-flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant-specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison.TFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R ≥ 0.7 between measurements and simulations, and a difference in field at the tip ΔEtip ≤ 19%) from relatively quick (t < 20 minutes) MRI acquisitions with (several) millimeter spatial resolution.RESULTSTFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R ≥ 0.7 between measurements and simulations, and a difference in field at the tip ΔEtip ≤ 19%) from relatively quick (t < 20 minutes) MRI acquisitions with (several) millimeter spatial resolution.Transfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR-based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449-2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine.CONCLUSIONTransfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR-based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449-2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Purpose We introduce a new MR‐based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant‐specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images. Theory and Methods The principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low‐flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant‐specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison. Results TFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R ≥ 0.7 between measurements and simulations, and a difference in field at the tip ΔEtip ≤ 19%) from relatively quick (t < 20 minutes) MRI acquisitions with (several) millimeter spatial resolution. Conclusion Transfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR‐based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449–2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine
Purpose We introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant-specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images. Theory and Methods The principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low-flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant-specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison. Results TFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R≥0.7 between measurements and simulations, and a difference in field at the tip [Delta]Etip≤19%) from relatively quick (t<20minutes) MRI acquisitions with (several) millimeter spatial resolution. Conclusion Transfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR-based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449-2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine
We introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant-specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images. The principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low-flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant-specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison. TFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R ≥ 0.7 between measurements and simulations, and a difference in field at the tip ΔEtip ≤ 19%) from relatively quick (t < 20 minutes) MRI acquisitions with (several) millimeter spatial resolution. Transfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR-based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449-2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Author Luijten, P.R.
Bakker, J.F.
Berg, C.A.T.
Tokaya, J.P.
Raaijmakers, A.J.E.
Author_xml – sequence: 1
  givenname: J.P.
  surname: Tokaya
  fullname: Tokaya, J.P.
  email: j.p.tokaya@umcutrecht.nl
  organization: University Medical Center Utrecht
– sequence: 2
  givenname: A.J.E.
  surname: Raaijmakers
  fullname: Raaijmakers, A.J.E.
  organization: Eindhoven University of Technology
– sequence: 3
  givenname: P.R.
  surname: Luijten
  fullname: Luijten, P.R.
  organization: University Medical Center Utrecht
– sequence: 4
  givenname: J.F.
  surname: Bakker
  fullname: Bakker, J.F.
  organization: Medtronic Eindhoven Design Center
– sequence: 5
  givenname: C.A.T.
  surname: Berg
  fullname: Berg, C.A.T.
  organization: University Medical Center Utrecht
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28164362$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKxDAUhoMoOl4WvoAU3OiienJp0i5FvIGDIroOaXqClV7GpEVm5yP4jD6JcUZdCLo6F75z-Pn_TbLa9R0SskvhiAKw49a3R0xKylfIhGaMpSwrxCqZgBKQclqIDbIZwhMAFIUS62SD5VQKLtmE3E7vrt5f30oTsEoGb7rg0Cdu7OxQ911S4YC-rTuzmFzvk-ERExMChtBiNyS9S-p21pjYBuNwmG-TNWeagDtfdYs8nJ_dn16m1zcXV6cn16nlec7TUiiRKYfAKmUrKViOShU8cyVQVYKEDBzlpjQV8EwxTqmwuZUWsYhrqPgWOVj-nfn-ecQw6LYOFpsoBfsxaJrLLGM54zKi-7_Qp370XVSnaSE5CA6SR2rvixrLFis983Vr_Fx_exWBwyVgfR-CR_eDUNCfOeiYg17kENnjX6yth4WJ0eO6-e_ipW5w_vdrPb2bLi8-AMkImJk
CitedBy_id crossref_primary_10_1088_1361_6560_ab9fc7
crossref_primary_10_1109_JERM_2018_2865459
crossref_primary_10_1002_mrm_28089
crossref_primary_10_1002_mrm_30179
crossref_primary_10_1002_mrm_29235
crossref_primary_10_1002_mrm_30389
crossref_primary_10_1016_j_cmpb_2022_107316
crossref_primary_10_1002_mrm_29375
crossref_primary_10_1109_TEMC_2020_3040756
crossref_primary_10_1002_mp_14225
crossref_primary_10_1002_mrm_27481
crossref_primary_10_1007_s00117_019_0540_7
crossref_primary_10_1007_s00117_019_0541_6
crossref_primary_10_1002_mrm_28968
crossref_primary_10_1002_mrm_27218
crossref_primary_10_1109_TEMC_2021_3121203
crossref_primary_10_1002_mrm_28379
crossref_primary_10_1002_nbm_4900
crossref_primary_10_1002_mrm_28840
crossref_primary_10_1002_mrm_27974
crossref_primary_10_1007_s10334_021_00909_0
crossref_primary_10_1002_mrm_28804
crossref_primary_10_1002_jmri_27194
crossref_primary_10_1109_TIM_2022_3212552
Cites_doi 10.1002/mrm.25103
10.1109/COMCAS.2015.7360373
10.1002/mrm.22468
10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q
10.1109/TMTT.2014.2376523
10.1002/mrm.24316
10.1016/j.mri.2005.07.005
10.1186/1475-925X-1-2
10.1002/mrm.22724
10.1002/jmri.21159
10.1002/mrm.10037
10.1109/TDMR.2005.859033
10.1002/mrm.25543
10.1118/1.3298006
10.1093/eurheartj/sum071
10.3390/electronics2010001
10.1002/mrm.22995
10.1002/mrm.21881
ContentType Journal Article
Copyright 2017 International Society for Magnetic Resonance in Medicine
2017 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2017 International Society for Magnetic Resonance in Medicine
– notice: 2017 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.26613
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Biochemistry Abstracts 1
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2459
ExternalDocumentID 28164362
10_1002_mrm_26613
MRM26613
Genre article
Journal Article
GrantInformation_xml – fundername: Supported by the DeNeCor project being part of the ENIAC Joint Undertaking
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3883-b47457fe02d7cd6428e77935fb017b06050f13abad035723114c8c6cee913a0d3
IEDL.DBID DRFUL
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414967400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Oct 02 06:14:06 EDT 2025
Sat Nov 29 14:23:24 EST 2025
Thu Apr 03 06:55:55 EDT 2025
Sat Nov 29 02:37:41 EST 2025
Tue Nov 18 22:17:21 EST 2025
Thu Sep 25 07:34:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords transfer function
active implantable medical device (AIMD)
EM simulations
RF heating
safety
Language English
License 2017 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3883-b47457fe02d7cd6428e77935fb017b06050f13abad035723114c8c6cee913a0d3
Notes The copyright line for this article was changed on 20 July 2017 after original online publication.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.26613
PMID 28164362
PQID 1963043063
PQPubID 1016391
PageCount 11
ParticipantIDs proquest_miscellaneous_1865528236
proquest_journals_1963043063
pubmed_primary_28164362
crossref_primary_10_1002_mrm_26613
crossref_citationtrail_10_1002_mrm_26613
wiley_primary_10_1002_mrm_26613_MRM26613
PublicationCentury 2000
PublicationDate December 2017
2017-12-00
2017-Dec
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 47
2010; 64
2013; 69
2010; 37
2012
2009; 61
2015; 73
2000; 12
2015; 63
2015; 74
2005; 5
2002; 1
2007; 9
2011; 65
2012; 67
2005; 23
2007; 26
1989
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_23_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
Balanis CA (e_1_2_7_14_1) 1989
References_xml – volume: 12
  start-page: 173
  year: 2000
  end-page: 187
  article-title: The principle of reciprocity in signal strength calculations—a mathematical guide
  publication-title: Concepts Magn Reson
– volume: 9
  start-page: I113
  year: 2007
  end-page: I115
  article-title: The follow‐up of cardiac devices: what to expect for the future?
  publication-title: Eur Heart J Suppl
– volume: 61
  start-page: 570
  year: 2009
  end-page: 578
  article-title: Measuring RF‐induced currents inside implants: impact of device configuration on MRI safety of cardiac pacemaker leads
  publication-title: Magn Reson Med
– volume: 64
  start-page: 823
  year: 2010
  end-page: 833
  article-title: Ensuring safety of implanted devices under MRI using reversed RF polarization
  publication-title: Magn Reson Med
– volume: 37
  start-page: 814
  year: 2010
  end-page: 821
  article-title: New method to monitor RF safety in MRI‐guided interventions based on RF induced image artefacts
  publication-title: Med Phys
– volume: 73
  start-page: 427
  year: 2015
  end-page: 441
  article-title: Safely assessing radiofrequency heating potential of conductive devices using image‐based current measurements
  publication-title: Magn Reson Med
– volume: 23
  start-page: 887
  year: 2005
  end-page: 891
  article-title: Simple design changes to wires to substantially reduce MRI induced heating at 1.5 T: implications for implanted leads
  publication-title: Magn Reson Imag
– volume: 69
  start-page: 845
  year: 2013
  end-page: 852
  article-title: Reduction of the radiofrequency heating of metallic devices using a dual‐drive birdcage coil
  publication-title: Magn Reson Med
– year: 1989
– volume: 5
  start-page: 467
  year: 2005
  end-page: 479
  article-title: MRI and implanted medical devices: basic interactions with an emphasis on heating
  publication-title: IEEE Trans Device Mater Reliab
– volume: 67
  start-page: 552
  year: 2012
  end-page: 561
  article-title: B 1 + Phase mapping at 7 T and its application for in vivo electrical conductivity mapping
  publication-title: Magn Reson Med
– volume: 1
  start-page: 2
  year: 2002
  article-title: Temperature measurement on neurological pulse generators during MR scans
  publication-title: Biomed Eng Online
– volume: 65
  start-page: 1305
  year: 2011
  end-page: 1313
  article-title: Reduction of implant RF heating through modification of transmit coil electric field
  publication-title: Magn Reson Med
– volume: 26
  start-page: 1278
  year: 2007
  end-page: 1285
  article-title: Calculation of MRI‐induced heating of an implanted medical lead wire with an electric field transfer function
  publication-title: J Magn Reson Imaging
– volume: 47
  start-page: 187
  year: 2002
  end-page: 193
  article-title: RF safety of wires in interventional MRI: using a safety index
  publication-title: Magn Reson Med
– volume: 63
  start-page: 305
  year: 2015
  end-page: 313
  article-title: A technique to evaluate MRI‐Induced electric fields at the ends of practical implanted lead
  publication-title: IEEE Trans Microwve Theory Tech.
– volume: 74
  start-page: 1790
  year: 2015
  end-page: 1802
  article-title: Controlling radiofrequency‐induced currents in guidewires using parallel transmit
  publication-title: Magn Reson Med
– year: 2012
– ident: e_1_2_7_18_1
  doi: 10.1002/mrm.25103
– ident: e_1_2_7_21_1
  doi: 10.1109/COMCAS.2015.7360373
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.22468
– ident: e_1_2_7_19_1
  doi: 10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q
– ident: e_1_2_7_4_1
  doi: 10.1109/TMTT.2014.2376523
– ident: e_1_2_7_10_1
  doi: 10.1002/mrm.24316
– ident: e_1_2_7_20_1
  doi: 10.1016/j.mri.2005.07.005
– ident: e_1_2_7_7_1
  doi: 10.1186/1475-925X-1-2
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.22724
– ident: e_1_2_7_13_1
  doi: 10.1002/jmri.21159
– ident: e_1_2_7_6_1
  doi: 10.1002/mrm.10037
– volume-title: Advanced Engineering Electromagnetics
  year: 1989
  ident: e_1_2_7_14_1
– ident: e_1_2_7_22_1
– ident: e_1_2_7_5_1
  doi: 10.1109/TDMR.2005.859033
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.25543
– ident: e_1_2_7_16_1
  doi: 10.1118/1.3298006
– ident: e_1_2_7_3_1
  doi: 10.1093/eurheartj/sum071
– ident: e_1_2_7_2_1
  doi: 10.3390/electronics2010001
– ident: e_1_2_7_12_1
– ident: e_1_2_7_23_1
  doi: 10.1002/mrm.22995
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.21881
– ident: e_1_2_7_15_1
SSID ssj0009974
Score 2.3889098
Snippet Purpose We introduce a new MR‐based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical...
We introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices....
Purpose We introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2449
SubjectTerms active implantable medical device (AIMD)
Adaptation
Animals
Computer Graphics
Computer Simulation
Correlation coefficients
Data acquisition
Deep Brain Stimulation
Electric fields
Electromagnetic Fields
Electromagnetic Radiation
Elongation
EM simulations
Humans
Image Processing, Computer-Assisted
Magnetic Fields
Magnetic Resonance Imaging
Medical devices
Medical equipment
Phantoms, Imaging
Prostheses and Implants
Radio frequency
Radio Waves
Reciprocity
Reproducibility of Results
RF heating
Safety
Signal-To-Noise Ratio
Spatial discrimination
Spatial resolution
Surgical implants
transfer function
Transfer functions
Transplants & implants
Title MRI‐based transfer function determination for the assessment of implant safety
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26613
https://www.ncbi.nlm.nih.gov/pubmed/28164362
https://www.proquest.com/docview/1963043063
https://www.proquest.com/docview/1865528236
Volume 78
WOSCitedRecordID wos000414967400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7ovOCL98t0ShQffKlr00s6fBJ1KLghw-HeSpomMNhF1in45k_wN_pLPEkvIioIPrVpTkmac07Olyb5AnAsAuHwwPetBA3G8kSorBhRvuXECE4dV4XcUeawCdZuh71e424Gzoq9MBk_RPnDTXuG6a-1g_M4rX-Shg4nw1MdXdxZmKNot34F5i47ze7tJ-duIyNhZp7uahpeQSxk03r58tdw9A1jfoWsJuY0V_5V21VYzqEmOc9sYw1m5GgdFlv5ZPo6LJjVnyLdgLtW5-b99U1HtIRMDZSVE6JDnlYbSYolMyaFKJcgaiS85PQkY0X6w8cBKomkXMnpyyZ0m1f3F9dWftSCJdwwdK3YY57PlLRpwkSixySSoef6KkaPjW0c89jKcXnME2xohpjQQbWinqVs4GM7cbegMhqP5A4QX_AgdAKb24oiOnFCJnBMoxKKVxnbtAonRYtHIuch18dhDKKMQZlG2FaRaasqHJWijxn5xk9CtUJtUe5_aaT7Fc1mFmD2YZmNnqOnQ_hIjp9QRu_JpfrA9ypsZ-ouS6H4BR7Gdqys0ervxUetTsvc7P5ddA-WqEYHZlVMDSrTyZPch3nxPO2nkwOYZb3wIDdmTD3ctD8AS9z2UQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6lLQUubUmBhqbUIA69LPF6n5G4VBVRIrpRVBWR28rrtaVIeSlJkbjxE_iN_SXMeB9RVZCQOO3Ds7LX4_F8fn0D8EGFypVhEDg5NhjHV7FxMkT5jpshOHU9E0vX2GAT0XAYj8fdUQM-VWdhCn6IesKNLMP212TgNCHd2bKGzlazj-RevB3Y8xFoUOCGb4PhlnK3W3AwRz71NF2_4hXiolN_-tAbPYKYDxGrdTm9w_8r7BEclFCTXRZt4wU09LwJT5NyMb0J-3b3p1ofwyi5Gdz__EUeLWcbC2X1ipHLI7WxvNoyY58Q5TJEjUzWnJ5sYdhktpyikthaGr358RK-9j7fXvWdMtSCo7w49pzMj_wgMpqLPFI5jUl0hJYbmAwtNuM45uHG9WQmc-4FEWJCF9WKeta6i6957r2C3flirk-ABUqGsRtyyY1AdOLGkcIxjckFXnXGRQsuqipPVclDTuEwpmnBoCxSrKvU1lUL3teiy4J8409C7UpvaWl_65T6FWIzCzH5XZ2MlkPLIXKuF3coQ2dyBQV8b8HrQt91LgL_wEffjoW1av179mlyk9ibN_8ueg7P-rfJdXo9GH45heeCkILdIdOG3c3qTp_BE_V9M1mv3toW_RuBuPcc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oXfDivtQ1igcvo5nMWvAialG0pRQFb0MmCxTsQlsFb_4Ef6O_xJfMIqKC4GmWvCGZvLy8L9v3AA5FKFweBoEjscE4voi1kyLKd9wUwanr6Zi72gabiJrN-OGh1pqA0-IsTMYPUU64Gcuw_bUxcDWQ-uSTNbQ77B4b9-JNwpRvgshUYOqiXb-__STdrWUszJFv-pqaXzALUXZSfvzVH30DmV8xq3U69YX_FXcR5nOwSc6y1rEEE6q3DLONfDl9GWbs_k8xWoFWo339_vpmfJokYwtm1ZAYp2cUR2SxacY-Ic4liBsJL1k9SV-TTnfwiGoiI67V-GUV7uuXd-dXTh5swRFeHHtO6kd-EGlFmYyENKMSFaHtBjpFm00pjnqodj2eckm9IEJU6KJiUdNK1fA1ld4aVHr9ntoAEggexm5IOdUM8YkbRwJHNVoyvKqUsiocFVWeiJyJ3ATEeEwyDmWWYF0ltq6qcFCKDjL6jZ-Etgu9JbkFjhLTsxg-sxCT98tktB2zIMJ7qv-EMuZULjMh36uwnum7zIXhH_jo3bGwVq2_Z5802g17s_l30T2YbV3Uk9vr5s0WzDEDFewWmW2ojIdPagemxfO4Mxru5k36AwlT98U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI%E2%80%90based+transfer+function+determination+for+the+assessment+of+implant+safety&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Tokaya%2C+J.P.&rft.au=Raaijmakers%2C+A.J.E.&rft.au=Luijten%2C+P.R.&rft.au=Bakker%2C+J.F.&rft.date=2017-12-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=78&rft.issue=6&rft.spage=2449&rft.epage=2459&rft_id=info:doi/10.1002%2Fmrm.26613&rft.externalDBID=10.1002%252Fmrm.26613&rft.externalDocID=MRM26613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon