MRI‐based transfer function determination for the assessment of implant safety
Purpose We introduce a new MR‐based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant‐specific measures that relate the incident tangential electric field on an (elongated) implant to a scatt...
Saved in:
| Published in: | Magnetic resonance in medicine Vol. 78; no. 6; pp. 2449 - 2459 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.12.2017
|
| Subjects: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Purpose
We introduce a new MR‐based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant‐specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images.
Theory and Methods
The principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low‐flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant‐specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison.
Results
TFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R ≥ 0.7 between measurements and simulations, and a difference in field at the tip ΔEtip ≤ 19%) from relatively quick (t < 20 minutes) MRI acquisitions with (several) millimeter spatial resolution.
Conclusion
Transfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR‐based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449–2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine |
|---|---|
| AbstractList | We introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant-specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images.PURPOSEWe introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant-specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images.The principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low-flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant-specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison.THEORY AND METHODSThe principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low-flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant-specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison.TFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R ≥ 0.7 between measurements and simulations, and a difference in field at the tip ΔEtip ≤ 19%) from relatively quick (t < 20 minutes) MRI acquisitions with (several) millimeter spatial resolution.RESULTSTFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R ≥ 0.7 between measurements and simulations, and a difference in field at the tip ΔEtip ≤ 19%) from relatively quick (t < 20 minutes) MRI acquisitions with (several) millimeter spatial resolution.Transfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR-based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449-2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine.CONCLUSIONTransfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR-based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449-2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine. Purpose We introduce a new MR‐based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant‐specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images. Theory and Methods The principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low‐flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant‐specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison. Results TFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R ≥ 0.7 between measurements and simulations, and a difference in field at the tip ΔEtip ≤ 19%) from relatively quick (t < 20 minutes) MRI acquisitions with (several) millimeter spatial resolution. Conclusion Transfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR‐based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449–2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine Purpose We introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant-specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images. Theory and Methods The principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low-flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant-specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison. Results TFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R≥0.7 between measurements and simulations, and a difference in field at the tip [Delta]Etip≤19%) from relatively quick (t<20minutes) MRI acquisitions with (several) millimeter spatial resolution. Conclusion Transfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR-based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449-2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine We introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant-specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images. The principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low-flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant-specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison. TFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R ≥ 0.7 between measurements and simulations, and a difference in field at the tip ΔEtip ≤ 19%) from relatively quick (t < 20 minutes) MRI acquisitions with (several) millimeter spatial resolution. Transfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR-based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449-2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine. |
| Author | Luijten, P.R. Bakker, J.F. Berg, C.A.T. Tokaya, J.P. Raaijmakers, A.J.E. |
| Author_xml | – sequence: 1 givenname: J.P. surname: Tokaya fullname: Tokaya, J.P. email: j.p.tokaya@umcutrecht.nl organization: University Medical Center Utrecht – sequence: 2 givenname: A.J.E. surname: Raaijmakers fullname: Raaijmakers, A.J.E. organization: Eindhoven University of Technology – sequence: 3 givenname: P.R. surname: Luijten fullname: Luijten, P.R. organization: University Medical Center Utrecht – sequence: 4 givenname: J.F. surname: Bakker fullname: Bakker, J.F. organization: Medtronic Eindhoven Design Center – sequence: 5 givenname: C.A.T. surname: Berg fullname: Berg, C.A.T. organization: University Medical Center Utrecht |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28164362$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctKxDAUhoMoOl4WvoAU3OiienJp0i5FvIGDIroOaXqClV7GpEVm5yP4jD6JcUZdCLo6F75z-Pn_TbLa9R0SskvhiAKw49a3R0xKylfIhGaMpSwrxCqZgBKQclqIDbIZwhMAFIUS62SD5VQKLtmE3E7vrt5f30oTsEoGb7rg0Cdu7OxQ911S4YC-rTuzmFzvk-ERExMChtBiNyS9S-p21pjYBuNwmG-TNWeagDtfdYs8nJ_dn16m1zcXV6cn16nlec7TUiiRKYfAKmUrKViOShU8cyVQVYKEDBzlpjQV8EwxTqmwuZUWsYhrqPgWOVj-nfn-ecQw6LYOFpsoBfsxaJrLLGM54zKi-7_Qp370XVSnaSE5CA6SR2rvixrLFis983Vr_Fx_exWBwyVgfR-CR_eDUNCfOeiYg17kENnjX6yth4WJ0eO6-e_ipW5w_vdrPb2bLi8-AMkImJk |
| CitedBy_id | crossref_primary_10_1088_1361_6560_ab9fc7 crossref_primary_10_1109_JERM_2018_2865459 crossref_primary_10_1002_mrm_28089 crossref_primary_10_1002_mrm_30179 crossref_primary_10_1002_mrm_29235 crossref_primary_10_1002_mrm_30389 crossref_primary_10_1016_j_cmpb_2022_107316 crossref_primary_10_1002_mrm_29375 crossref_primary_10_1109_TEMC_2020_3040756 crossref_primary_10_1002_mp_14225 crossref_primary_10_1002_mrm_27481 crossref_primary_10_1007_s00117_019_0540_7 crossref_primary_10_1007_s00117_019_0541_6 crossref_primary_10_1002_mrm_28968 crossref_primary_10_1002_mrm_27218 crossref_primary_10_1109_TEMC_2021_3121203 crossref_primary_10_1002_mrm_28379 crossref_primary_10_1002_nbm_4900 crossref_primary_10_1002_mrm_28840 crossref_primary_10_1002_mrm_27974 crossref_primary_10_1007_s10334_021_00909_0 crossref_primary_10_1002_mrm_28804 crossref_primary_10_1002_jmri_27194 crossref_primary_10_1109_TIM_2022_3212552 |
| Cites_doi | 10.1002/mrm.25103 10.1109/COMCAS.2015.7360373 10.1002/mrm.22468 10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q 10.1109/TMTT.2014.2376523 10.1002/mrm.24316 10.1016/j.mri.2005.07.005 10.1186/1475-925X-1-2 10.1002/mrm.22724 10.1002/jmri.21159 10.1002/mrm.10037 10.1109/TDMR.2005.859033 10.1002/mrm.25543 10.1118/1.3298006 10.1093/eurheartj/sum071 10.3390/electronics2010001 10.1002/mrm.22995 10.1002/mrm.21881 |
| ContentType | Journal Article |
| Copyright | 2017 International Society for Magnetic Resonance in Medicine 2017 International Society for Magnetic Resonance in Medicine. |
| Copyright_xml | – notice: 2017 International Society for Magnetic Resonance in Medicine – notice: 2017 International Society for Magnetic Resonance in Medicine. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
| DOI | 10.1002/mrm.26613 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 2459 |
| ExternalDocumentID | 28164362 10_1002_mrm_26613 MRM26613 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Supported by the DeNeCor project being part of the ENIAC Joint Undertaking |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX CITATION O8X AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
| ID | FETCH-LOGICAL-c3883-b47457fe02d7cd6428e77935fb017b06050f13abad035723114c8c6cee913a0d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414967400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Thu Oct 02 06:14:06 EDT 2025 Sat Nov 29 14:23:24 EST 2025 Thu Apr 03 06:55:55 EDT 2025 Sat Nov 29 02:37:41 EST 2025 Tue Nov 18 22:17:21 EST 2025 Thu Sep 25 07:34:43 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | transfer function active implantable medical device (AIMD) EM simulations RF heating safety |
| Language | English |
| License | 2017 International Society for Magnetic Resonance in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3883-b47457fe02d7cd6428e77935fb017b06050f13abad035723114c8c6cee913a0d3 |
| Notes | The copyright line for this article was changed on 20 July 2017 after original online publication. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.26613 |
| PMID | 28164362 |
| PQID | 1963043063 |
| PQPubID | 1016391 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1865528236 proquest_journals_1963043063 pubmed_primary_28164362 crossref_primary_10_1002_mrm_26613 crossref_citationtrail_10_1002_mrm_26613 wiley_primary_10_1002_mrm_26613_MRM26613 |
| PublicationCentury | 2000 |
| PublicationDate | December 2017 2017-12-00 2017-Dec 20171201 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2002; 47 2010; 64 2013; 69 2010; 37 2012 2009; 61 2015; 73 2000; 12 2015; 63 2015; 74 2005; 5 2002; 1 2007; 9 2011; 65 2012; 67 2005; 23 2007; 26 1989 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_23_1 e_1_2_7_11_1 e_1_2_7_22_1 e_1_2_7_10_1 e_1_2_7_21_1 e_1_2_7_20_1 Balanis CA (e_1_2_7_14_1) 1989 |
| References_xml | – volume: 12 start-page: 173 year: 2000 end-page: 187 article-title: The principle of reciprocity in signal strength calculations—a mathematical guide publication-title: Concepts Magn Reson – volume: 9 start-page: I113 year: 2007 end-page: I115 article-title: The follow‐up of cardiac devices: what to expect for the future? publication-title: Eur Heart J Suppl – volume: 61 start-page: 570 year: 2009 end-page: 578 article-title: Measuring RF‐induced currents inside implants: impact of device configuration on MRI safety of cardiac pacemaker leads publication-title: Magn Reson Med – volume: 64 start-page: 823 year: 2010 end-page: 833 article-title: Ensuring safety of implanted devices under MRI using reversed RF polarization publication-title: Magn Reson Med – volume: 37 start-page: 814 year: 2010 end-page: 821 article-title: New method to monitor RF safety in MRI‐guided interventions based on RF induced image artefacts publication-title: Med Phys – volume: 73 start-page: 427 year: 2015 end-page: 441 article-title: Safely assessing radiofrequency heating potential of conductive devices using image‐based current measurements publication-title: Magn Reson Med – volume: 23 start-page: 887 year: 2005 end-page: 891 article-title: Simple design changes to wires to substantially reduce MRI induced heating at 1.5 T: implications for implanted leads publication-title: Magn Reson Imag – volume: 69 start-page: 845 year: 2013 end-page: 852 article-title: Reduction of the radiofrequency heating of metallic devices using a dual‐drive birdcage coil publication-title: Magn Reson Med – year: 1989 – volume: 5 start-page: 467 year: 2005 end-page: 479 article-title: MRI and implanted medical devices: basic interactions with an emphasis on heating publication-title: IEEE Trans Device Mater Reliab – volume: 67 start-page: 552 year: 2012 end-page: 561 article-title: B 1 + Phase mapping at 7 T and its application for in vivo electrical conductivity mapping publication-title: Magn Reson Med – volume: 1 start-page: 2 year: 2002 article-title: Temperature measurement on neurological pulse generators during MR scans publication-title: Biomed Eng Online – volume: 65 start-page: 1305 year: 2011 end-page: 1313 article-title: Reduction of implant RF heating through modification of transmit coil electric field publication-title: Magn Reson Med – volume: 26 start-page: 1278 year: 2007 end-page: 1285 article-title: Calculation of MRI‐induced heating of an implanted medical lead wire with an electric field transfer function publication-title: J Magn Reson Imaging – volume: 47 start-page: 187 year: 2002 end-page: 193 article-title: RF safety of wires in interventional MRI: using a safety index publication-title: Magn Reson Med – volume: 63 start-page: 305 year: 2015 end-page: 313 article-title: A technique to evaluate MRI‐Induced electric fields at the ends of practical implanted lead publication-title: IEEE Trans Microwve Theory Tech. – volume: 74 start-page: 1790 year: 2015 end-page: 1802 article-title: Controlling radiofrequency‐induced currents in guidewires using parallel transmit publication-title: Magn Reson Med – year: 2012 – ident: e_1_2_7_18_1 doi: 10.1002/mrm.25103 – ident: e_1_2_7_21_1 doi: 10.1109/COMCAS.2015.7360373 – ident: e_1_2_7_9_1 doi: 10.1002/mrm.22468 – ident: e_1_2_7_19_1 doi: 10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q – ident: e_1_2_7_4_1 doi: 10.1109/TMTT.2014.2376523 – ident: e_1_2_7_10_1 doi: 10.1002/mrm.24316 – ident: e_1_2_7_20_1 doi: 10.1016/j.mri.2005.07.005 – ident: e_1_2_7_7_1 doi: 10.1186/1475-925X-1-2 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.22724 – ident: e_1_2_7_13_1 doi: 10.1002/jmri.21159 – ident: e_1_2_7_6_1 doi: 10.1002/mrm.10037 – volume-title: Advanced Engineering Electromagnetics year: 1989 ident: e_1_2_7_14_1 – ident: e_1_2_7_22_1 – ident: e_1_2_7_5_1 doi: 10.1109/TDMR.2005.859033 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.25543 – ident: e_1_2_7_16_1 doi: 10.1118/1.3298006 – ident: e_1_2_7_3_1 doi: 10.1093/eurheartj/sum071 – ident: e_1_2_7_2_1 doi: 10.3390/electronics2010001 – ident: e_1_2_7_12_1 – ident: e_1_2_7_23_1 doi: 10.1002/mrm.22995 – ident: e_1_2_7_17_1 doi: 10.1002/mrm.21881 – ident: e_1_2_7_15_1 |
| SSID | ssj0009974 |
| Score | 2.3889098 |
| Snippet | Purpose
We introduce a new MR‐based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical... We introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices.... Purpose We introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2449 |
| SubjectTerms | active implantable medical device (AIMD) Adaptation Animals Computer Graphics Computer Simulation Correlation coefficients Data acquisition Deep Brain Stimulation Electric fields Electromagnetic Fields Electromagnetic Radiation Elongation EM simulations Humans Image Processing, Computer-Assisted Magnetic Fields Magnetic Resonance Imaging Medical devices Medical equipment Phantoms, Imaging Prostheses and Implants Radio frequency Radio Waves Reciprocity Reproducibility of Results RF heating Safety Signal-To-Noise Ratio Spatial discrimination Spatial resolution Surgical implants transfer function Transfer functions Transplants & implants |
| Title | MRI‐based transfer function determination for the assessment of implant safety |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26613 https://www.ncbi.nlm.nih.gov/pubmed/28164362 https://www.proquest.com/docview/1963043063 https://www.proquest.com/docview/1865528236 |
| Volume | 78 |
| WOSCitedRecordID | wos000414967400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7ovOCL98t0ShQffKlr00s6fBJ1KLghw-HeSpomMNhF1in45k_wN_pLPEkvIioIPrVpTkmac07Olyb5AnAsAuHwwPetBA3G8kSorBhRvuXECE4dV4XcUeawCdZuh71e424Gzoq9MBk_RPnDTXuG6a-1g_M4rX-Shg4nw1MdXdxZmKNot34F5i47ze7tJ-duIyNhZp7uahpeQSxk03r58tdw9A1jfoWsJuY0V_5V21VYzqEmOc9sYw1m5GgdFlv5ZPo6LJjVnyLdgLtW5-b99U1HtIRMDZSVE6JDnlYbSYolMyaFKJcgaiS85PQkY0X6w8cBKomkXMnpyyZ0m1f3F9dWftSCJdwwdK3YY57PlLRpwkSixySSoef6KkaPjW0c89jKcXnME2xohpjQQbWinqVs4GM7cbegMhqP5A4QX_AgdAKb24oiOnFCJnBMoxKKVxnbtAonRYtHIuch18dhDKKMQZlG2FaRaasqHJWijxn5xk9CtUJtUe5_aaT7Fc1mFmD2YZmNnqOnQ_hIjp9QRu_JpfrA9ypsZ-ouS6H4BR7Gdqys0ervxUetTsvc7P5ddA-WqEYHZlVMDSrTyZPch3nxPO2nkwOYZb3wIDdmTD3ctD8AS9z2UQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6lLQUubUmBhqbUIA69LPF6n5G4VBVRIrpRVBWR28rrtaVIeSlJkbjxE_iN_SXMeB9RVZCQOO3Ds7LX4_F8fn0D8EGFypVhEDg5NhjHV7FxMkT5jpshOHU9E0vX2GAT0XAYj8fdUQM-VWdhCn6IesKNLMP212TgNCHd2bKGzlazj-RevB3Y8xFoUOCGb4PhlnK3W3AwRz71NF2_4hXiolN_-tAbPYKYDxGrdTm9w_8r7BEclFCTXRZt4wU09LwJT5NyMb0J-3b3p1ofwyi5Gdz__EUeLWcbC2X1ipHLI7WxvNoyY58Q5TJEjUzWnJ5sYdhktpyikthaGr358RK-9j7fXvWdMtSCo7w49pzMj_wgMpqLPFI5jUl0hJYbmAwtNuM45uHG9WQmc-4FEWJCF9WKeta6i6957r2C3flirk-ABUqGsRtyyY1AdOLGkcIxjckFXnXGRQsuqipPVclDTuEwpmnBoCxSrKvU1lUL3teiy4J8409C7UpvaWl_65T6FWIzCzH5XZ2MlkPLIXKuF3coQ2dyBQV8b8HrQt91LgL_wEffjoW1av179mlyk9ibN_8ueg7P-rfJdXo9GH45heeCkILdIdOG3c3qTp_BE_V9M1mv3toW_RuBuPcc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oXfDivtQ1igcvo5nMWvAialG0pRQFb0MmCxTsQlsFb_4Ef6O_xJfMIqKC4GmWvCGZvLy8L9v3AA5FKFweBoEjscE4voi1kyLKd9wUwanr6Zi72gabiJrN-OGh1pqA0-IsTMYPUU64Gcuw_bUxcDWQ-uSTNbQ77B4b9-JNwpRvgshUYOqiXb-__STdrWUszJFv-pqaXzALUXZSfvzVH30DmV8xq3U69YX_FXcR5nOwSc6y1rEEE6q3DLONfDl9GWbs_k8xWoFWo339_vpmfJokYwtm1ZAYp2cUR2SxacY-Ic4liBsJL1k9SV-TTnfwiGoiI67V-GUV7uuXd-dXTh5swRFeHHtO6kd-EGlFmYyENKMSFaHtBjpFm00pjnqodj2eckm9IEJU6KJiUdNK1fA1ld4aVHr9ntoAEggexm5IOdUM8YkbRwJHNVoyvKqUsiocFVWeiJyJ3ATEeEwyDmWWYF0ltq6qcFCKDjL6jZ-Etgu9JbkFjhLTsxg-sxCT98tktB2zIMJ7qv-EMuZULjMh36uwnum7zIXhH_jo3bGwVq2_Z5802g17s_l30T2YbV3Uk9vr5s0WzDEDFewWmW2ojIdPagemxfO4Mxru5k36AwlT98U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI%E2%80%90based+transfer+function+determination+for+the+assessment+of+implant+safety&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Tokaya%2C+J.P.&rft.au=Raaijmakers%2C+A.J.E.&rft.au=Luijten%2C+P.R.&rft.au=Bakker%2C+J.F.&rft.date=2017-12-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=78&rft.issue=6&rft.spage=2449&rft.epage=2459&rft_id=info:doi/10.1002%2Fmrm.26613&rft.externalDBID=10.1002%252Fmrm.26613&rft.externalDocID=MRM26613 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |