Gradient‐induced vibrations and motion‐induced Lenz effects on conductive nonmagnetic orthopedic implants in MRI

Purpose To quantify the extent of gradient‐induced vibrations, and the magnitude of motion‐induced displacement forces (“Lenz effect”), in conductive nonmagnetic orthopedic prostheses. Methods The investigation is carried out through numerical simulations, for a 3 T scanner. For gradient‐induced tor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance in medicine Ročník 93; číslo 1; s. 341 - 352
Hlavní autoři: Zilberti, Luca, Curreli, Cristina, Arduino, Alessandro, Zanovello, Umberto, Baruffaldi, Fabio, Bottauscio, Oriano
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.01.2025
Témata:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose To quantify the extent of gradient‐induced vibrations, and the magnitude of motion‐induced displacement forces (“Lenz effect”), in conductive nonmagnetic orthopedic prostheses. Methods The investigation is carried out through numerical simulations, for a 3 T scanner. For gradient‐induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms). For motion‐induced forces associated with the Lenz effect, a knee and a hip implant are studied, considering a patient who translates on the examination couch, or walks next to it. Results Gradient‐induced torques may be within the same order of magnitude as the worst case gravitational torque defined in the ASTM standards. However, for all investigated cases, they result to be lower. In vacuum, the extent of the corresponding vibration reduces with frequency. At the lowest investigated frequency (270 Hz), it keeps below 25 μm. For an implant partially embedded in bone, the extent of the vibration increases with frequency. Nevertheless, the displacement is far lower than the worst case observed in vacuum (negligible in contact with the bone; ˜1 μm or less where the implant emerges from the bone). The Lenz effect induced by the motion of the patient through the stationary magnetic field produces forces on the order of a few millinewtons (i.e., at least two orders of magnitude lower than the implant weight). Conclusion Comparing the results with mechanical loads caused by ordinary activities of daily living, and with the levels of tolerable micromotions, a good safety margin is confirmed.
AbstractList To quantify the extent of gradient-induced vibrations, and the magnitude of motion-induced displacement forces ("Lenz effect"), in conductive nonmagnetic orthopedic prostheses.PURPOSETo quantify the extent of gradient-induced vibrations, and the magnitude of motion-induced displacement forces ("Lenz effect"), in conductive nonmagnetic orthopedic prostheses.The investigation is carried out through numerical simulations, for a 3 T scanner. For gradient-induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms). For motion-induced forces associated with the Lenz effect, a knee and a hip implant are studied, considering a patient who translates on the examination couch, or walks next to it.METHODSThe investigation is carried out through numerical simulations, for a 3 T scanner. For gradient-induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms). For motion-induced forces associated with the Lenz effect, a knee and a hip implant are studied, considering a patient who translates on the examination couch, or walks next to it.Gradient-induced torques may be within the same order of magnitude as the worst case gravitational torque defined in the ASTM standards. However, for all investigated cases, they result to be lower. In vacuum, the extent of the corresponding vibration reduces with frequency. At the lowest investigated frequency (270 Hz), it keeps below 25 μm. For an implant partially embedded in bone, the extent of the vibration increases with frequency. Nevertheless, the displacement is far lower than the worst case observed in vacuum (negligible in contact with the bone; ˜1 μm or less where the implant emerges from the bone). The Lenz effect induced by the motion of the patient through the stationary magnetic field produces forces on the order of a few millinewtons (i.e., at least two orders of magnitude lower than the implant weight).RESULTSGradient-induced torques may be within the same order of magnitude as the worst case gravitational torque defined in the ASTM standards. However, for all investigated cases, they result to be lower. In vacuum, the extent of the corresponding vibration reduces with frequency. At the lowest investigated frequency (270 Hz), it keeps below 25 μm. For an implant partially embedded in bone, the extent of the vibration increases with frequency. Nevertheless, the displacement is far lower than the worst case observed in vacuum (negligible in contact with the bone; ˜1 μm or less where the implant emerges from the bone). The Lenz effect induced by the motion of the patient through the stationary magnetic field produces forces on the order of a few millinewtons (i.e., at least two orders of magnitude lower than the implant weight).Comparing the results with mechanical loads caused by ordinary activities of daily living, and with the levels of tolerable micromotions, a good safety margin is confirmed.CONCLUSIONComparing the results with mechanical loads caused by ordinary activities of daily living, and with the levels of tolerable micromotions, a good safety margin is confirmed.
PurposeTo quantify the extent of gradient‐induced vibrations, and the magnitude of motion‐induced displacement forces (“Lenz effect”), in conductive nonmagnetic orthopedic prostheses.MethodsThe investigation is carried out through numerical simulations, for a 3 T scanner. For gradient‐induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms). For motion‐induced forces associated with the Lenz effect, a knee and a hip implant are studied, considering a patient who translates on the examination couch, or walks next to it.ResultsGradient‐induced torques may be within the same order of magnitude as the worst case gravitational torque defined in the ASTM standards. However, for all investigated cases, they result to be lower. In vacuum, the extent of the corresponding vibration reduces with frequency. At the lowest investigated frequency (270 Hz), it keeps below 25 μm. For an implant partially embedded in bone, the extent of the vibration increases with frequency. Nevertheless, the displacement is far lower than the worst case observed in vacuum (negligible in contact with the bone; ˜1 μm or less where the implant emerges from the bone). The Lenz effect induced by the motion of the patient through the stationary magnetic field produces forces on the order of a few millinewtons (i.e., at least two orders of magnitude lower than the implant weight).ConclusionComparing the results with mechanical loads caused by ordinary activities of daily living, and with the levels of tolerable micromotions, a good safety margin is confirmed.
Purpose To quantify the extent of gradient‐induced vibrations, and the magnitude of motion‐induced displacement forces (“Lenz effect”), in conductive nonmagnetic orthopedic prostheses. Methods The investigation is carried out through numerical simulations, for a 3 T scanner. For gradient‐induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms). For motion‐induced forces associated with the Lenz effect, a knee and a hip implant are studied, considering a patient who translates on the examination couch, or walks next to it. Results Gradient‐induced torques may be within the same order of magnitude as the worst case gravitational torque defined in the ASTM standards. However, for all investigated cases, they result to be lower. In vacuum, the extent of the corresponding vibration reduces with frequency. At the lowest investigated frequency (270 Hz), it keeps below 25 μm. For an implant partially embedded in bone, the extent of the vibration increases with frequency. Nevertheless, the displacement is far lower than the worst case observed in vacuum (negligible in contact with the bone; ˜1 μm or less where the implant emerges from the bone). The Lenz effect induced by the motion of the patient through the stationary magnetic field produces forces on the order of a few millinewtons (i.e., at least two orders of magnitude lower than the implant weight). Conclusion Comparing the results with mechanical loads caused by ordinary activities of daily living, and with the levels of tolerable micromotions, a good safety margin is confirmed.
To quantify the extent of gradient-induced vibrations, and the magnitude of motion-induced displacement forces ("Lenz effect"), in conductive nonmagnetic orthopedic prostheses. The investigation is carried out through numerical simulations, for a 3 T scanner. For gradient-induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms). For motion-induced forces associated with the Lenz effect, a knee and a hip implant are studied, considering a patient who translates on the examination couch, or walks next to it. Gradient-induced torques may be within the same order of magnitude as the worst case gravitational torque defined in the ASTM standards. However, for all investigated cases, they result to be lower. In vacuum, the extent of the corresponding vibration reduces with frequency. At the lowest investigated frequency (270 Hz), it keeps below 25 μm. For an implant partially embedded in bone, the extent of the vibration increases with frequency. Nevertheless, the displacement is far lower than the worst case observed in vacuum (negligible in contact with the bone; ˜1 μm or less where the implant emerges from the bone). The Lenz effect induced by the motion of the patient through the stationary magnetic field produces forces on the order of a few millinewtons (i.e., at least two orders of magnitude lower than the implant weight). Comparing the results with mechanical loads caused by ordinary activities of daily living, and with the levels of tolerable micromotions, a good safety margin is confirmed.
Author Zilberti, Luca
Bottauscio, Oriano
Zanovello, Umberto
Baruffaldi, Fabio
Curreli, Cristina
Arduino, Alessandro
Author_xml – sequence: 1
  givenname: Luca
  orcidid: 0000-0002-2382-4710
  surname: Zilberti
  fullname: Zilberti, Luca
  email: l.zilberti@inrim.it
  organization: Istituto Nazionale di Ricerca Metrologica (INRIM)
– sequence: 2
  givenname: Cristina
  surname: Curreli
  fullname: Curreli, Cristina
  organization: IRCCS Istituto Ortopedico Rizzoli
– sequence: 3
  givenname: Alessandro
  orcidid: 0000-0002-4829-5130
  surname: Arduino
  fullname: Arduino, Alessandro
  organization: Istituto Nazionale di Ricerca Metrologica (INRIM)
– sequence: 4
  givenname: Umberto
  orcidid: 0000-0001-6415-9967
  surname: Zanovello
  fullname: Zanovello, Umberto
  organization: Istituto Nazionale di Ricerca Metrologica (INRIM)
– sequence: 5
  givenname: Fabio
  surname: Baruffaldi
  fullname: Baruffaldi, Fabio
  organization: IRCCS Istituto Ortopedico Rizzoli
– sequence: 6
  givenname: Oriano
  orcidid: 0000-0002-5437-4396
  surname: Bottauscio
  fullname: Bottauscio, Oriano
  organization: Istituto Nazionale di Ricerca Metrologica (INRIM)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39176421$$D View this record in MEDLINE/PubMed
BookMark eNp9kdFqFTEQhoNU7Gn1wheQgDd6se0k2bPZXErRWjgHoeh1yElmNWU3OSbZlnrlI_iMPok5PVWkoFfzw3wz_DP_ETkIMSAhzxmcMAB-OqXpRADvxCOyYEvOG75U7QFZgGyhEUy1h-Qo5ysAUEq2T8ihUEx2LWcLUs6TcR5D-fn9hw9utujotd8kU3wMmZrg6BR3-q_-CsM3isOAtmQaA7Vx1yj-Gmk1NpnPAYu3NKbyJW7RVemn7WhCpX2g68uLp-TxYMaMz-7rMfn07u3Hs_fN6sP5xdmbVWNF34vGSC6ZXUonegC3aXvWoQQw9SzG-sE50VYXhqEAsIAAsuPMbipvEKQy4pi82u_dpvh1xlz05LPFsXrBOGctQHW875jqK_ryAXoV5xSqOy0YZ7yXXKhKvbin5s2ETm-Tn0y61b__WYHXe8CmmHPC4Q_CQO-y0jUrfZdVZU8fsNaXu7-XZPz4v4kbP-Ltv1fr9eV6P_ELUgCnPw
CitedBy_id crossref_primary_10_1007_s10334_025_01238_2
Cites_doi 10.1088/0031-9155/59/18/5287
10.1109/TBME.2019.2923693
10.1109/ICEAA.2017.8065581
10.58530/2023/2875
10.1088/1361-6560/aca5e6
10.1088/0031-9155/45/12/320
10.1038/s41598-021-90142-5
10.1111/j.1532-849X.2011.00819.x
10.1109/TMAG.2015.2474748
10.1002/mrm.26031
10.1016/S0021-9290(01)00040-9
10.1002/mrm.26544
10.1098/rsif.2019.0259
10.1002/jmri.27319
10.1007/s40134-016-0155-y
10.1002/jmri.20539
10.1002/jmri.24547
10.1007/s10237-022-01637-7
10.1016/j.jbiomech.2010.03.046
10.1016/j.medengphy.2023.104017
10.1002/jmri.1880070427
10.1016/j.jbiomech.2009.12.006
10.2528/PIER12031505
10.1002/jor.23771
10.1002/jmri.27194
10.1016/S0268-0033(01)00052-3
10.1002/jmri.25761
10.1002/1522-2586(200007)12:1<171::AID-JMRI19>3.0.CO;2-W
10.1002/jmri.29002
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.30263
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 352
ExternalDocumentID 39176421
10_1002_mrm_30263
MRM30263
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: European Partnership on Metrology
  funderid: 21NRM05 STASIS
– fundername: European Partnership on Metrology
  grantid: 21NRM05 STASIS
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3883-a7271c57d3800db4816e700a074118fdd34effa1e300c0e007621cb7d3ae079a3
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001296534100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Sep 04 19:06:56 EDT 2025
Sat Nov 29 14:49:57 EST 2025
Mon Jul 21 05:59:57 EDT 2025
Sat Nov 29 06:34:41 EST 2025
Tue Nov 18 21:49:00 EST 2025
Wed Jan 22 17:13:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords dynamic torques
Lorentz force
displacement force
implants
Lenz effects
mechanical vibrations
Language English
License Attribution
2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3883-a7271c57d3800db4816e700a074118fdd34effa1e300c0e007621cb7d3ae079a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2382-4710
0000-0002-5437-4396
0000-0001-6415-9967
0000-0002-4829-5130
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30263
PMID 39176421
PQID 3121287239
PQPubID 1016391
PageCount 12
ParticipantIDs proquest_miscellaneous_3096286198
proquest_journals_3121287239
pubmed_primary_39176421
crossref_primary_10_1002_mrm_30263
crossref_citationtrail_10_1002_mrm_30263
wiley_primary_10_1002_mrm_30263_MRM30263
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
2025-Jan
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2000; 45
2023; 59
2022; 67
2016; 76
2019; 16
2016; 52
2012; 128
2018; 47
1997; 7
2016; 4
2010; 43
2021; 53
2023; 22
2021; 11
2023
2006; 23
2001; 7
2022
2000; 12
2021
2020
2017; 77
2015; 41
2014; 59
2018
2017
2016
2020; 67
2001; 16
2023; 118
2012; 21
2018; 36
e_1_2_7_5_1
ASTM International (e_1_2_7_21_1) 2021
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_1
ACR Committee on MR Safety (e_1_2_7_7_1) 2020
e_1_2_7_17_1
ASTM International (e_1_2_7_18_1) 2017
e_1_2_7_16_1
e_1_2_7_15_1
International Organization for Standardization (ISO) (e_1_2_7_9_1) 2018
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
ASTM International (e_1_2_7_2_1) 2023
e_1_2_7_28_1
e_1_2_7_29_1
Nyenhuis JA (e_1_2_7_19_1) 2020
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
International Electrotechnical Commission (IEC) (e_1_2_7_6_1) 2022
References_xml – volume: 12
  start-page: 171
  year: 2000
  end-page: 176
  article-title: Potential MR Hazard to patients with metallic heart valves: the Lenz effect
  publication-title: J Magn Reson Imaging
– volume: 59
  start-page: 1514
  year: 2023
  end-page: 1522
  article-title: Managing patients with unlabeled passive implants on MR systems operating below 1.5 T
  publication-title: J Magn Reson Imaging
– volume: 4
  start-page: 28
  year: 2016
  article-title: New developments in standards for MRI safety testing of medical devices
  publication-title: Curr Radiol Rep
– volume: 47
  start-page: 28
  year: 2018
  end-page: 43
  article-title: The physics of MRI safety
  publication-title: J Magn Reson Imaging
– volume: 67
  start-page: 915
  year: 2020
  end-page: 923
  article-title: Gradient‐induced mechanical vibration of neural interfaces during MRI
  publication-title: IEEE Trans Biomed Eng
– volume: 52
  start-page: 1
  year: 2016
  end-page: 4
  article-title: A potential‐based formulation for motion‐induced electric fields in MRI
  publication-title: IEEE Trans Magn
– volume: 118
  year: 2023
  article-title: Biomechanical properties of artificial bones made by sawbones: a review
  publication-title: Med Eng Phys
– volume: 67
  year: 2022
  article-title: Computational dosimetry in MRI in presence of hip, knee or shoulder implants: do we need accurate surgery models?
  publication-title: Phys Med Biol
– volume: 23
  start-page: 585
  year: 2006
  end-page: 590
  article-title: Eddy‐current induction in extended metallic parts As a source of considerable torsional moment
  publication-title: J Magn Reson Imaging
– year: 2021
– volume: 45
  start-page: 3793
  year: 2000
  end-page: 3807
  article-title: Estimation of torque on mechanical heart valves due to magnetic resonance imaging including an estimation of the significance of the Lenz effect using a computational model
  publication-title: Phys Med Biol
– volume: 7
  start-page: 859
  year: 2001
  end-page: 871
  article-title: Hip contact forces and gait patterns from routine activities
  publication-title: J Biomech
– volume: 21
  start-page: 141
  year: 2012
  end-page: 154
  article-title: Prosthetic requirements for immediate implant loading: a review
  publication-title: J Prosthodont
– volume: 53
  start-page: 333
  year: 2021
  end-page: 346
  article-title: 7T MR safety
  publication-title: J Magn Reson Imaging
– volume: 41
  start-page: 74
  year: 2015
  end-page: 82
  article-title: In vitro assessment of the Lenz effect on heart valve prostheses at 1.5 T
  publication-title: J Magn Reson Imaging
– year: 2016
– volume: 16
  start-page: 765
  year: 2001
  end-page: 775
  article-title: Even a thin layer of soft tissue may compromise the primary stability of cementlesship stems
  publication-title: Clin Biomech
– year: 2018
– volume: 77
  start-page: 13
  year: 2017
  end-page: 15
  article-title: The underestimated role of gradient coils in MRI safety
  publication-title: Magn Reson Med
– start-page: 4212
  year: 2020
– volume: 36
  start-page: 1508
  year: 2018
  end-page: 1518
  article-title: Additive manufactured push‐fit implant fixation with screw‐strength pull out
  publication-title: J Orthop Res
– volume: 128
  start-page: 1
  year: 2012
  end-page: 17
  article-title: Comprehensive analysis of Lenz effect on the artificial heart valves during magnetic resonance imaging
  publication-title: Prog Electromagn Res
– volume: 76
  start-page: 1291
  year: 2016
  end-page: 1300
  article-title: Assessment of exposure to MRI motion‐induced fields based on the international commission on non‐ionizing radiation protection (ICNIRP) guidelines
  publication-title: Magn Reson Med
– volume: 22
  start-page: 133
  year: 2023
  end-page: 158
  article-title: Modeling the debonding process of osseointegrated implants due to coupled adhesion and friction
  publication-title: Biomech Model Mechanobiol
– year: 2022
– volume: 7
  start-page: 771
  year: 1997
  end-page: 772
  article-title: MRI of cervical fixation devices: sensation of heating caused by vibration of metallic components
  publication-title: J Magn Reson Imaging
– volume: 59
  start-page: 5287
  year: 2014
  end-page: 5303
  article-title: Development of a new generation of high‐resolution anatomical models for medical device evaluation: the virtual population 3.0
  publication-title: Phys Med Biol
– year: 2020
– volume: 16
  year: 2019
  article-title: Biomechanical behaviours of the bone–implant interface: a review
  publication-title: J R Soc Interface
– year: 2023
– volume: 53
  start-page: 1646
  year: 2021
  end-page: 1665
  article-title: MRI‐related heating of implants and devices: a review
  publication-title: J Magn Reson Imaging
– volume: 43
  start-page: 2164
  year: 2010
  end-page: 2173
  article-title: Loading of the knee joint during activities of daily living measured in vivo in five subjects
  publication-title: J Biomech
– year: 2017
– volume: 11
  start-page: 10797
  year: 2021
  article-title: The limit of tolerable micromotion for implant osseointegration: a systematic review
  publication-title: Sci Rep
– volume: 43
  start-page: 1074
  year: 2010
  end-page: 1080
  article-title: Analysis of bone–prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions
  publication-title: J Biomech
– volume-title: ASTM F2503‐23 Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment
  year: 2023
  ident: e_1_2_7_2_1
– ident: e_1_2_7_30_1
  doi: 10.1088/0031-9155/59/18/5287
– ident: e_1_2_7_11_1
  doi: 10.1109/TBME.2019.2923693
– ident: e_1_2_7_10_1
  doi: 10.1109/ICEAA.2017.8065581
– ident: e_1_2_7_12_1
  doi: 10.58530/2023/2875
– ident: e_1_2_7_25_1
  doi: 10.1088/1361-6560/aca5e6
– ident: e_1_2_7_14_1
  doi: 10.1088/0031-9155/45/12/320
– volume-title: ASTM F2052‐21 Standard Test Method for Measurement of Magnetically Induced Torque on Medical Devices in the Magnetic Resonance Environment
  year: 2021
  ident: e_1_2_7_21_1
– ident: e_1_2_7_35_1
  doi: 10.1038/s41598-021-90142-5
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1532-849X.2011.00819.x
– volume-title: ASTM F2213‐17 Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment
  year: 2017
  ident: e_1_2_7_18_1
– start-page: 4212
  volume-title: Proceedings of the 2020 ISMRM & SMRT Virtual Conference & Exhibition. International Society for Magnetic Resonance in Medicine
  year: 2020
  ident: e_1_2_7_19_1
– ident: e_1_2_7_28_1
  doi: 10.1109/TMAG.2015.2474748
– ident: e_1_2_7_29_1
  doi: 10.1002/mrm.26031
– ident: e_1_2_7_38_1
  doi: 10.1016/S0021-9290(01)00040-9
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.26544
– volume-title: IEC 60601–2‐33 Medical Electrical Equipment – Part 2–33: Particular Requirements for the Basic Safety and Essential Performance of Magnetic Resonance Equipment for Medical Diagnosis, Edition 4.0
  year: 2022
  ident: e_1_2_7_6_1
– ident: e_1_2_7_34_1
  doi: 10.1098/rsif.2019.0259
– ident: e_1_2_7_3_1
  doi: 10.1002/jmri.27319
– ident: e_1_2_7_4_1
  doi: 10.1007/s40134-016-0155-y
– ident: e_1_2_7_17_1
  doi: 10.1002/jmri.20539
– ident: e_1_2_7_16_1
  doi: 10.1002/jmri.24547
– ident: e_1_2_7_36_1
  doi: 10.1007/s10237-022-01637-7
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jbiomech.2010.03.046
– ident: e_1_2_7_24_1
– ident: e_1_2_7_27_1
  doi: 10.1016/j.medengphy.2023.104017
– ident: e_1_2_7_8_1
  doi: 10.1002/jmri.1880070427
– ident: e_1_2_7_37_1
  doi: 10.1016/j.jbiomech.2009.12.006
– ident: e_1_2_7_15_1
  doi: 10.2528/PIER12031505
– ident: e_1_2_7_33_1
  doi: 10.1002/jor.23771
– ident: e_1_2_7_23_1
  doi: 10.1002/jmri.27194
– ident: e_1_2_7_31_1
  doi: 10.1016/S0268-0033(01)00052-3
– ident: e_1_2_7_5_1
  doi: 10.1002/jmri.25761
– ident: e_1_2_7_13_1
  doi: 10.1002/1522-2586(200007)12:1<171::AID-JMRI19>3.0.CO;2-W
– volume-title: ISO/TS 10974 Assessment of the Safety of Magnetic Resonance Imaging for Patients with an Active Implantable Medical Device
  year: 2018
  ident: e_1_2_7_9_1
– ident: e_1_2_7_26_1
– volume-title: ACR Manual on MR Safety, Version 1.0
  year: 2020
  ident: e_1_2_7_7_1
– ident: e_1_2_7_20_1
  doi: 10.1002/jmri.29002
SSID ssj0009974
Score 2.4767423
Snippet Purpose To quantify the extent of gradient‐induced vibrations, and the magnitude of motion‐induced displacement forces (“Lenz effect”), in conductive...
To quantify the extent of gradient-induced vibrations, and the magnitude of motion-induced displacement forces ("Lenz effect"), in conductive nonmagnetic...
PurposeTo quantify the extent of gradient‐induced vibrations, and the magnitude of motion‐induced displacement forces (“Lenz effect”), in conductive...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 341
SubjectTerms Activities of daily living
Computer Simulation
displacement force
dynamic torques
Gravity
Humans
implants
Investigations
Knee
Lenz effects
Lorentz force
Magnetic Resonance Imaging
mechanical vibrations
Motion
Orthopaedic implants
Orthopedics
Prostheses
Prostheses and Implants
Prosthetics
Safety margins
Surgical implants
Torque
Transplants & implants
Vacuum
Vibration
Vibrations
Title Gradient‐induced vibrations and motion‐induced Lenz effects on conductive nonmagnetic orthopedic implants in MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30263
https://www.ncbi.nlm.nih.gov/pubmed/39176421
https://www.proquest.com/docview/3121287239
https://www.proquest.com/docview/3096286198
Volume 93
WOSCitedRecordID wos001296534100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB6VFhCXAuUvpVQGceCS1l57Y684ISBQKYmqiIrcVo7tokiNEyVpD5x4BJ6xT9IZ72ZLBUhIXFa78qzG8sx4ZvzzDcBr9IFa55iWqA6Gb0rlFufBgmq9aC-49B3nEmR-Tw8GZjQqjjfg7fouTIUP0Sy4kWWk-ZoM3I6Xh9egodPF9EBiBiFvwZYQUpNKZ-r4GnG3qCCYtaKJplBrWCGeHTa_3nRGv0WYNwPW5HG69_-rrw9guw402btKMx7CRog7cLdfb6XvwJ109tMtH8Hq0yKd-1pd_viJGTrK2rMLYpdUktnoWVXr55f2XojfWX0WhM0iw6yagGNx6mRxFqf2W6TLkYw2hWZz4skm0_kZnblhk8j6w6PHcNL9-OX953ZdjKHtpDGybTHQES7XXmKI6cfKiE7QnFsKSYQ59V4q5GpFkJw7HmiHLxNujPQ2cF1Y-QQ2sQPhGbAQCGQt-NNcc2VzOTYYRVkZBDpsJXhowZu1VEpXI5VTwYyzssJYzkoczzKNZwteNaTzCp7jT0R7a9GWtYUuSynQaRudyaIFL5tmtC3aMLExzM6RBvO7zGCKaVrwtFKJhovEPJcuCWNnk-T_zr7sD_vpZfffSZ_DvYwKDae1nj3YXC3Owwu47S5Wk-ViPyk6PvXI7MPWh2H3pIdfX48GV5xHBKk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB6VFAoXfgqFQAGDOPQSaq-9sVfigoDQit0IRa3U28pZuyhS40RJ2gMnHoFn5EmY8W62VICExG0lz2osezw_nvE3AK_QBmqdYlii-ui-KZVa1IMZ9XrRTnDp-lUVIfNzPRyak5Ps8wa8Wb-FqfEh2gs3OhlRX9MBpwvp_UvU0Oli-lpiCCGvwaZCMUo7sPl-NDjOL0F3sxqFWSvSNZlaIwvxZL_9-ao9-s3JvOqzRqMzuPN_070Ltxtnk72tpeMebPiwDVtFk07fhhux_rNa3ofVx0Ws_Vr9-PYdo3Tcb8cuiF8US2aDY3W_n1_Gcx--sqYehM0Cw8iawGNRfbIwC1P7JdADSUaJodmceLLJdH5GdTdsElgxOnwAx4MPR-8Oek1Dhl4ljZE9i86OqFLtJLqZbqyM6HvNuSW3RJhT56RCrlZ4yXnFPWX5ElGNkd56rjMrd6CDE_CPgHlPQGvenaaaK5vKsUFPykov0GgrwX0X9tbbUlYNWjk1zTgra5zlpMT1LON6duFlSzqvITr-RLS73tuyOaXLUgo03EYnMuvCi3YYzxclTWzws3OkwRgvMRhmmi48rGWi5SIx1qWHwjjZuPV_Z18WoyJ-PP530udw8-CoyMv8cPjpCdxKqPFwvPvZhc5qce6fwvXqYjVZLp41cv8TWvIGjw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB6VAhUXfgptAwUM4sAl1F57Y6_EBQGBiiSKKpB6Wzm2U0VqnChJe-DEI_CMfZLOeDdbKkBC4raSZzWWx54fz_gbgFdoA7XOMSxRHXTflMot6sGCer1oL7j0HecSZH5PDwbm-LgYbsDb9VuYCh-iuXCjk5H0NR3wMPfjgyvU0Oli-kZiCCFvwE2Vo44lXGc1vILcLSoMZq1I0xRqjSvEs4Pm1-vW6DcX87rHmkxO997_TfY-3K1dTfau2hsPYCPEbdjq18n0bbidqj_d8iGsPi1S5dfq4sdPjNFR2p6dE7-0KZmNnlXdfn4Z74X4ndXVIGwWGcbVBB2LypPFWZzak0jPIxmlhWZz4skm0_kpVd2wSWT9o8NH8K378ev7z-26HUPbSWNk26KrI1yuvUQn04-UEZ2gObfklAgz9l4q5GpFkJw7HijHlwk3QnobuC6s3IFNnEDYAxYCwawFP841VzaXI4N-lJVBoMlWgocWvF6LpXQ1Vjm1zDgtK5TlrMT1LNN6tuBlQzqvADr-RLS_lm1Zn9FlKQWabaMzWbTgRTOMp4tSJjaG2RnSYISXGQwyTQt2qz3RcJEY6dIzYZxsEv3f2Zf9o376ePzvpM9ha_ihW_YOB1-ewJ2Mug6ni5992FwtzsJTuOXOV5Pl4lna9Jc6EwR4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient-induced+vibrations+and+motion-induced+Lenz+effects+on+conductive+nonmagnetic+orthopedic+implants+in+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Zilberti%2C+Luca&rft.au=Curreli%2C+Cristina&rft.au=Arduino%2C+Alessandro&rft.au=Zanovello%2C+Umberto&rft.date=2025-01-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=93&rft.issue=1&rft.spage=341&rft_id=info:doi/10.1002%2Fmrm.30263&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon