Gradient‐induced vibrations and motion‐induced Lenz effects on conductive nonmagnetic orthopedic implants in MRI
Purpose To quantify the extent of gradient‐induced vibrations, and the magnitude of motion‐induced displacement forces (“Lenz effect”), in conductive nonmagnetic orthopedic prostheses. Methods The investigation is carried out through numerical simulations, for a 3 T scanner. For gradient‐induced tor...
Uloženo v:
| Vydáno v: | Magnetic resonance in medicine Ročník 93; číslo 1; s. 341 - 352 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Wiley Subscription Services, Inc
01.01.2025
|
| Témata: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose
To quantify the extent of gradient‐induced vibrations, and the magnitude of motion‐induced displacement forces (“Lenz effect”), in conductive nonmagnetic orthopedic prostheses.
Methods
The investigation is carried out through numerical simulations, for a 3 T scanner. For gradient‐induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms). For motion‐induced forces associated with the Lenz effect, a knee and a hip implant are studied, considering a patient who translates on the examination couch, or walks next to it.
Results
Gradient‐induced torques may be within the same order of magnitude as the worst case gravitational torque defined in the ASTM standards. However, for all investigated cases, they result to be lower. In vacuum, the extent of the corresponding vibration reduces with frequency. At the lowest investigated frequency (270 Hz), it keeps below 25 μm. For an implant partially embedded in bone, the extent of the vibration increases with frequency. Nevertheless, the displacement is far lower than the worst case observed in vacuum (negligible in contact with the bone; ˜1 μm or less where the implant emerges from the bone). The Lenz effect induced by the motion of the patient through the stationary magnetic field produces forces on the order of a few millinewtons (i.e., at least two orders of magnitude lower than the implant weight).
Conclusion
Comparing the results with mechanical loads caused by ordinary activities of daily living, and with the levels of tolerable micromotions, a good safety margin is confirmed. |
|---|---|
| AbstractList | To quantify the extent of gradient-induced vibrations, and the magnitude of motion-induced displacement forces ("Lenz effect"), in conductive nonmagnetic orthopedic prostheses.PURPOSETo quantify the extent of gradient-induced vibrations, and the magnitude of motion-induced displacement forces ("Lenz effect"), in conductive nonmagnetic orthopedic prostheses.The investigation is carried out through numerical simulations, for a 3 T scanner. For gradient-induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms). For motion-induced forces associated with the Lenz effect, a knee and a hip implant are studied, considering a patient who translates on the examination couch, or walks next to it.METHODSThe investigation is carried out through numerical simulations, for a 3 T scanner. For gradient-induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms). For motion-induced forces associated with the Lenz effect, a knee and a hip implant are studied, considering a patient who translates on the examination couch, or walks next to it.Gradient-induced torques may be within the same order of magnitude as the worst case gravitational torque defined in the ASTM standards. However, for all investigated cases, they result to be lower. In vacuum, the extent of the corresponding vibration reduces with frequency. At the lowest investigated frequency (270 Hz), it keeps below 25 μm. For an implant partially embedded in bone, the extent of the vibration increases with frequency. Nevertheless, the displacement is far lower than the worst case observed in vacuum (negligible in contact with the bone; ˜1 μm or less where the implant emerges from the bone). The Lenz effect induced by the motion of the patient through the stationary magnetic field produces forces on the order of a few millinewtons (i.e., at least two orders of magnitude lower than the implant weight).RESULTSGradient-induced torques may be within the same order of magnitude as the worst case gravitational torque defined in the ASTM standards. However, for all investigated cases, they result to be lower. In vacuum, the extent of the corresponding vibration reduces with frequency. At the lowest investigated frequency (270 Hz), it keeps below 25 μm. For an implant partially embedded in bone, the extent of the vibration increases with frequency. Nevertheless, the displacement is far lower than the worst case observed in vacuum (negligible in contact with the bone; ˜1 μm or less where the implant emerges from the bone). The Lenz effect induced by the motion of the patient through the stationary magnetic field produces forces on the order of a few millinewtons (i.e., at least two orders of magnitude lower than the implant weight).Comparing the results with mechanical loads caused by ordinary activities of daily living, and with the levels of tolerable micromotions, a good safety margin is confirmed.CONCLUSIONComparing the results with mechanical loads caused by ordinary activities of daily living, and with the levels of tolerable micromotions, a good safety margin is confirmed. PurposeTo quantify the extent of gradient‐induced vibrations, and the magnitude of motion‐induced displacement forces (“Lenz effect”), in conductive nonmagnetic orthopedic prostheses.MethodsThe investigation is carried out through numerical simulations, for a 3 T scanner. For gradient‐induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms). For motion‐induced forces associated with the Lenz effect, a knee and a hip implant are studied, considering a patient who translates on the examination couch, or walks next to it.ResultsGradient‐induced torques may be within the same order of magnitude as the worst case gravitational torque defined in the ASTM standards. However, for all investigated cases, they result to be lower. In vacuum, the extent of the corresponding vibration reduces with frequency. At the lowest investigated frequency (270 Hz), it keeps below 25 μm. For an implant partially embedded in bone, the extent of the vibration increases with frequency. Nevertheless, the displacement is far lower than the worst case observed in vacuum (negligible in contact with the bone; ˜1 μm or less where the implant emerges from the bone). The Lenz effect induced by the motion of the patient through the stationary magnetic field produces forces on the order of a few millinewtons (i.e., at least two orders of magnitude lower than the implant weight).ConclusionComparing the results with mechanical loads caused by ordinary activities of daily living, and with the levels of tolerable micromotions, a good safety margin is confirmed. Purpose To quantify the extent of gradient‐induced vibrations, and the magnitude of motion‐induced displacement forces (“Lenz effect”), in conductive nonmagnetic orthopedic prostheses. Methods The investigation is carried out through numerical simulations, for a 3 T scanner. For gradient‐induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms). For motion‐induced forces associated with the Lenz effect, a knee and a hip implant are studied, considering a patient who translates on the examination couch, or walks next to it. Results Gradient‐induced torques may be within the same order of magnitude as the worst case gravitational torque defined in the ASTM standards. However, for all investigated cases, they result to be lower. In vacuum, the extent of the corresponding vibration reduces with frequency. At the lowest investigated frequency (270 Hz), it keeps below 25 μm. For an implant partially embedded in bone, the extent of the vibration increases with frequency. Nevertheless, the displacement is far lower than the worst case observed in vacuum (negligible in contact with the bone; ˜1 μm or less where the implant emerges from the bone). The Lenz effect induced by the motion of the patient through the stationary magnetic field produces forces on the order of a few millinewtons (i.e., at least two orders of magnitude lower than the implant weight). Conclusion Comparing the results with mechanical loads caused by ordinary activities of daily living, and with the levels of tolerable micromotions, a good safety margin is confirmed. To quantify the extent of gradient-induced vibrations, and the magnitude of motion-induced displacement forces ("Lenz effect"), in conductive nonmagnetic orthopedic prostheses. The investigation is carried out through numerical simulations, for a 3 T scanner. For gradient-induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms). For motion-induced forces associated with the Lenz effect, a knee and a hip implant are studied, considering a patient who translates on the examination couch, or walks next to it. Gradient-induced torques may be within the same order of magnitude as the worst case gravitational torque defined in the ASTM standards. However, for all investigated cases, they result to be lower. In vacuum, the extent of the corresponding vibration reduces with frequency. At the lowest investigated frequency (270 Hz), it keeps below 25 μm. For an implant partially embedded in bone, the extent of the vibration increases with frequency. Nevertheless, the displacement is far lower than the worst case observed in vacuum (negligible in contact with the bone; ˜1 μm or less where the implant emerges from the bone). The Lenz effect induced by the motion of the patient through the stationary magnetic field produces forces on the order of a few millinewtons (i.e., at least two orders of magnitude lower than the implant weight). Comparing the results with mechanical loads caused by ordinary activities of daily living, and with the levels of tolerable micromotions, a good safety margin is confirmed. |
| Author | Zilberti, Luca Bottauscio, Oriano Zanovello, Umberto Baruffaldi, Fabio Curreli, Cristina Arduino, Alessandro |
| Author_xml | – sequence: 1 givenname: Luca orcidid: 0000-0002-2382-4710 surname: Zilberti fullname: Zilberti, Luca email: l.zilberti@inrim.it organization: Istituto Nazionale di Ricerca Metrologica (INRIM) – sequence: 2 givenname: Cristina surname: Curreli fullname: Curreli, Cristina organization: IRCCS Istituto Ortopedico Rizzoli – sequence: 3 givenname: Alessandro orcidid: 0000-0002-4829-5130 surname: Arduino fullname: Arduino, Alessandro organization: Istituto Nazionale di Ricerca Metrologica (INRIM) – sequence: 4 givenname: Umberto orcidid: 0000-0001-6415-9967 surname: Zanovello fullname: Zanovello, Umberto organization: Istituto Nazionale di Ricerca Metrologica (INRIM) – sequence: 5 givenname: Fabio surname: Baruffaldi fullname: Baruffaldi, Fabio organization: IRCCS Istituto Ortopedico Rizzoli – sequence: 6 givenname: Oriano orcidid: 0000-0002-5437-4396 surname: Bottauscio fullname: Bottauscio, Oriano organization: Istituto Nazionale di Ricerca Metrologica (INRIM) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39176421$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kdFqFTEQhoNU7Gn1wheQgDd6se0k2bPZXErRWjgHoeh1yElmNWU3OSbZlnrlI_iMPok5PVWkoFfzw3wz_DP_ETkIMSAhzxmcMAB-OqXpRADvxCOyYEvOG75U7QFZgGyhEUy1h-Qo5ysAUEq2T8ihUEx2LWcLUs6TcR5D-fn9hw9utujotd8kU3wMmZrg6BR3-q_-CsM3isOAtmQaA7Vx1yj-Gmk1NpnPAYu3NKbyJW7RVemn7WhCpX2g68uLp-TxYMaMz-7rMfn07u3Hs_fN6sP5xdmbVWNF34vGSC6ZXUonegC3aXvWoQQw9SzG-sE50VYXhqEAsIAAsuPMbipvEKQy4pi82u_dpvh1xlz05LPFsXrBOGctQHW875jqK_ryAXoV5xSqOy0YZ7yXXKhKvbin5s2ETm-Tn0y61b__WYHXe8CmmHPC4Q_CQO-y0jUrfZdVZU8fsNaXu7-XZPz4v4kbP-Ltv1fr9eV6P_ELUgCnPw |
| CitedBy_id | crossref_primary_10_1007_s10334_025_01238_2 |
| Cites_doi | 10.1088/0031-9155/59/18/5287 10.1109/TBME.2019.2923693 10.1109/ICEAA.2017.8065581 10.58530/2023/2875 10.1088/1361-6560/aca5e6 10.1088/0031-9155/45/12/320 10.1038/s41598-021-90142-5 10.1111/j.1532-849X.2011.00819.x 10.1109/TMAG.2015.2474748 10.1002/mrm.26031 10.1016/S0021-9290(01)00040-9 10.1002/mrm.26544 10.1098/rsif.2019.0259 10.1002/jmri.27319 10.1007/s40134-016-0155-y 10.1002/jmri.20539 10.1002/jmri.24547 10.1007/s10237-022-01637-7 10.1016/j.jbiomech.2010.03.046 10.1016/j.medengphy.2023.104017 10.1002/jmri.1880070427 10.1016/j.jbiomech.2009.12.006 10.2528/PIER12031505 10.1002/jor.23771 10.1002/jmri.27194 10.1016/S0268-0033(01)00052-3 10.1002/jmri.25761 10.1002/1522-2586(200007)12:1<171::AID-JMRI19>3.0.CO;2-W 10.1002/jmri.29002 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
| DOI | 10.1002/mrm.30263 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 352 |
| ExternalDocumentID | 39176421 10_1002_mrm_30263 MRM30263 |
| Genre | researchArticle Journal Article |
| GrantInformation_xml | – fundername: European Partnership on Metrology funderid: 21NRM05 STASIS – fundername: European Partnership on Metrology grantid: 21NRM05 STASIS |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
| ID | FETCH-LOGICAL-c3883-a7271c57d3800db4816e700a074118fdd34effa1e300c0e007621cb7d3ae079a3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001296534100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Thu Sep 04 19:06:56 EDT 2025 Sat Nov 29 14:49:57 EST 2025 Mon Jul 21 05:59:57 EDT 2025 Sat Nov 29 06:34:41 EST 2025 Tue Nov 18 21:49:00 EST 2025 Wed Jan 22 17:13:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | dynamic torques Lorentz force displacement force implants Lenz effects mechanical vibrations |
| Language | English |
| License | Attribution 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3883-a7271c57d3800db4816e700a074118fdd34effa1e300c0e007621cb7d3ae079a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2382-4710 0000-0002-5437-4396 0000-0001-6415-9967 0000-0002-4829-5130 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30263 |
| PMID | 39176421 |
| PQID | 3121287239 |
| PQPubID | 1016391 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_3096286198 proquest_journals_3121287239 pubmed_primary_39176421 crossref_primary_10_1002_mrm_30263 crossref_citationtrail_10_1002_mrm_30263 wiley_primary_10_1002_mrm_30263_MRM30263 |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 2025-Jan 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2000; 45 2023; 59 2022; 67 2016; 76 2019; 16 2016; 52 2012; 128 2018; 47 1997; 7 2016; 4 2010; 43 2021; 53 2023; 22 2021; 11 2023 2006; 23 2001; 7 2022 2000; 12 2021 2020 2017; 77 2015; 41 2014; 59 2018 2017 2016 2020; 67 2001; 16 2023; 118 2012; 21 2018; 36 e_1_2_7_5_1 ASTM International (e_1_2_7_21_1) 2021 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_1 ACR Committee on MR Safety (e_1_2_7_7_1) 2020 e_1_2_7_17_1 ASTM International (e_1_2_7_18_1) 2017 e_1_2_7_16_1 e_1_2_7_15_1 International Organization for Standardization (ISO) (e_1_2_7_9_1) 2018 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 ASTM International (e_1_2_7_2_1) 2023 e_1_2_7_28_1 e_1_2_7_29_1 Nyenhuis JA (e_1_2_7_19_1) 2020 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 International Electrotechnical Commission (IEC) (e_1_2_7_6_1) 2022 |
| References_xml | – volume: 12 start-page: 171 year: 2000 end-page: 176 article-title: Potential MR Hazard to patients with metallic heart valves: the Lenz effect publication-title: J Magn Reson Imaging – volume: 59 start-page: 1514 year: 2023 end-page: 1522 article-title: Managing patients with unlabeled passive implants on MR systems operating below 1.5 T publication-title: J Magn Reson Imaging – volume: 4 start-page: 28 year: 2016 article-title: New developments in standards for MRI safety testing of medical devices publication-title: Curr Radiol Rep – volume: 47 start-page: 28 year: 2018 end-page: 43 article-title: The physics of MRI safety publication-title: J Magn Reson Imaging – volume: 67 start-page: 915 year: 2020 end-page: 923 article-title: Gradient‐induced mechanical vibration of neural interfaces during MRI publication-title: IEEE Trans Biomed Eng – volume: 52 start-page: 1 year: 2016 end-page: 4 article-title: A potential‐based formulation for motion‐induced electric fields in MRI publication-title: IEEE Trans Magn – volume: 118 year: 2023 article-title: Biomechanical properties of artificial bones made by sawbones: a review publication-title: Med Eng Phys – volume: 67 year: 2022 article-title: Computational dosimetry in MRI in presence of hip, knee or shoulder implants: do we need accurate surgery models? publication-title: Phys Med Biol – volume: 23 start-page: 585 year: 2006 end-page: 590 article-title: Eddy‐current induction in extended metallic parts As a source of considerable torsional moment publication-title: J Magn Reson Imaging – year: 2021 – volume: 45 start-page: 3793 year: 2000 end-page: 3807 article-title: Estimation of torque on mechanical heart valves due to magnetic resonance imaging including an estimation of the significance of the Lenz effect using a computational model publication-title: Phys Med Biol – volume: 7 start-page: 859 year: 2001 end-page: 871 article-title: Hip contact forces and gait patterns from routine activities publication-title: J Biomech – volume: 21 start-page: 141 year: 2012 end-page: 154 article-title: Prosthetic requirements for immediate implant loading: a review publication-title: J Prosthodont – volume: 53 start-page: 333 year: 2021 end-page: 346 article-title: 7T MR safety publication-title: J Magn Reson Imaging – volume: 41 start-page: 74 year: 2015 end-page: 82 article-title: In vitro assessment of the Lenz effect on heart valve prostheses at 1.5 T publication-title: J Magn Reson Imaging – year: 2016 – volume: 16 start-page: 765 year: 2001 end-page: 775 article-title: Even a thin layer of soft tissue may compromise the primary stability of cementlesship stems publication-title: Clin Biomech – year: 2018 – volume: 77 start-page: 13 year: 2017 end-page: 15 article-title: The underestimated role of gradient coils in MRI safety publication-title: Magn Reson Med – start-page: 4212 year: 2020 – volume: 36 start-page: 1508 year: 2018 end-page: 1518 article-title: Additive manufactured push‐fit implant fixation with screw‐strength pull out publication-title: J Orthop Res – volume: 128 start-page: 1 year: 2012 end-page: 17 article-title: Comprehensive analysis of Lenz effect on the artificial heart valves during magnetic resonance imaging publication-title: Prog Electromagn Res – volume: 76 start-page: 1291 year: 2016 end-page: 1300 article-title: Assessment of exposure to MRI motion‐induced fields based on the international commission on non‐ionizing radiation protection (ICNIRP) guidelines publication-title: Magn Reson Med – volume: 22 start-page: 133 year: 2023 end-page: 158 article-title: Modeling the debonding process of osseointegrated implants due to coupled adhesion and friction publication-title: Biomech Model Mechanobiol – year: 2022 – volume: 7 start-page: 771 year: 1997 end-page: 772 article-title: MRI of cervical fixation devices: sensation of heating caused by vibration of metallic components publication-title: J Magn Reson Imaging – volume: 59 start-page: 5287 year: 2014 end-page: 5303 article-title: Development of a new generation of high‐resolution anatomical models for medical device evaluation: the virtual population 3.0 publication-title: Phys Med Biol – year: 2020 – volume: 16 year: 2019 article-title: Biomechanical behaviours of the bone–implant interface: a review publication-title: J R Soc Interface – year: 2023 – volume: 53 start-page: 1646 year: 2021 end-page: 1665 article-title: MRI‐related heating of implants and devices: a review publication-title: J Magn Reson Imaging – volume: 43 start-page: 2164 year: 2010 end-page: 2173 article-title: Loading of the knee joint during activities of daily living measured in vivo in five subjects publication-title: J Biomech – year: 2017 – volume: 11 start-page: 10797 year: 2021 article-title: The limit of tolerable micromotion for implant osseointegration: a systematic review publication-title: Sci Rep – volume: 43 start-page: 1074 year: 2010 end-page: 1080 article-title: Analysis of bone–prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions publication-title: J Biomech – volume-title: ASTM F2503‐23 Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment year: 2023 ident: e_1_2_7_2_1 – ident: e_1_2_7_30_1 doi: 10.1088/0031-9155/59/18/5287 – ident: e_1_2_7_11_1 doi: 10.1109/TBME.2019.2923693 – ident: e_1_2_7_10_1 doi: 10.1109/ICEAA.2017.8065581 – ident: e_1_2_7_12_1 doi: 10.58530/2023/2875 – ident: e_1_2_7_25_1 doi: 10.1088/1361-6560/aca5e6 – ident: e_1_2_7_14_1 doi: 10.1088/0031-9155/45/12/320 – volume-title: ASTM F2052‐21 Standard Test Method for Measurement of Magnetically Induced Torque on Medical Devices in the Magnetic Resonance Environment year: 2021 ident: e_1_2_7_21_1 – ident: e_1_2_7_35_1 doi: 10.1038/s41598-021-90142-5 – ident: e_1_2_7_32_1 doi: 10.1111/j.1532-849X.2011.00819.x – volume-title: ASTM F2213‐17 Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment year: 2017 ident: e_1_2_7_18_1 – start-page: 4212 volume-title: Proceedings of the 2020 ISMRM & SMRT Virtual Conference & Exhibition. International Society for Magnetic Resonance in Medicine year: 2020 ident: e_1_2_7_19_1 – ident: e_1_2_7_28_1 doi: 10.1109/TMAG.2015.2474748 – ident: e_1_2_7_29_1 doi: 10.1002/mrm.26031 – ident: e_1_2_7_38_1 doi: 10.1016/S0021-9290(01)00040-9 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.26544 – volume-title: IEC 60601–2‐33 Medical Electrical Equipment – Part 2–33: Particular Requirements for the Basic Safety and Essential Performance of Magnetic Resonance Equipment for Medical Diagnosis, Edition 4.0 year: 2022 ident: e_1_2_7_6_1 – ident: e_1_2_7_34_1 doi: 10.1098/rsif.2019.0259 – ident: e_1_2_7_3_1 doi: 10.1002/jmri.27319 – ident: e_1_2_7_4_1 doi: 10.1007/s40134-016-0155-y – ident: e_1_2_7_17_1 doi: 10.1002/jmri.20539 – ident: e_1_2_7_16_1 doi: 10.1002/jmri.24547 – ident: e_1_2_7_36_1 doi: 10.1007/s10237-022-01637-7 – ident: e_1_2_7_39_1 doi: 10.1016/j.jbiomech.2010.03.046 – ident: e_1_2_7_24_1 – ident: e_1_2_7_27_1 doi: 10.1016/j.medengphy.2023.104017 – ident: e_1_2_7_8_1 doi: 10.1002/jmri.1880070427 – ident: e_1_2_7_37_1 doi: 10.1016/j.jbiomech.2009.12.006 – ident: e_1_2_7_15_1 doi: 10.2528/PIER12031505 – ident: e_1_2_7_33_1 doi: 10.1002/jor.23771 – ident: e_1_2_7_23_1 doi: 10.1002/jmri.27194 – ident: e_1_2_7_31_1 doi: 10.1016/S0268-0033(01)00052-3 – ident: e_1_2_7_5_1 doi: 10.1002/jmri.25761 – ident: e_1_2_7_13_1 doi: 10.1002/1522-2586(200007)12:1<171::AID-JMRI19>3.0.CO;2-W – volume-title: ISO/TS 10974 Assessment of the Safety of Magnetic Resonance Imaging for Patients with an Active Implantable Medical Device year: 2018 ident: e_1_2_7_9_1 – ident: e_1_2_7_26_1 – volume-title: ACR Manual on MR Safety, Version 1.0 year: 2020 ident: e_1_2_7_7_1 – ident: e_1_2_7_20_1 doi: 10.1002/jmri.29002 |
| SSID | ssj0009974 |
| Score | 2.4767423 |
| Snippet | Purpose
To quantify the extent of gradient‐induced vibrations, and the magnitude of motion‐induced displacement forces (“Lenz effect”), in conductive... To quantify the extent of gradient-induced vibrations, and the magnitude of motion-induced displacement forces ("Lenz effect"), in conductive nonmagnetic... PurposeTo quantify the extent of gradient‐induced vibrations, and the magnitude of motion‐induced displacement forces (“Lenz effect”), in conductive... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 341 |
| SubjectTerms | Activities of daily living Computer Simulation displacement force dynamic torques Gravity Humans implants Investigations Knee Lenz effects Lorentz force Magnetic Resonance Imaging mechanical vibrations Motion Orthopaedic implants Orthopedics Prostheses Prostheses and Implants Prosthetics Safety margins Surgical implants Torque Transplants & implants Vacuum Vibration Vibrations |
| Title | Gradient‐induced vibrations and motion‐induced Lenz effects on conductive nonmagnetic orthopedic implants in MRI |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30263 https://www.ncbi.nlm.nih.gov/pubmed/39176421 https://www.proquest.com/docview/3121287239 https://www.proquest.com/docview/3096286198 |
| Volume | 93 |
| WOSCitedRecordID | wos001296534100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB6VFhCXAuUvpVQGceCS1l57Y684ISBQKYmqiIrcVo7tokiNEyVpD5x4BJ6xT9IZ72ZLBUhIXFa78qzG8sx4ZvzzDcBr9IFa55iWqA6Gb0rlFufBgmq9aC-49B3nEmR-Tw8GZjQqjjfg7fouTIUP0Sy4kWWk-ZoM3I6Xh9egodPF9EBiBiFvwZYQUpNKZ-r4GnG3qCCYtaKJplBrWCGeHTa_3nRGv0WYNwPW5HG69_-rrw9guw402btKMx7CRog7cLdfb6XvwJ109tMtH8Hq0yKd-1pd_viJGTrK2rMLYpdUktnoWVXr55f2XojfWX0WhM0iw6yagGNx6mRxFqf2W6TLkYw2hWZz4skm0_kZnblhk8j6w6PHcNL9-OX953ZdjKHtpDGybTHQES7XXmKI6cfKiE7QnFsKSYQ59V4q5GpFkJw7HmiHLxNujPQ2cF1Y-QQ2sQPhGbAQCGQt-NNcc2VzOTYYRVkZBDpsJXhowZu1VEpXI5VTwYyzssJYzkoczzKNZwteNaTzCp7jT0R7a9GWtYUuSynQaRudyaIFL5tmtC3aMLExzM6RBvO7zGCKaVrwtFKJhovEPJcuCWNnk-T_zr7sD_vpZfffSZ_DvYwKDae1nj3YXC3Owwu47S5Wk-ViPyk6PvXI7MPWh2H3pIdfX48GV5xHBKk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB6VFAoXfgqFQAGDOPQSaq-9sVfigoDQit0IRa3U28pZuyhS40RJ2gMnHoFn5EmY8W62VICExG0lz2osezw_nvE3AK_QBmqdYlii-ui-KZVa1IMZ9XrRTnDp-lUVIfNzPRyak5Ps8wa8Wb-FqfEh2gs3OhlRX9MBpwvp_UvU0Oli-lpiCCGvwaZCMUo7sPl-NDjOL0F3sxqFWSvSNZlaIwvxZL_9-ao9-s3JvOqzRqMzuPN_070Ltxtnk72tpeMebPiwDVtFk07fhhux_rNa3ofVx0Ws_Vr9-PYdo3Tcb8cuiF8US2aDY3W_n1_Gcx--sqYehM0Cw8iawGNRfbIwC1P7JdADSUaJodmceLLJdH5GdTdsElgxOnwAx4MPR-8Oek1Dhl4ljZE9i86OqFLtJLqZbqyM6HvNuSW3RJhT56RCrlZ4yXnFPWX5ElGNkd56rjMrd6CDE_CPgHlPQGvenaaaK5vKsUFPykov0GgrwX0X9tbbUlYNWjk1zTgra5zlpMT1LON6duFlSzqvITr-RLS73tuyOaXLUgo03EYnMuvCi3YYzxclTWzws3OkwRgvMRhmmi48rGWi5SIx1qWHwjjZuPV_Z18WoyJ-PP530udw8-CoyMv8cPjpCdxKqPFwvPvZhc5qce6fwvXqYjVZLp41cv8TWvIGjw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB6VAhUXfgptAwUM4sAl1F57Y6_EBQGBiiSKKpB6Wzm2U0VqnChJe-DEI_CMfZLOeDdbKkBC4raSZzWWx54fz_gbgFdoA7XOMSxRHXTflMot6sGCer1oL7j0HecSZH5PDwbm-LgYbsDb9VuYCh-iuXCjk5H0NR3wMPfjgyvU0Oli-kZiCCFvwE2Vo44lXGc1vILcLSoMZq1I0xRqjSvEs4Pm1-vW6DcX87rHmkxO997_TfY-3K1dTfau2hsPYCPEbdjq18n0bbidqj_d8iGsPi1S5dfq4sdPjNFR2p6dE7-0KZmNnlXdfn4Z74X4ndXVIGwWGcbVBB2LypPFWZzak0jPIxmlhWZz4skm0_kpVd2wSWT9o8NH8K378ev7z-26HUPbSWNk26KrI1yuvUQn04-UEZ2gObfklAgz9l4q5GpFkJw7HijHlwk3QnobuC6s3IFNnEDYAxYCwawFP841VzaXI4N-lJVBoMlWgocWvF6LpXQ1Vjm1zDgtK5TlrMT1LNN6tuBlQzqvADr-RLS_lm1Zn9FlKQWabaMzWbTgRTOMp4tSJjaG2RnSYISXGQwyTQt2qz3RcJEY6dIzYZxsEv3f2Zf9o376ePzvpM9ha_ihW_YOB1-ewJ2Mug6ni5992FwtzsJTuOXOV5Pl4lna9Jc6EwR4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient-induced+vibrations+and+motion-induced+Lenz+effects+on+conductive+nonmagnetic+orthopedic+implants+in+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Zilberti%2C+Luca&rft.au=Curreli%2C+Cristina&rft.au=Arduino%2C+Alessandro&rft.au=Zanovello%2C+Umberto&rft.date=2025-01-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=93&rft.issue=1&rft.spage=341&rft_id=info:doi/10.1002%2Fmrm.30263&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |