Quantifying 3D MR fingerprinting (3D‐MRF) reproducibility across subjects, sessions, and scanners automatically using MNI atlases

Purpose Quantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the point‐of‐care than weighted imaging. However, few direct cross‐modal comparisons of MRF's repeatability and reproducibility versus weighted acquisit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 91; H. 5; S. 2074 - 2088
Hauptverfasser: Dupuis, Andrew, Chen, Yong, Hansen, Michael, Chow, Kelvin, Sun, Jessie E. P., Badve, Chaitra, Ma, Dan, Griswold, Mark A., Boyacioglu, Rasim
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.05.2024
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose Quantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the point‐of‐care than weighted imaging. However, few direct cross‐modal comparisons of MRF's repeatability and reproducibility versus weighted acquisitions have been performed. This work proposes a novel fully automated pipeline for quantitatively comparing cross‐modal imaging performance in vivo via atlas‐based sampling. Methods We acquire whole‐brain 3D‐MRF, turbo spin echo, and MPRAGE sequences three times each on two scanners across 10 subjects, for a total of 60 multimodal datasets. The proposed automated registration and analysis pipeline uses linear and nonlinear registration to align all qualitative and quantitative DICOM stacks to Montreal Neurological Institute (MNI) 152 space, then samples each dataset's native space through transformation inversion to compare performance within atlas regions across subjects, scanners, and repetitions. Results Voxel values within MRF‐derived maps were found to be more repeatable (σT1 = 1.90, σT2 = 3.20) across sessions than vendor‐reconstructed MPRAGE (σT1w = 6.04) or turbo spin echo (σT2w = 5.66) images. Additionally, MRF was found to be more reproducible across scanners (σT1 = 2.21, σT2 = 3.89) than either qualitative modality (σT1w = 7.84, σT2w = 7.76). Notably, differences between repeatability and reproducibility of in vivo MRF were insignificant, unlike the weighted images. Conclusion MRF data from many sessions and scanners can potentially be treated as a single dataset for harmonized analysis or longitudinal comparisons without the additional regularization steps needed for qualitative modalities.
AbstractList Quantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the point-of-care than weighted imaging. However, few direct cross-modal comparisons of MRF's repeatability and reproducibility versus weighted acquisitions have been performed. This work proposes a novel fully automated pipeline for quantitatively comparing cross-modal imaging performance in vivo via atlas-based sampling.PURPOSEQuantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the point-of-care than weighted imaging. However, few direct cross-modal comparisons of MRF's repeatability and reproducibility versus weighted acquisitions have been performed. This work proposes a novel fully automated pipeline for quantitatively comparing cross-modal imaging performance in vivo via atlas-based sampling.We acquire whole-brain 3D-MRF, turbo spin echo, and MPRAGE sequences three times each on two scanners across 10 subjects, for a total of 60 multimodal datasets. The proposed automated registration and analysis pipeline uses linear and nonlinear registration to align all qualitative and quantitative DICOM stacks to Montreal Neurological Institute (MNI) 152 space, then samples each dataset's native space through transformation inversion to compare performance within atlas regions across subjects, scanners, and repetitions.METHODSWe acquire whole-brain 3D-MRF, turbo spin echo, and MPRAGE sequences three times each on two scanners across 10 subjects, for a total of 60 multimodal datasets. The proposed automated registration and analysis pipeline uses linear and nonlinear registration to align all qualitative and quantitative DICOM stacks to Montreal Neurological Institute (MNI) 152 space, then samples each dataset's native space through transformation inversion to compare performance within atlas regions across subjects, scanners, and repetitions.Voxel values within MRF-derived maps were found to be more repeatable (σT1  = 1.90, σT2  = 3.20) across sessions than vendor-reconstructed MPRAGE (σT1w  = 6.04) or turbo spin echo (σT2w  = 5.66) images. Additionally, MRF was found to be more reproducible across scanners (σT1  = 2.21, σT2  = 3.89) than either qualitative modality (σT1w  = 7.84, σT2w  = 7.76). Notably, differences between repeatability and reproducibility of in vivo MRF were insignificant, unlike the weighted images.RESULTSVoxel values within MRF-derived maps were found to be more repeatable (σT1  = 1.90, σT2  = 3.20) across sessions than vendor-reconstructed MPRAGE (σT1w  = 6.04) or turbo spin echo (σT2w  = 5.66) images. Additionally, MRF was found to be more reproducible across scanners (σT1  = 2.21, σT2  = 3.89) than either qualitative modality (σT1w  = 7.84, σT2w  = 7.76). Notably, differences between repeatability and reproducibility of in vivo MRF were insignificant, unlike the weighted images.MRF data from many sessions and scanners can potentially be treated as a single dataset for harmonized analysis or longitudinal comparisons without the additional regularization steps needed for qualitative modalities.CONCLUSIONMRF data from many sessions and scanners can potentially be treated as a single dataset for harmonized analysis or longitudinal comparisons without the additional regularization steps needed for qualitative modalities.
PurposeQuantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the point‐of‐care than weighted imaging. However, few direct cross‐modal comparisons of MRF's repeatability and reproducibility versus weighted acquisitions have been performed. This work proposes a novel fully automated pipeline for quantitatively comparing cross‐modal imaging performance in vivo via atlas‐based sampling.MethodsWe acquire whole‐brain 3D‐MRF, turbo spin echo, and MPRAGE sequences three times each on two scanners across 10 subjects, for a total of 60 multimodal datasets. The proposed automated registration and analysis pipeline uses linear and nonlinear registration to align all qualitative and quantitative DICOM stacks to Montreal Neurological Institute (MNI) 152 space, then samples each dataset's native space through transformation inversion to compare performance within atlas regions across subjects, scanners, and repetitions.ResultsVoxel values within MRF‐derived maps were found to be more repeatable (σT1 = 1.90, σT2 = 3.20) across sessions than vendor‐reconstructed MPRAGE (σT1w = 6.04) or turbo spin echo (σT2w = 5.66) images. Additionally, MRF was found to be more reproducible across scanners (σT1 = 2.21, σT2 = 3.89) than either qualitative modality (σT1w = 7.84, σT2w = 7.76). Notably, differences between repeatability and reproducibility of in vivo MRF were insignificant, unlike the weighted images.ConclusionMRF data from many sessions and scanners can potentially be treated as a single dataset for harmonized analysis or longitudinal comparisons without the additional regularization steps needed for qualitative modalities.
Quantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the point-of-care than weighted imaging. However, few direct cross-modal comparisons of MRF's repeatability and reproducibility versus weighted acquisitions have been performed. This work proposes a novel fully automated pipeline for quantitatively comparing cross-modal imaging performance in vivo via atlas-based sampling. We acquire whole-brain 3D-MRF, turbo spin echo, and MPRAGE sequences three times each on two scanners across 10 subjects, for a total of 60 multimodal datasets. The proposed automated registration and analysis pipeline uses linear and nonlinear registration to align all qualitative and quantitative DICOM stacks to Montreal Neurological Institute (MNI) 152 space, then samples each dataset's native space through transformation inversion to compare performance within atlas regions across subjects, scanners, and repetitions. Voxel values within MRF-derived maps were found to be more repeatable (σ  = 1.90, σ  = 3.20) across sessions than vendor-reconstructed MPRAGE (σ  = 6.04) or turbo spin echo (σ  = 5.66) images. Additionally, MRF was found to be more reproducible across scanners (σ  = 2.21, σ  = 3.89) than either qualitative modality (σ  = 7.84, σ  = 7.76). Notably, differences between repeatability and reproducibility of in vivo MRF were insignificant, unlike the weighted images. MRF data from many sessions and scanners can potentially be treated as a single dataset for harmonized analysis or longitudinal comparisons without the additional regularization steps needed for qualitative modalities.
Purpose Quantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the point‐of‐care than weighted imaging. However, few direct cross‐modal comparisons of MRF's repeatability and reproducibility versus weighted acquisitions have been performed. This work proposes a novel fully automated pipeline for quantitatively comparing cross‐modal imaging performance in vivo via atlas‐based sampling. Methods We acquire whole‐brain 3D‐MRF, turbo spin echo, and MPRAGE sequences three times each on two scanners across 10 subjects, for a total of 60 multimodal datasets. The proposed automated registration and analysis pipeline uses linear and nonlinear registration to align all qualitative and quantitative DICOM stacks to Montreal Neurological Institute (MNI) 152 space, then samples each dataset's native space through transformation inversion to compare performance within atlas regions across subjects, scanners, and repetitions. Results Voxel values within MRF‐derived maps were found to be more repeatable (σT1 = 1.90, σT2 = 3.20) across sessions than vendor‐reconstructed MPRAGE (σT1w = 6.04) or turbo spin echo (σT2w = 5.66) images. Additionally, MRF was found to be more reproducible across scanners (σT1 = 2.21, σT2 = 3.89) than either qualitative modality (σT1w = 7.84, σT2w = 7.76). Notably, differences between repeatability and reproducibility of in vivo MRF were insignificant, unlike the weighted images. Conclusion MRF data from many sessions and scanners can potentially be treated as a single dataset for harmonized analysis or longitudinal comparisons without the additional regularization steps needed for qualitative modalities.
Author Griswold, Mark A.
Boyacioglu, Rasim
Hansen, Michael
Badve, Chaitra
Ma, Dan
Dupuis, Andrew
Chen, Yong
Chow, Kelvin
Sun, Jessie E. P.
Author_xml – sequence: 1
  givenname: Andrew
  orcidid: 0000-0002-3714-4812
  surname: Dupuis
  fullname: Dupuis, Andrew
  email: andrew.dupuis@case.edu
  organization: Case Western Reserve University
– sequence: 2
  givenname: Yong
  orcidid: 0000-0001-6183-2693
  surname: Chen
  fullname: Chen, Yong
  organization: University Hospitals
– sequence: 3
  givenname: Michael
  orcidid: 0000-0002-8087-8731
  surname: Hansen
  fullname: Hansen, Michael
  organization: Microsoft Research
– sequence: 4
  givenname: Kelvin
  orcidid: 0000-0003-0698-1746
  surname: Chow
  fullname: Chow, Kelvin
  organization: Siemens Medical Solutions USA, Inc
– sequence: 5
  givenname: Jessie E. P.
  orcidid: 0000-0003-4659-9883
  surname: Sun
  fullname: Sun, Jessie E. P.
  organization: Case Western Reserve University
– sequence: 6
  givenname: Chaitra
  orcidid: 0000-0001-8547-8019
  surname: Badve
  fullname: Badve, Chaitra
  organization: University Hospitals
– sequence: 7
  givenname: Dan
  orcidid: 0000-0003-1664-9579
  surname: Ma
  fullname: Ma, Dan
  organization: Case Western Reserve University
– sequence: 8
  givenname: Mark A.
  orcidid: 0000-0002-3011-6747
  surname: Griswold
  fullname: Griswold, Mark A.
  organization: Case Western Reserve University
– sequence: 9
  givenname: Rasim
  orcidid: 0000-0002-3099-2640
  surname: Boyacioglu
  fullname: Boyacioglu, Rasim
  organization: Case Western Reserve University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38192239$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9qFTEUxoNU7G114QtIwE0LTpt_c2eylNZqoaN40XU4k2Qkl0ymJhlkdoIv4DP6JKa9t5uiqxwOv-8j5_uO0EGYgkXoJSVnlBB2PsbxjEnZ8idoRWvGKlZLcYBWpBGk4lSKQ3SU0pYQImUjnqFD3lLJGJcr9OvzDCG7YXHhG-aXuNvgoYw23kZX9mV5wi___Pzdba5OcbS3cTKzdr3zLi8YdJxSwmnut1bn9AYnm5KbQpkgGJw0hGBjwjDnaYTsNHi_4Dnd2XYfrzFkD0XyHD0dwCf7Yv8eo69X775cfKhuPr2_vnh7U2netrySnAswwKUxwwCtZUSIAWg7SNJQqI3ghWvArKW2tjEEZM0MMSD6XpDB1PwYnex8yxXfZ5uyGl3S1nsIdpqTYpKymjUNlwV9_QjdTnMM5XeFWjeUtaxZF-rVnpr70RpVMhshLuoh3gKc74D7oKIdlHa5BDGFHMF5RYm6K1CVAtV9gUVx-kjxYPovdu_-w3m7_B9U3abbKf4Cb9esLA
CitedBy_id crossref_primary_10_1007_s10334_025_01245_3
crossref_primary_10_1007_s10334_024_01205_3
crossref_primary_10_1002_mrm_70090
crossref_primary_10_1007_s10334_024_01211_5
Cites_doi 10.1038/nature11971
10.1016/j.neuroimage.2021.117910
10.1002/mrm.28160
10.1002/hbm.25232
10.1016/j.mric.2021.06.010
10.3389/fninf.2011.00013
10.1259/bjr.20201215
10.3390/cancers14030723
10.1002/jmri.27635
10.1002/mrm.25559
10.3389/fneur.2021.640239
10.1002/mrm.26509
10.1016/j.neuroimage.2019.03.047
10.1002/mrm.29264
10.1148/radiol.220736
10.1007/s11886-022-01836-9
10.1016/j.neuroimage.2009.12.059
10.1007/s10334-021-00924-1
10.1002/jmri.27155
10.1002/jmri.27673
10.1148/radiol.2021202302
10.1002/mrm.29089
10.1016/j.neuroimage.2017.10.034
10.1016/j.jneumeth.2016.03.001
10.1093/cercor/bhac096
10.1006/jmre.1998.1396
10.5281/zenodo.8184908
10.1002/jmri.26785
10.1006/nimg.2002.1132
10.1002/mrm.26886
10.1016/j.neuroimage.2011.09.015
10.1016/S1361-8415(01)00036-6
10.1109/TMI.2014.2337321
10.1148/radiol.2019182360
10.1007/s10334-022-01012-8
10.1002/mrm.26089
10.1016/j.neuroimage.2018.11.038
10.1016/j.neuroimage.2020.117573
10.1002/mrm.26580
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.29983
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2088
ExternalDocumentID 38192239
10_1002_mrm_29983
MRM29983
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Research reported in this publication was supported by the National Institutes of Health (USA) under award numbers
  funderid: R01EB032709; R01CA269604; R01NS109439; R01CA266702; R01CA282516
– fundername: NCI NIH HHS
  grantid: R01 CA282516
– fundername: NCI NIH HHS
  grantid: R01 CA269604
– fundername: NIBIB NIH HHS
  grantid: R01 EB032709
– fundername: NCI NIH HHS
  grantid: R01 CA266702
– fundername: NINDS NIH HHS
  grantid: R01 NS109439
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3883-9334ada39ddffa8e2044fa18f9071a5d43c387ad69cee7d0a952d0da4bb40fd53
IEDL.DBID 24P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001138181300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Jul 10 18:41:32 EDT 2025
Sat Nov 29 14:42:18 EST 2025
Mon Jul 21 05:57:11 EDT 2025
Sat Nov 29 06:34:39 EST 2025
Tue Nov 18 22:45:30 EST 2025
Wed Jan 22 16:14:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords quantitative imaging
repeatability
MR fingerprinting
relaxation mapping
Bland Altman
precision
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3883-9334ada39ddffa8e2044fa18f9071a5d43c387ad69cee7d0a952d0da4bb40fd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3714-4812
0000-0002-8087-8731
0000-0002-3099-2640
0000-0003-4659-9883
0000-0001-6183-2693
0000-0001-8547-8019
0000-0003-1664-9579
0000-0002-3011-6747
0000-0003-0698-1746
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29983
PMID 38192239
PQID 2967128276
PQPubID 1016391
PageCount 15
ParticipantIDs proquest_miscellaneous_2912527739
proquest_journals_2967128276
pubmed_primary_38192239
crossref_citationtrail_10_1002_mrm_29983
crossref_primary_10_1002_mrm_29983
wiley_primary_10_1002_mrm_29983_MRM29983
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
2024-May
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 17
2018; 166
2021; 42
2019; 50
2021; 300
2020; 83
2021; 29
2021; 226
2016; 264
2023; 306
2022; 87
2003
2022; 88
2021; 94
1998; 132
2011; 5
2019; 186
2021; 54
2023; 25
2021; 12
2021; 34
2023
2020; 52
2022
2021
2001; 5
2020
2017; 77
2017; 78
2022; 35
2022; 14
2013; 495
2021; 232
2022; 33
2019; 195
2014; 74
2019; 292
2014; 33
2010; 50
2018; 79
2012; 62
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
NEMA (e_1_2_7_17_1) 2020
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
Chow K (e_1_2_7_32_1) 2021
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Heckert NA (e_1_2_7_42_1) 2003
Dupuis A (e_1_2_7_48_1) 2023
NEMA (e_1_2_7_19_1) 2020
NEMA (e_1_2_7_18_1) 2020
References_xml – volume: 77
  start-page: 411
  year: 2017
  end-page: 421
  article-title: ISMRM raw data format: a proposed standard for MRI raw datasets
  publication-title: Magn Reson Med
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  article-title: A global optimization method for robust affine registration of brain images
  publication-title: Med Image Anal
– volume: 264
  start-page: 47
  year: 2016
  end-page: 56
  article-title: The first step for neuroimaging data analysis: DICOM to NIfTI conversion
  publication-title: J Neurosci Methods
– volume: 79
  start-page: 2190
  year: 2018
  end-page: 2197
  article-title: Fast 3D magnetic resonance fingerprinting for whole‐brain coverage
  publication-title: Magn Reson Med
– volume: 186
  start-page: 782
  year: 2019
  end-page: 793
  article-title: MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life
  publication-title: Neuroimage
– volume: 88
  start-page: 1818
  year: 2022
  end-page: 1827
  article-title: Multicenter repeatability and reproducibility of MR fingerprinting in phantoms and in prostatic tissue
  publication-title: Magn Reson Med
– start-page: R2014
  year: 2020
  end-page: R2020
– volume: 25
  start-page: 119
  year: 2023
  end-page: 131
  article-title: Cardiac magnetic resonance fingerprinting: potential clinical applications
  publication-title: Curr Cardiol Rep
– volume: 33
  start-page: 2311
  year: 2014
  end-page: 2322
  article-title: SVD compression for magnetic resonance fingerprinting in the time domain
  publication-title: IEEE Trans Med Imaging
– year: 2021
– year: 2003
– volume: 52
  start-page: 1044
  year: 2020
  end-page: 1052
  article-title: Simultaneous mapping of T and T using cardiac magnetic resonance fingerprinting in a cohort of healthy subjects at 1.5T
  publication-title: J Magn Reson Imaging
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  article-title: FSL
  publication-title: Neuroimage
– volume: 226
  year: 2021
  article-title: Three dimensional MRF obtains highly repeatable and reproducible multi‐parametric estimations in the healthy human brain at 1.5T and 3T
  publication-title: Neuroimage
– volume: 29
  start-page: 605
  year: 2021
  end-page: 616
  article-title: Magnetic resonance fingerprinting of the pediatric brain
  publication-title: Magn Reson Imaging Clin N Am
– volume: 12
  year: 2021
  article-title: Multiparametric quantitative MRI in neurological diseases
  publication-title: Front Neurol
– volume: 300
  start-page: 380
  year: 2021
  end-page: 387
  article-title: Rapid B ‐insensitive MR fingerprinting for quantitative kidney imaging
  publication-title: Radiology
– volume: 5
  start-page: 13
  year: 2011
  article-title: Nipype: a flexible, lightweight, and extensible neuroimaging data processing framework in python
  publication-title: Front Neuroinform
– volume: 78
  start-page: 1781
  year: 2017
  end-page: 1789
  article-title: Slice profile and B corrections in 2D magnetic resonance fingerprinting
  publication-title: Magn Reson Med
– volume: 306
  start-page: 150
  year: 2023
  end-page: 159
  article-title: MR fingerprinting for liver tissue characterization: a histopathologic correlation study
  publication-title: Radiology
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 166
  start-page: 400
  year: 2018
  end-page: 424
  article-title: Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank
  publication-title: Neuroimage
– volume: 50
  start-page: 1948
  year: 2019
  end-page: 1954
  article-title: Assessing effects of scanner upgrades for clinical studies
  publication-title: J Magn Reson Imaging
– volume: 83
  start-page: 1940
  year: 2020
  end-page: 1948
  article-title: Magnetic resonance fingerprinting for simultaneous renal T and T1rho mapping in a single breath‐hold
  publication-title: Magn Reson Med
– volume: 132
  start-page: 150
  year: 1998
  end-page: 153
  article-title: Simple correction method for k‐space trajectory deviations in MRI
  publication-title: J Magn Reson
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 195
  start-page: 362
  year: 2019
  end-page: 372
  article-title: Multi‐site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0T
  publication-title: Neuroimage
– volume: 50
  start-page: 516
  year: 2010
  end-page: 523
  article-title: Robust atrophy rate measurement in Alzheimer's disease using multi‐site serial MRI: tissue‐specific intensity normalization and parameter selection
  publication-title: Neuroimage
– year: 2022
– year: 2023
– volume: 54
  start-page: 1009
  year: 2021
  end-page: 1021
  article-title: Prospective evaluation of repeatability and robustness of radiomic descriptors in healthy brain tissue regions in vivo across systematic variations in T ‐weighted magnetic resonance imaging acquisition parameters
  publication-title: J Magn Reson Imaging
– volume: 292
  start-page: 429
  year: 2019
  end-page: 437
  article-title: Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain
  publication-title: Radiology
– volume: 232
  start-page: 117910
  year: 2021
  article-title: The traveling heads 2.0: multicenter reproducibility of quantitative imaging methods at 7 Tesla
  publication-title: Neuroimage
– volume: 42
  start-page: 275
  year: 2021
  end-page: 285
  article-title: Repeatability and reproducibility of human brain morphometry using three‐dimensional magnetic resonance fingerprinting
  publication-title: Hum Brain Mapp
– volume: 54
  start-page: 1138
  year: 2021
  end-page: 1151
  article-title: Free‐breathing abdominal magnetic resonance fingerprinting using a pilot tone navigator
  publication-title: J Magn Reson Imaging
– volume: 94
  year: 2021
  article-title: Clinical quantitative MRI and the need for metrology
  publication-title: Br J Radiol
– volume: 33
  start-page: 729
  year: 2022
  end-page: 739
  article-title: Simultaneous relaxometry and morphometry of human brain structures with 3D magnetic resonance fingerprinting: a multicenter, multiplatform, multifield‐strength study
  publication-title: Cerebral Cortex
– volume: 87
  start-page: 1980
  year: 2022
  end-page: 1991
  article-title: Simultaneous comprehensive liver T , T , T1rho, and fat fraction characterization with MR fingerprinting
  publication-title: Magn Reson Med
– volume: 14
  start-page: 723
  year: 2022
  article-title: MR fingerprinting‐a radio genomic marker for diffuse gliomas
  publication-title: Cancers (Basel)
– volume: 35
  start-page: 557
  year: 2022
  end-page: 571
  article-title: MR fingerprinting of the prostate
  publication-title: MAGMA
– volume: 74
  start-page: 1621
  year: 2014
  end-page: 1631
  article-title: MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout
  publication-title: Magn Reson Med
– volume: 78
  start-page: 1452
  year: 2017
  end-page: 1457
  article-title: Repeatability of magnetic resonance fingerprinting T and T estimates assessed using the ISMRM/NIST MRI system phantom
  publication-title: Magn Reson Med
– volume: 34
  start-page: 697
  year: 2021
  end-page: 706
  article-title: Whole‐brain 3D MR fingerprinting brain imaging: clinical validation and feasibility to patients with meningioma
  publication-title: MAGMA
– ident: e_1_2_7_3_1
  doi: 10.1038/nature11971
– ident: e_1_2_7_28_1
  doi: 10.1016/j.neuroimage.2021.117910
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.28160
– ident: e_1_2_7_25_1
  doi: 10.1002/hbm.25232
– ident: e_1_2_7_5_1
  doi: 10.1016/j.mric.2021.06.010
– ident: e_1_2_7_37_1
  doi: 10.3389/fninf.2011.00013
– ident: e_1_2_7_29_1
  doi: 10.1259/bjr.20201215
– ident: e_1_2_7_4_1
  doi: 10.3390/cancers14030723
– ident: e_1_2_7_46_1
  doi: 10.1002/jmri.27635
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.25559
– ident: e_1_2_7_2_1
  doi: 10.3389/fneur.2021.640239
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.26509
– ident: e_1_2_7_23_1
  doi: 10.1016/j.neuroimage.2019.03.047
– ident: e_1_2_7_27_1
  doi: 10.1002/mrm.29264
– volume-title: Intrasession, intersession, and interscanner qualitative and quantitative MRI datasets of healthy brains at 3.0T
  year: 2023
  ident: e_1_2_7_48_1
– ident: e_1_2_7_11_1
  doi: 10.1148/radiol.220736
– start-page: R2014
  volume-title: NEMA Standards Publication MS 2‐2008
  year: 2020
  ident: e_1_2_7_18_1
– start-page: R2014
  volume-title: NEMA Standards Publication MS 1‐2008
  year: 2020
  ident: e_1_2_7_17_1
– volume-title: National Institute of Standards and Technology Handbook Series
  year: 2003
  ident: e_1_2_7_42_1
– ident: e_1_2_7_9_1
  doi: 10.1007/s11886-022-01836-9
– ident: e_1_2_7_45_1
  doi: 10.1016/j.neuroimage.2009.12.059
– ident: e_1_2_7_36_1
– ident: e_1_2_7_39_1
– ident: e_1_2_7_6_1
  doi: 10.1007/s10334-021-00924-1
– start-page: R2014
  volume-title: NEMA Standards Publication MS 3‐2008
  year: 2020
  ident: e_1_2_7_19_1
– ident: e_1_2_7_10_1
  doi: 10.1002/jmri.27155
– ident: e_1_2_7_13_1
  doi: 10.1002/jmri.27673
– ident: e_1_2_7_15_1
  doi: 10.1148/radiol.2021202302
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.29089
– ident: e_1_2_7_43_1
  doi: 10.1016/j.neuroimage.2017.10.034
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jneumeth.2016.03.001
– ident: e_1_2_7_26_1
  doi: 10.1093/cercor/bhac096
– ident: e_1_2_7_31_1
  doi: 10.1006/jmre.1998.1396
– ident: e_1_2_7_47_1
  doi: 10.5281/zenodo.8184908
– ident: e_1_2_7_20_1
  doi: 10.1002/jmri.26785
– ident: e_1_2_7_41_1
  doi: 10.1006/nimg.2002.1132
– ident: e_1_2_7_7_1
  doi: 10.1002/mrm.26886
– ident: e_1_2_7_38_1
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: e_1_2_7_40_1
  doi: 10.1016/S1361-8415(01)00036-6
– ident: e_1_2_7_34_1
  doi: 10.1109/TMI.2014.2337321
– ident: e_1_2_7_22_1
  doi: 10.1148/radiol.2019182360
– ident: e_1_2_7_14_1
  doi: 10.1007/s10334-022-01012-8
– ident: e_1_2_7_33_1
  doi: 10.1002/mrm.26089
– volume-title: Proceedings of SCMR Annual Scientific Sessions
  year: 2021
  ident: e_1_2_7_32_1
– ident: e_1_2_7_8_1
  doi: 10.1016/j.neuroimage.2018.11.038
– ident: e_1_2_7_24_1
  doi: 10.1016/j.neuroimage.2020.117573
– ident: e_1_2_7_44_1
  doi: 10.1002/mrm.26580
SSID ssj0009974
Score 2.4688048
Snippet Purpose Quantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the...
Quantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the point-of-care than...
PurposeQuantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the point‐of‐care...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2074
SubjectTerms Automation
Bland Altman
Brain - diagnostic imaging
Datasets
Fingerprinting
Humans
Image Processing, Computer-Assisted - methods
In vivo methods and tests
Magnetic Resonance Imaging - methods
Medical imaging
MR fingerprinting
Neuroimaging
Phantoms, Imaging
precision
Qualitative analysis
quantitative imaging
Regularization
relaxation mapping
repeatability
Reproducibility
Reproducibility of Results
Scanners
Title Quantifying 3D MR fingerprinting (3D‐MRF) reproducibility across subjects, sessions, and scanners automatically using MNI atlases
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29983
https://www.ncbi.nlm.nih.gov/pubmed/38192239
https://www.proquest.com/docview/2967128276
https://www.proquest.com/docview/2912527739
Volume 91
WOSCitedRecordID wos001138181300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Free Archive
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fi9QwEB_OOz188c_p6ep5RPFhBet1k7RJ8ElcFw_sci4e7ltJm0SEva5st8K9CX4BP6OfxEna7XGoIPhSUjIhbZJJfplMfgPwlHNhSy6SKLHMRFzgBqXgqFdGIvhQ3EcsdCHYhJhO5XyuTrbg5eYuTMsP0RvcvGaE-doruC7qowvS0LPV2QucSyW7AjujEZM-bgPlJxeMu6qlYBbcTzSKb2iFYnrUF728GP2GMC8D1rDiTG7-17feghsd0CSv2pFxG7ZstQe7WXeUvgfXgu9nWd-B7-8b7V2G_IUnwsYkmxEXjH3e5ue9osmQjX9--5HNJs-IJ8H0HLGtU-050eHPSN0U3qBTPyd1S_SBKV0ZUmPPVYgwiW7Wy8AOqxeLc-K97T-RbHpM9Brhu63vwunkzYfXb6MuNkNUMilZpBjj2mimjHFOS0tjzp0eSYeb7ZFODGcoJ7RJFa7CwsRaJdTERvOi4LEzCduH7WpZ2ftAnJKFcTZlKU-51RILIegotYtTI7RIBjDcdFJedsTlPn7GIm8pl2mOzZuH5h3Ak170S8vW8Sehg01P553C1piTClyqqUgH8LjPRlXz5ye6ssvGyyAapEIwNYB77QjpawnEctTnDMNA-Hv1eTbLQuLBv4s-hOsUwVTraHkA2-tVYx_B1fLr-nO9OgzjHp9iLg9hZzybnL7Dt4_H019gxApf
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD6s6_XFy3obXTWKDyNYt9ukTQK-iOuwg9uiw4r7VtImEWG2I9OpsG-Cf8Df6C_xJOl0WVQQfAvkhLRJTs6Xk5PvADxljJua8TRKDdUR43hAqRjqlRYIPiRzGQutTzbBi0IcHcl3G_By_RYm8EMMDjenGX6_dgruHNI7p6yhx8vjF7iZCnoOzjMEGi5xw8dpcUq5KwMHM2dup5FszSsUJztD07PW6DeIeRaxepMzufZ_H3sdrvZQk7wKa-MGbJhmCy7l_WX6Flz00Z91exO-v--UCxpyT54I3SP5jFjv7nNePxcXTcZ07-e3H_ls8ow4GkzHEhvCak-I8r9G2q5yLp32OWkD1QeWVKNJi3PXIMYkqlstPD-sms9PiIu3_0TyYkrUCgG8aW_Bh8mbw9f7UZ-dIaqpEDSSlDKlFZVaW6uESWLGrNoVFo_buyrVjKIcVzqTaIe5jpVMEx1rxaqKxVan9DZsNovG3AVipai0NRnNWMaMEtgIYUetbJxprng6gvF6lsq6py53GTTmZSBdTkoc3tIP7wieDKJfAl_Hn4S211Nd9irbYk3G0VgnPBvB46Ealc3doKjGLDong3gw4ZzKEdwJS2ToxVPLJa5m7FfC37sv81nuC_f-XfQRXN4_zA_Kg2nx9j5cSRBahbDLbdhcLTvzAC7UX1ef2-VDrwS_AP1sCyA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEB_qVUtfqtZ_p1Wj-HAF12432U0CvojnYrF71MNC35bsJhHhuldubwt9E_wCfsZ-EifZvS1FBcG3QCZkN8lkfplMfgPwijFuSsbjIDZUB4zjAaVgqFdaIPiQzGUstD7ZBJ9MxMmJPFqDt6u3MC0_RO9wc5rh92un4OZM270r1tDTxekb3EwFvQHrzCWRGcD6eJoeH16R7sqWhZkzt9dItmIWCqO9vvF1e_QbyLyOWb3RSW__3-fega0ObJJ37eq4C2um2oaNrLtO34ZbPv6zrO_Bj8-NcmFD7tEToWOSTYn1Dj_n93OR0WREx5fff2bTdJc4IkzHE9sG1l4Q5X-N1E3hnDr1a1K3ZB9YUpUmNc5ehSiTqGY59wyxaja7IC7i_ivJJgdELRHCm_o-HKcfvrz_GHT5GYKSCkEDSSlTWlGptbVKmChkzKp9YfHAva9izSjKcaUTiZaY61DJONKhVqwoWGh1TB_AoJpX5hEQK0WhrUlowhJmlMBGCDxKZcNEc8XjIYxWs5SXHXm5y6Exy1va5SjH4c398A7hZS961jJ2_EloZzXVeae0NdYkHM11xJMhvOirUd3cHYqqzLxxMogII86pHMLDdon0vXhyucjVjPxK-Hv3eTbNfOHxv4s-h42jcZofHkw-PYHNCLFVG3e5A4PlojFP4WZ5vvxWL551WvALru4LyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+3D+MR+fingerprinting+%283D-MRF%29+reproducibility+across+subjects%2C+sessions%2C+and+scanners+automatically+using+MNI+atlases&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Dupuis%2C+Andrew&rft.au=Chen%2C+Yong&rft.au=Hansen%2C+Michael&rft.au=Chow%2C+Kelvin&rft.date=2024-05-01&rft.eissn=1522-2594&rft.volume=91&rft.issue=5&rft.spage=2074&rft_id=info:doi/10.1002%2Fmrm.29983&rft_id=info%3Apmid%2F38192239&rft.externalDocID=38192239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon