Role of artificial intelligence applied to ultrasound in gynecology oncology: A systematic review

The aim of this paper was to explore the role of artificial intelligence (AI) applied to ultrasound imaging in gynecology oncology. Web of Science, PubMed, and Scopus databases were searched. All studies were imported to RAYYAN QCRI software. The overall quality of the included studies was assessed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of cancer Ročník 155; číslo 10; s. 1832 - 1845
Hlavní autoři: Moro, Francesca, Ciancia, Marianna, Zace, Drieda, Vagni, Marica, Tran, Huong Elena, Giudice, Maria Teresa, Zoccoli, Sofia Gambigliani, Mascilini, Floriana, Ciccarone, Francesca, Boldrini, Luca, D'Antonio, Francesco, Scambia, Giovanni, Testa, Antonia Carla
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 15.11.2024
Wiley Subscription Services, Inc
Témata:
ISSN:0020-7136, 1097-0215, 1097-0215
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The aim of this paper was to explore the role of artificial intelligence (AI) applied to ultrasound imaging in gynecology oncology. Web of Science, PubMed, and Scopus databases were searched. All studies were imported to RAYYAN QCRI software. The overall quality of the included studies was assessed using QUADAS‐AI tool. Fifty studies were included, of these 37/50 (74.0%) on ovarian masses or ovarian cancer, 5/50 (10.0%) on endometrial cancer, 5/50 (10.0%) on cervical cancer, and 3/50 (6.0%) on other malignancies. Most studies were at high risk of bias for subject selection (i.e., sample size, source, or scanner model were not specified; data were not derived from open‐source datasets; imaging preprocessing was not performed) and index test (AI models was not externally validated) and at low risk of bias for reference standard (i.e., the reference standard correctly classified the target condition) and workflow (i.e., the time between index test and reference standard was reasonable). Most studies presented machine learning models (33/50, 66.0%) for the diagnosis and histopathological correlation of ovarian masses, while others focused on automatic segmentation, reproducibility of radiomics features, improvement of image quality, prediction of therapy resistance, progression‐free survival, and genetic mutation. The current evidence supports the role of AI as a complementary clinical and research tool in diagnosis, patient stratification, and prediction of histopathological correlation in gynecological malignancies. For example, the high performance of AI models to discriminate between benign and malignant ovarian masses or to predict their specific histology can improve the diagnostic accuracy of imaging methods. What's new? Artificial intelligence is increasingly used in advanced medicine and is now being applied to ultrasound imaging in gynecological oncology. However, a deeper understanding of the capabilities and limitations of AI would help improve the management of cancer patients from diagnosis to treatment. The current evidence analyzed in this systematic review of 50 studies supports the role of AI as a complementary research and clinical tool in diagnosis, patient stratification, and prediction of histopathological correlation in gynecological malignancies. AI applications are however still largely lacking for pathologies other than ovarian cancer.
AbstractList The aim of this paper was to explore the role of artificial intelligence (AI) applied to ultrasound imaging in gynecology oncology. Web of Science, PubMed, and Scopus databases were searched. All studies were imported to RAYYAN QCRI software. The overall quality of the included studies was assessed using QUADAS-AI tool. Fifty studies were included, of these 37/50 (74.0%) on ovarian masses or ovarian cancer, 5/50 (10.0%) on endometrial cancer, 5/50 (10.0%) on cervical cancer, and 3/50 (6.0%) on other malignancies. Most studies were at high risk of bias for subject selection (i.e., sample size, source, or scanner model were not specified; data were not derived from open-source datasets; imaging preprocessing was not performed) and index test (AI models was not externally validated) and at low risk of bias for reference standard (i.e., the reference standard correctly classified the target condition) and workflow (i.e., the time between index test and reference standard was reasonable). Most studies presented machine learning models (33/50, 66.0%) for the diagnosis and histopathological correlation of ovarian masses, while others focused on automatic segmentation, reproducibility of radiomics features, improvement of image quality, prediction of therapy resistance, progression-free survival, and genetic mutation. The current evidence supports the role of AI as a complementary clinical and research tool in diagnosis, patient stratification, and prediction of histopathological correlation in gynecological malignancies. For example, the high performance of AI models to discriminate between benign and malignant ovarian masses or to predict their specific histology can improve the diagnostic accuracy of imaging methods.The aim of this paper was to explore the role of artificial intelligence (AI) applied to ultrasound imaging in gynecology oncology. Web of Science, PubMed, and Scopus databases were searched. All studies were imported to RAYYAN QCRI software. The overall quality of the included studies was assessed using QUADAS-AI tool. Fifty studies were included, of these 37/50 (74.0%) on ovarian masses or ovarian cancer, 5/50 (10.0%) on endometrial cancer, 5/50 (10.0%) on cervical cancer, and 3/50 (6.0%) on other malignancies. Most studies were at high risk of bias for subject selection (i.e., sample size, source, or scanner model were not specified; data were not derived from open-source datasets; imaging preprocessing was not performed) and index test (AI models was not externally validated) and at low risk of bias for reference standard (i.e., the reference standard correctly classified the target condition) and workflow (i.e., the time between index test and reference standard was reasonable). Most studies presented machine learning models (33/50, 66.0%) for the diagnosis and histopathological correlation of ovarian masses, while others focused on automatic segmentation, reproducibility of radiomics features, improvement of image quality, prediction of therapy resistance, progression-free survival, and genetic mutation. The current evidence supports the role of AI as a complementary clinical and research tool in diagnosis, patient stratification, and prediction of histopathological correlation in gynecological malignancies. For example, the high performance of AI models to discriminate between benign and malignant ovarian masses or to predict their specific histology can improve the diagnostic accuracy of imaging methods.
The aim of this paper was to explore the role of artificial intelligence (AI) applied to ultrasound imaging in gynecology oncology. Web of Science, PubMed, and Scopus databases were searched. All studies were imported to RAYYAN QCRI software. The overall quality of the included studies was assessed using QUADAS‐AI tool. Fifty studies were included, of these 37/50 (74.0%) on ovarian masses or ovarian cancer, 5/50 (10.0%) on endometrial cancer, 5/50 (10.0%) on cervical cancer, and 3/50 (6.0%) on other malignancies. Most studies were at high risk of bias for subject selection (i.e., sample size, source, or scanner model were not specified; data were not derived from open‐source datasets; imaging preprocessing was not performed) and index test (AI models was not externally validated) and at low risk of bias for reference standard (i.e., the reference standard correctly classified the target condition) and workflow (i.e., the time between index test and reference standard was reasonable). Most studies presented machine learning models (33/50, 66.0%) for the diagnosis and histopathological correlation of ovarian masses, while others focused on automatic segmentation, reproducibility of radiomics features, improvement of image quality, prediction of therapy resistance, progression‐free survival, and genetic mutation. The current evidence supports the role of AI as a complementary clinical and research tool in diagnosis, patient stratification, and prediction of histopathological correlation in gynecological malignancies. For example, the high performance of AI models to discriminate between benign and malignant ovarian masses or to predict their specific histology can improve the diagnostic accuracy of imaging methods.
The aim of this paper was to explore the role of artificial intelligence (AI) applied to ultrasound imaging in gynecology oncology. Web of Science, PubMed, and Scopus databases were searched. All studies were imported to RAYYAN QCRI software. The overall quality of the included studies was assessed using QUADAS‐AI tool. Fifty studies were included, of these 37/50 (74.0%) on ovarian masses or ovarian cancer, 5/50 (10.0%) on endometrial cancer, 5/50 (10.0%) on cervical cancer, and 3/50 (6.0%) on other malignancies. Most studies were at high risk of bias for subject selection (i.e., sample size, source, or scanner model were not specified; data were not derived from open‐source datasets; imaging preprocessing was not performed) and index test (AI models was not externally validated) and at low risk of bias for reference standard (i.e., the reference standard correctly classified the target condition) and workflow (i.e., the time between index test and reference standard was reasonable). Most studies presented machine learning models (33/50, 66.0%) for the diagnosis and histopathological correlation of ovarian masses, while others focused on automatic segmentation, reproducibility of radiomics features, improvement of image quality, prediction of therapy resistance, progression‐free survival, and genetic mutation. The current evidence supports the role of AI as a complementary clinical and research tool in diagnosis, patient stratification, and prediction of histopathological correlation in gynecological malignancies. For example, the high performance of AI models to discriminate between benign and malignant ovarian masses or to predict their specific histology can improve the diagnostic accuracy of imaging methods. What's new? Artificial intelligence is increasingly used in advanced medicine and is now being applied to ultrasound imaging in gynecological oncology. However, a deeper understanding of the capabilities and limitations of AI would help improve the management of cancer patients from diagnosis to treatment. The current evidence analyzed in this systematic review of 50 studies supports the role of AI as a complementary research and clinical tool in diagnosis, patient stratification, and prediction of histopathological correlation in gynecological malignancies. AI applications are however still largely lacking for pathologies other than ovarian cancer.
Author Scambia, Giovanni
Boldrini, Luca
Tran, Huong Elena
Mascilini, Floriana
Ciancia, Marianna
Zoccoli, Sofia Gambigliani
Vagni, Marica
Giudice, Maria Teresa
D'Antonio, Francesco
Moro, Francesca
Testa, Antonia Carla
Zace, Drieda
Ciccarone, Francesca
Author_xml – sequence: 1
  givenname: Francesca
  orcidid: 0000-0002-5070-7245
  surname: Moro
  fullname: Moro, Francesca
  email: morofrancy@gmail.com, francesca.moro@policlinicogemelli.it
  organization: Fondazione Policlinico Universitario Agostino Gemelli, IRCCS
– sequence: 2
  givenname: Marianna
  surname: Ciancia
  fullname: Ciancia, Marianna
  organization: Università degli studi di Padova
– sequence: 3
  givenname: Drieda
  surname: Zace
  fullname: Zace, Drieda
  organization: Tor Vergata University
– sequence: 4
  givenname: Marica
  surname: Vagni
  fullname: Vagni, Marica
  organization: Università Cattolica del Sacro Cuore
– sequence: 5
  givenname: Huong Elena
  surname: Tran
  fullname: Tran, Huong Elena
  organization: Fondazione Policlinico Universitario Agostino Gemelli, IRCCS
– sequence: 6
  givenname: Maria Teresa
  surname: Giudice
  fullname: Giudice, Maria Teresa
  organization: Fondazione Policlinico Universitario Agostino Gemelli, IRCCS
– sequence: 7
  givenname: Sofia Gambigliani
  surname: Zoccoli
  fullname: Zoccoli, Sofia Gambigliani
  organization: Azienda Ospedaliero Universitaria Policlinico
– sequence: 8
  givenname: Floriana
  surname: Mascilini
  fullname: Mascilini, Floriana
  organization: Fondazione Policlinico Universitario Agostino Gemelli, IRCCS
– sequence: 9
  givenname: Francesca
  surname: Ciccarone
  fullname: Ciccarone, Francesca
  organization: Fondazione Policlinico Universitario Agostino Gemelli, IRCCS
– sequence: 10
  givenname: Luca
  surname: Boldrini
  fullname: Boldrini, Luca
  organization: Fondazione Policlinico Universitario Agostino Gemelli, IRCCS
– sequence: 11
  givenname: Francesco
  surname: D'Antonio
  fullname: D'Antonio, Francesco
  organization: University of Chieti
– sequence: 12
  givenname: Giovanni
  orcidid: 0000-0002-9503-9041
  surname: Scambia
  fullname: Scambia, Giovanni
  organization: Università Cattolica del Sacro Cuore
– sequence: 13
  givenname: Antonia Carla
  surname: Testa
  fullname: Testa, Antonia Carla
  organization: Università Cattolica del Sacro Cuore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38989809$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFr3DAQhUVJaTZpD_0DRdBLe3AyI0W21VtY0jYlUCi5C1keL1q00tayE_zvq2Y3l9Ciw0jM9x6aeWfsJKZIjL1HuEAAcem37kIq0OIVWyHopgKB6oStSg-qBmV9ys5y3gIgKrh6w05lq8sBvWL2VwrE08DtOPnBO28D93GiEPyGoiNu9_vgqedT4nOYRpvTHPuC8M0SyaWQNgtP8XD5wq95XvJEOzt5x0d68PT4lr0ebMj07ljP2f3Xm_v19-ru57fb9fVd5WTbioocqX4AB1e1rNtOE4HqFYpaY9102LaIrgXRg9XC1g2IzqIU2PfljXUnz9mng-1-TL9nypPZ-ezKHDZSmrOR0LQNthpVQT--QLdpHmP5nJEoNILSqi7UhyM1dzvqzX70Ozsu5nl3Bbg8AG5MOY80GOenMniKZU0-GATzNx1T0jFP6RTF5xeKZ9N_sUf3Rx9o-T9obn-sD4o_yHedaA
CitedBy_id crossref_primary_10_1055_a_2368_9201
crossref_primary_10_3389_fonc_2025_1646826
crossref_primary_10_1186_s12880_025_01705_1
crossref_primary_10_1002_uog_29171
crossref_primary_10_1111_aogs_15146
crossref_primary_10_1002_uog_29168
crossref_primary_10_1016_j_slast_2025_100301
crossref_primary_10_3389_fonc_2025_1567024
crossref_primary_10_3390_jpm15020076
crossref_primary_10_1016_j_ijgc_2025_102653
crossref_primary_10_3390_cancers17071060
crossref_primary_10_1016_j_tranon_2025_102281
crossref_primary_10_7759_cureus_85884
crossref_primary_10_3390_cancers17111810
crossref_primary_10_3390_diagnostics15060735
Cites_doi 10.1016/j.bpobgyn.2014.04.006
10.1007/s40477-020-00503-5
10.1186/s12880-022-00879-2
10.1016/j.pacs.2022.100420
10.7785/tcrtexpress.2013.600273
10.1007/978-981-19-1111-8_6
10.1109/TRPMS.2019.2899538
10.3389/fonc.2020.614201
10.3390/cancers15041121
10.1136/ijgc-2023-004429
10.1002/uog.3996
10.1016/j.ygyno.2021.04.004
10.3349/ymj.2022.0239
10.1609/aimag.v38i1.2709
10.1007/978-3-030-00764-5_36
10.52054/FVVO.13.2.016
10.1016/j.bpobgyn.2014.04.008
10.1259/bjr/13992649
10.1038/s41591-021-01517-0
10.1002/uog.23530
10.1186/s12911-022-02047-6
10.1007/s00330-010-1750-6
10.1148/radiol.211367
10.1136/ijgc-2020-002230
10.1158/1078-0432.CCR-13-1376
10.3390/diagnostics11050812
10.1007/s11227-020-03421-9
10.1016/j.bpobgyn.2014.04.009
10.1259/bjr.20201375
10.3390/cancers13030573
10.1002/uog.22069
10.1136/bmj.g5920
10.1007/s00330-022-09180-w
10.1109/ICDH57206.2022.00023
10.1007/s40815-018-0456-9
10.1177/0161734621998091
10.1177/15330338221099396
10.1016/j.ygyno.2022.07.024
10.1002/uog.5365
10.3322/caac.21552
10.1002/uog.11177
10.7326/M21-2234
10.1109/ACCESS.2018.2836950
10.1016/j.artmed.2021.102164
10.7326/0003-4819-155-8-201110180-00009
10.1371/journal.pone.0219388
10.1002/uog.26080
10.1002/uog.18909
10.1002/uog.24805
10.1016/j.ejso.2021.06.023
10.1016/j.ajog.2022.05.029
10.3390/cancers14215291
10.3389/fonc.2021.770683
10.1186/s12885-019-5629-x
10.1007/s00404-022-06578-1
10.1016/j.ultrasmedbio.2015.11.014
10.7785/tcrt.2012.500272
10.3389/fgene.2021.753948
10.1007/s10278-012-9553-8
10.1007/978-0-387-45528-0
10.1016/j.eclinm.2022.101662
10.1200/JCO.2005.01.7632
10.1038/s41598-020-73505-2
10.1155/2022/1907322
10.1038/nrclinonc.2017.141
10.1007/s10278-022-00620-z
10.1055/s-0033-1354809
10.1109/ICRCICN.2015.7434224
10.1007/978-981-33-4673-4_22
10.1007/s00330-020-06692-1
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of UICC.
2024 The Author(s). International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of UICC.
– notice: 2024 The Author(s). International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
7U9
H94
K9.
7X8
DOI 10.1002/ijc.35092
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0215
EndPage 1845
ExternalDocumentID 38989809
10_1002_ijc_35092
IJC35092
Genre researchArticle
Systematic Review
Journal Article
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
F00
F01
F04
F5P
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
J0M
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
UDS
V2E
V8K
V9Y
W2D
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWO
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
EMOBN
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
7U9
H94
K9.
7X8
ID FETCH-LOGICAL-c3882-ece5df0c046368b9ee05d51269167b18811c802d0a92a6702ba1321dda9216b3
IEDL.DBID 24P
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001268819700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7136
1097-0215
IngestDate Sun Nov 09 10:38:22 EST 2025
Sat Nov 29 14:23:50 EST 2025
Mon Jul 21 06:02:06 EDT 2025
Sat Nov 29 07:39:35 EST 2025
Tue Nov 18 22:55:02 EST 2025
Wed Jan 22 17:14:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords gynecology
tumors
machine learning
ultrasonography
artificial intelligence
Language English
License Attribution
2024 The Author(s). International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3882-ece5df0c046368b9ee05d51269167b18811c802d0a92a6702ba1321dda9216b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-9503-9041
0000-0002-5070-7245
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.35092
PMID 38989809
PQID 3129105956
PQPubID 105430
PageCount 14
ParticipantIDs proquest_miscellaneous_3078718915
proquest_journals_3129105956
pubmed_primary_38989809
crossref_citationtrail_10_1002_ijc_35092
crossref_primary_10_1002_ijc_35092
wiley_primary_10_1002_ijc_35092_IJC35092
PublicationCentury 2000
PublicationDate 15 November 2024
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 15 November 2024
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle International journal of cancer
PublicationTitleAlternate Int J Cancer
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 24
2023; 10:184
2021; 27
2013; 26
2023; 33
2021; 66
2021; 28
2019; 14
2019; 19
2021; 161
2022; 21
2014; 28
2008; 31
2020; 10
2022; 22
2023; 15:1121
2012; 11
2005; 23
2011; 155
2022; 28
2022; 166
2013; 19
2023; 64
2018; 6
2007; 29
2010; 20
2021; 31
2021; 77
2017; 38
2019; 69
2022; 21:15330338221118412
2016; 42
2022; 35
2014; 13
2021; 120:102164
2021; 47
2021; 43
2019; 3
2012
2011
2006
2021; 94
2018; 20
2023; 61
2014; 349
2021; 13
2021; 57
2021; 10
2019; 84
2021; 12
2022; 2022
2021; 11
2017; 14
2022
2020; 30
2022; 60
2021
2020
2013; 34
2018
2007; 80
2022; 14
2014; 35
2018; 51
2022; 53
2021; 174
2015
2022; 306
2022; 227
2022; 304
2012; 40
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
Acharya UR (e_1_2_9_79_1) 2014; 35
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Fischerová D (e_1_2_9_6_1) 2019; 84
Acharya UR (e_1_2_9_75_1) 2012
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
Yi J (e_1_2_9_64_1) 2022; 21
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Yin Q (e_1_2_9_53_1) 2022; 2022
Chiappa V (e_1_2_9_41_1) 2021; 28
Fragomeni SM (e_1_2_9_67_1) 2023; 15
Chen L (e_1_2_9_55_1) 2023; 10
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_76_1
Akter L (e_1_2_9_39_1) 2021
e_1_2_9_15_1
e_1_2_9_38_1
Akazawa M (e_1_2_9_26_1) 2021; 120
Ahmadi E (e_1_2_9_70_1) 2011
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
Hussein IJ (e_1_2_9_71_1) 2021; 66
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 2022
  start-page: 1
  year: 2022
  end-page: 9
  article-title: Clinical analysis of 137 cases of ovarian tumors in pregnancy
  publication-title: J Oncol
– volume: 94
  year: 2021
  article-title: Ultrasound evaluation of ovarian masses and assessment of the extension of ovarian malignancy
  publication-title: Br J Radiol
– volume: 28
  start-page: 5
  year: 2021
  article-title: A decision support system based on radiomics and machine learning to predict the risk of malignancy of ovarian masses from transvaginal ultrasonography and serum CA‐125
  publication-title: Eur Radiol Exp
– volume: 28
  start-page: 28
  year: 2022
  article-title: Ultrasound‐enhanced U‐Net model for quantitative photoacoustic tomography of ovarian lesions
  publication-title: Photoacoustics
– volume: 27
  start-page: 1663
  year: 2021
  end-page: 1665
  article-title: A quality assessment tool for artificial intelligence‐centered diagnostic test accuracy studies: QUADAS‐AI
  publication-title: Nat Med
– volume: 155
  start-page: 529
  year: 2011
  end-page: 536
  article-title: QUADAS‐2: a revised tool for the quality assessment of diagnostic accuracy studies
  publication-title: Ann Intern Med
– volume: 6
  start-page: 35365
  year: 2018
  end-page: 35381
  article-title: Machine learning and deep learning methods for cybersecurity
  publication-title: IEEE Access
– volume: 31
  start-page: 12
  year: 2021
  end-page: 39
  article-title: ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma
  publication-title: Int J Gynecol Cancer
– volume: 77
  start-page: 4151
  year: 2021
  end-page: 4171
  article-title: Ultrasound image analysis technology under deep belief networks in evaluation on the effects of diagnosis and chemotherapy of cervical cancer
  publication-title: J Supercomput
– volume: 174
  start-page: 1592
  year: 2021
  end-page: 1599
  article-title: QUADAS‐C: a tool for assessing risk of bias in comparative diagnostic accuracy studies
  publication-title: Ann Intern Med
– volume: 120:102164
  year: 2021
  article-title: Artificial intelligence in gynecologic cancers: current status and future challenges—a systematic review
  publication-title: Artif Intell Med
– volume: 22
  start-page: 22
  year: 2022
  article-title: Ultrasound‐based radiomics for predicting different pathological subtypes of epithelial ovarian cancer before surgery
  publication-title: BMC Med Imaging
– volume: 26
  start-page: 544
  year: 2013
  end-page: 553
  article-title: Ovarian tumor characterization and classification using ultrasound—a new online paradigm
  publication-title: J Digit Imaging
– start-page: 100
  year: 2022
  end-page: 106
– volume: 14
  start-page: 5291
  year: 2022
  article-title: A deep learning model system for diagnosis and management of adnexal masses
  publication-title: Cancers
– volume: 57
  start-page: 155
  year: 2021
  end-page: 163
  article-title: Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: comparison with expert subjective assessment
  publication-title: Ultrasound Obstet Gynecol
– volume: 14
  start-page: 749
  year: 2017
  end-page: 762
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat Rev Clin Oncol
– volume: 35
  start-page: 237
  year: 2014
  end-page: 245
  article-title: Evolutionary algorithm‐based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification
  publication-title: Ultraschall Medizin
– volume: 47
  start-page: 2734
  year: 2021
  end-page: 2741
  article-title: Artificial intelligence‐based radiomics models in endometrial cancer: a systematic review
  publication-title: Eur J Surg Oncol
– volume: 34
  start-page: 145
  year: 2013
  end-page: 150
  article-title: Automatic texture‐based analysis in ultrasound imaging of ovarian masses
  publication-title: Ultraschall Medizin
– volume: 19
  start-page: 19
  year: 2019
  article-title: Development and validation of a model that includes two ultrasound parameters and the plasma D‐dimer level for predicting malignancy in adnexal masses: an observational study
  publication-title: BMC Cancer
– volume: 227
  start-page: 601.e1
  year: 2022
  end-page: 601.e20
  article-title: Diagnostic performance of ultrasound in assessing the extension of disease in advanced ovarian cancer
  publication-title: Am J Obstet Gynecol
– volume: 40
  start-page: 582
  year: 2012
  end-page: 591
  article-title: Clinically oriented three‐step strategy for assessment of adnexal pathology
  publication-title: Ultrasound Obstet Gynecol
– volume: 31
  start-page: 681
  year: 2008
  end-page: 690
  article-title: Simple ultrasound‐based rules for the diagnosis of ovarian cancer
  publication-title: Ultrasound Obstet Gynecol
– volume: 11
  start-page: 812
  year: 2021
  article-title: Ultrasonography in the diagnosis of adnexal lesions: the role of texture analysis
  publication-title: Diagnostics
– volume: 306
  start-page: 2143
  year: 2022
  end-page: 2154
  article-title: A machine learning approach applied to gynecological ultrasound to predict progression‐free survival in ovarian cancer patients
  publication-title: Arch Gynecol Obstet
– start-page: 364
  year: 2011
  end-page: 375
– year: 2022
– volume: 304
  start-page: 106
  year: 2022
  end-page: 113
  article-title: Deep learning prediction of ovarian malignancy at US compared with O‐RADS and expert assessment
  publication-title: Radiology
– volume: 21
  year: 2022
  article-title: The effects of automatic segmentations on preoperative lymph node status prediction models with ultrasound radiomics for patients with early stage cervical cancer
  publication-title: Technol Cancer Res Treat
– volume: 43
  start-page: 124
  year: 2021
  end-page: 138
  article-title: An evaluation of the effectiveness of image‐based texture features extracted from static B‐mode ultrasound images in distinguishing between benign and malignant ovarian masses
  publication-title: Ultrason Imaging
– volume: 161
  start-page: 838
  year: 2021
  end-page: 844
  article-title: Using rADioMIcs and machine learning with ultrasonography for the differential diagnosis of myometRiAL tumors (the ADMIRAL pilot study). Radiomics and differential diagnosis of myometrial tumors
  publication-title: Gynecol Oncol
– start-page: 395
  year: 2018
  end-page: 406
– volume: 11
  year: 2021
  article-title: Application of deep convolutional neural networks for discriminating benign, borderline, and malignant serous ovarian tumors from ultrasound images
  publication-title: Front Oncol
– start-page: 4446
  year: 2012
  end-page: 4449
  article-title: Ovarian tumor characterization and classification: a class of GyneScan™ systems
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 38
  start-page: 6
  year: 2017
  end-page: 22
  article-title: Building AI applications: yesterday, today, and tomorrow
  publication-title: AI Mag
– volume: 60
  start-page: 256
  year: 2022
  end-page: 268
  article-title: Developing and validating ultrasound‐based radiomics models for predicting high‐risk endometrial cancer
  publication-title: Ultrasound Obstet Gynecol
– volume: 57
  start-page: 829
  year: 2021
  end-page: 839
  article-title: Doppler‐based predictive model for methotrexate resistance in low‐risk gestational trophoblastic neoplasia with myometrial invasion: prospective study of 147 patients
  publication-title: Ultrasound Obstet Gynecol
– volume: 13
  start-page: 529
  year: 2014
  end-page: 540
  article-title: GyneScan: an improved online paradigm for screening of ovarian cancer via tissue characterization
  publication-title: Technol Cancer Res Treat
– volume: 35
  start-page: 983
  year: 2022
  end-page: 992
  article-title: The accuracy and radiomics feature effects of multiple U‐Net‐based automatic segmentation models for transvaginal ultrasound images of cervical cancer
  publication-title: J Digit Imaging
– volume: 22
  start-page: 298
  year: 2022
  article-title: Automatic ovarian tumors recognition system based on ensemble convolutional neural network with ultrasound imaging
  publication-title: BMC Med Inform Decis Mak
– start-page: 279
  year: 2021
  end-page: 289
– volume: 33
  start-page: 649
  year: 2023
  end-page: 666
  article-title: ESGO/ESTRO/ESP guidelines for the management of patients with cervical cancer—update 2023
  publication-title: Int J Gynecol Cancer
– volume: 28
  start-page: 697
  year: 2014
  end-page: 720
  article-title: Imaging techniques for the evaluation of ovarian cancer
  publication-title: Best Pract Res Clin Obstet Gynaecol
– volume: 349
  year: 2014
  article-title: Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study
  publication-title: BMJ
– volume: 30
  start-page: 4117
  year: 2020
  end-page: 4124
  article-title: Noninvasive prediction of lymph node status for patients with early‐stage cervical cancer based on radiomics features from ultrasound images
  publication-title: Eur Radiol
– volume: 61
  start-page: 231
  year: 2023
  end-page: 242
  article-title: Benign descriptors and ADNEX in two‐step strategy to estimate risk of malignancy in ovarian tumors: retrospective validation in IOTA5 multicenter cohort
  publication-title: Ultrasound Obstet Gynecol
– volume: 19
  start-page: 5733
  year: 2013
  end-page: 5739
  article-title: REM (risk of endometrial malignancy): a proposal for a new scoring system to evaluate risk of endometrial malignancy
  publication-title: Clin Cancer Res
– volume: 3
  start-page: 104
  year: 2019
  end-page: 108
  article-title: Machine (deep) learning methods for image processing and radiomics
  publication-title: IEEE Trans Radiat Plasma Med Sci
– volume: 28
  start-page: 769
  year: 2014
  end-page: 791
  article-title: Which imaging technique should we use in the follow up of gynaecological cancer?
  publication-title: Best Pract Res Clin Obstet Gynaecol
– volume: 24
  start-page: 429
  year: 2021
  end-page: 437
  article-title: The adoption of radiomics and machine learning improves the diagnostic processes of women with ovarian MAsses (the AROMA pilot study)
  publication-title: J Ultrasound
– volume: 28
  start-page: 741
  year: 2014
  end-page: 768
  article-title: Imaging techniques for the evaluation of cervical cancer
  publication-title: Best Pract Res Clin Obstet Gynaecol
– volume: 29
  start-page: 496
  year: 2007
  end-page: 504
  article-title: Preoperative diagnosis of ovarian tumors using Bayesian kernel‐based methods
  publication-title: Ultrasound Obstet Gynecol
– volume: 84
  start-page: 40
  year: 2019
  end-page: 48
  article-title: The role of ultrasound in primary workup of cervical cancer staging (ESGO, ESTRO, ESP cervical cancer guidelines)
  publication-title: Ceska Gynekol
– volume: 64
  start-page: 197
  year: 2023
  end-page: 203
  article-title: Development and validation of a nomogram prediction model for endometrial malignancy in patients with abnormal uterine bleeding
  publication-title: Yonsei Med J
– volume: 66
  start-page: 3161
  year: 2021
  end-page: 3182
  article-title: Fully automatic segmentation of gynaecological abnormality using a new Viola–Jones model
  publication-title: Comput Mater Cont
– volume: 80
  start-page: 609
  year: 2007
  end-page: 616
  article-title: Texture analysis of perimenopausal and post‐menopausal endometrial tissue in grayscale transvaginal ultrasonography
  publication-title: Br J Radiol
– volume: 69
  start-page: 127
  year: 2019
  end-page: 157
  article-title: Artificial intelligence in cancer imaging: clinical challenges and applications
  publication-title: CA Cancer J Clin
– volume: 20
  start-page: 1822
  year: 2010
  end-page: 1830
  article-title: A new computer‐aided diagnostic tool for non‐invasive characterisation of malignant ovarian masses: results of a multicentre validation study
  publication-title: Eur Radiol
– volume: 13
  start-page: 107
  year: 2021
  end-page: 130
  article-title: ESGO/ISUOG/IOTA/ESGE consensus statement on preoperative diagnosis of ovarian tumours
  publication-title: Facts Views Vis Obgyn
– volume: 20
  start-page: 1385
  year: 2018
  end-page: 1402
  article-title: Use of nonlinear features for automated characterization of suspicious ovarian tumors using ultrasound images in fuzzy Forest framework
  publication-title: Int J Fuzzy Syst
– volume: 33
  start-page: 2239
  year: 2023
  end-page: 2247
  article-title: Ovarian imaging radiomics quality score assessment: an EuSoMII radiomics auditing group initiative
  publication-title: Eur Radiol
– volume: 42
  start-page: 742
  year: 2016
  end-page: 752
  article-title: Ultrasound image discrimination between benign and malignant adnexal masses based on a neural network approach
  publication-title: Ultrasound Med Biol
– volume: 14
  year: 2019
  article-title: Evaluation of machine learning methods with Fourier transform features for classifying ovarian tumors based on ultrasound images
  publication-title: PLoS One
– volume: 10
  year: 2021
  article-title: Multiple U‐Net‐based automatic segmentations and radiomics feature stability on ultrasound images for patients with ovarian cancer
  publication-title: Front Oncologia
– volume: 53
  year: 2022
  article-title: Artificial intelligence performance in image‐based ovarian cancer identification: a systematic review and meta‐analysis
  publication-title: EClinicalMedicine
– volume: 10:184
  year: 2023
  article-title: Improving the segmentation accuracy of ovarian‐tumor ultrasound images using image Inpainting
  publication-title: Bioengineering
– volume: 166
  start-page: 596
  year: 2022
  end-page: 605
  article-title: A systematic review on the use of artificial intelligence in gynecologic imaging—background, state of the art, and future directions
  publication-title: Gynecol Oncol
– year: 2006
– year: 2020
– start-page: 59
  year: 2022
  end-page: 70
– volume: 13
  start-page: 1
  year: 2021
  end-page: 11
  article-title: Computed tomography based radiomics as a predictor of survival in ovarian cancer patients: a systematic review
  publication-title: Cancers
– volume: 51
  start-page: 818
  year: 2018
  end-page: 828
  article-title: Ultrasound characteristics of endometrial cancer as defined by international endometrial tumor analysis (IETA) consensus nomenclature: prospective multicenter study
  publication-title: Ultrasound Obstet Gynecol
– volume: 15:1121
  year: 2023
  article-title: Evaluating the risk of inguinal lymph node metastases before surgery using the morphonode predictive model: a prospective diagnostic study in vulvar cancer patients
  publication-title: Cancers
– volume: 23
  start-page: 8794
  year: 2005
  end-page: 8801
  article-title: International ovarian tumor analysis group. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the international ovarian tumor analysis group
  publication-title: J Clin Oncol
– start-page: 51
  year: 2021
  end-page: 61
– volume: 10
  year: 2020
  article-title: Germline BRCA 1‐2 status prediction through ovarian ultrasound images radiogenomics: a hypothesis generating study (PROBE study)
  publication-title: Sci Rep
– volume: 12
  year: 2021
  article-title: Diagnosis of ovarian neoplasms using nomogram in combination with ultrasound image‐based radiomics signature and clinical factors
  publication-title: Front Genet
– volume: 11
  start-page: 543
  year: 2012
  end-page: 552
  article-title: Ovarian tumor characterization using 3D ultrasound
  publication-title: Technol Cancer Res Treat
– start-page: 137
  year: 2015
  end-page: 140
– volume: 21:15330338221118412
  year: 2022
  article-title: The influence of different ultrasonic machines on Radiomics models in prediction lymph node metastasis for patients with cervical cancer
  publication-title: Technol Cancer Res Treat
– ident: e_1_2_9_2_1
  doi: 10.1016/j.bpobgyn.2014.04.006
– ident: e_1_2_9_42_1
  doi: 10.1007/s40477-020-00503-5
– ident: e_1_2_9_52_1
  doi: 10.1186/s12880-022-00879-2
– ident: e_1_2_9_54_1
  doi: 10.1016/j.pacs.2022.100420
– ident: e_1_2_9_80_1
  doi: 10.7785/tcrtexpress.2013.600273
– ident: e_1_2_9_51_1
  doi: 10.1007/978-981-19-1111-8_6
– ident: e_1_2_9_23_1
  doi: 10.1109/TRPMS.2019.2899538
– ident: e_1_2_9_44_1
  doi: 10.3389/fonc.2020.614201
– volume: 15
  year: 2023
  ident: e_1_2_9_67_1
  article-title: Evaluating the risk of inguinal lymph node metastases before surgery using the morphonode predictive model: a prospective diagnostic study in vulvar cancer patients
  publication-title: Cancers
  doi: 10.3390/cancers15041121
– ident: e_1_2_9_16_1
  doi: 10.1136/ijgc-2023-004429
– volume: 28
  start-page: 5
  year: 2021
  ident: e_1_2_9_41_1
  article-title: A decision support system based on radiomics and machine learning to predict the risk of malignancy of ovarian masses from transvaginal ultrasonography and serum CA‐125
  publication-title: Eur Radiol Exp
– ident: e_1_2_9_68_1
  doi: 10.1002/uog.3996
– ident: e_1_2_9_65_1
  doi: 10.1016/j.ygyno.2021.04.004
– ident: e_1_2_9_59_1
  doi: 10.3349/ymj.2022.0239
– ident: e_1_2_9_20_1
  doi: 10.1609/aimag.v38i1.2709
– ident: e_1_2_9_34_1
  doi: 10.1007/978-3-030-00764-5_36
– ident: e_1_2_9_14_1
  doi: 10.52054/FVVO.13.2.016
– ident: e_1_2_9_3_1
  doi: 10.1016/j.bpobgyn.2014.04.008
– ident: e_1_2_9_56_1
  doi: 10.1259/bjr/13992649
– ident: e_1_2_9_30_1
  doi: 10.1038/s41591-021-01517-0
– ident: e_1_2_9_24_1
– ident: e_1_2_9_43_1
  doi: 10.1002/uog.23530
– ident: e_1_2_9_50_1
  doi: 10.1186/s12911-022-02047-6
– ident: e_1_2_9_69_1
  doi: 10.1007/s00330-010-1750-6
– volume: 84
  start-page: 40
  year: 2019
  ident: e_1_2_9_6_1
  article-title: The role of ultrasound in primary workup of cervical cancer staging (ESGO, ESTRO, ESP cervical cancer guidelines)
  publication-title: Ceska Gynekol
– ident: e_1_2_9_49_1
  doi: 10.1148/radiol.211367
– ident: e_1_2_9_15_1
  doi: 10.1136/ijgc-2020-002230
– ident: e_1_2_9_57_1
  doi: 10.1158/1078-0432.CCR-13-1376
– ident: e_1_2_9_46_1
  doi: 10.3390/diagnostics11050812
– ident: e_1_2_9_61_1
  doi: 10.1007/s11227-020-03421-9
– ident: e_1_2_9_4_1
  doi: 10.1016/j.bpobgyn.2014.04.009
– ident: e_1_2_9_7_1
  doi: 10.1259/bjr.20201375
– ident: e_1_2_9_19_1
  doi: 10.3390/cancers13030573
– ident: e_1_2_9_66_1
  doi: 10.1002/uog.22069
– ident: e_1_2_9_12_1
  doi: 10.1136/bmj.g5920
– ident: e_1_2_9_29_1
  doi: 10.1007/s00330-022-09180-w
– ident: e_1_2_9_58_1
  doi: 10.1109/ICDH57206.2022.00023
– ident: e_1_2_9_82_1
  doi: 10.1007/s40815-018-0456-9
– ident: e_1_2_9_40_1
  doi: 10.1177/0161734621998091
– ident: e_1_2_9_63_1
  doi: 10.1177/15330338221099396
– ident: e_1_2_9_27_1
  doi: 10.1016/j.ygyno.2022.07.024
– ident: e_1_2_9_10_1
  doi: 10.1002/uog.5365
– start-page: 51
  volume-title: International Conference on Big Data, IoT, and Machine Learning
  year: 2021
  ident: e_1_2_9_39_1
– ident: e_1_2_9_17_1
  doi: 10.3322/caac.21552
– ident: e_1_2_9_11_1
  doi: 10.1002/uog.11177
– ident: e_1_2_9_32_1
  doi: 10.7326/M21-2234
– volume: 10
  year: 2023
  ident: e_1_2_9_55_1
  article-title: Improving the segmentation accuracy of ovarian‐tumor ultrasound images using image Inpainting
  publication-title: Bioengineering
– ident: e_1_2_9_22_1
  doi: 10.1109/ACCESS.2018.2836950
– volume: 120
  year: 2021
  ident: e_1_2_9_26_1
  article-title: Artificial intelligence in gynecologic cancers: current status and future challenges—a systematic review
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102164
– ident: e_1_2_9_31_1
  doi: 10.7326/0003-4819-155-8-201110180-00009
– ident: e_1_2_9_35_1
  doi: 10.1371/journal.pone.0219388
– ident: e_1_2_9_13_1
  doi: 10.1002/uog.26080
– ident: e_1_2_9_5_1
  doi: 10.1002/uog.18909
– ident: e_1_2_9_74_1
  doi: 10.1002/uog.24805
– ident: e_1_2_9_18_1
  doi: 10.1016/j.ejso.2021.06.023
– start-page: 364
  volume-title: HEALTHINF 2011—Proceedings of the International Conference on Health Informatics
  year: 2011
  ident: e_1_2_9_70_1
– volume: 35
  start-page: 237
  year: 2014
  ident: e_1_2_9_79_1
  article-title: Evolutionary algorithm‐based classifier parameter tuning for automatic ovarian cancer tissue characterization and classification
  publication-title: Ultraschall Medizin
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ajog.2022.05.029
– volume: 66
  start-page: 3161
  year: 2021
  ident: e_1_2_9_71_1
  article-title: Fully automatic segmentation of gynaecological abnormality using a new Viola–Jones model
  publication-title: Comput Mater Cont
– ident: e_1_2_9_73_1
  doi: 10.3390/cancers14215291
– ident: e_1_2_9_47_1
  doi: 10.3389/fonc.2021.770683
– ident: e_1_2_9_36_1
  doi: 10.1186/s12885-019-5629-x
– start-page: 4446
  year: 2012
  ident: e_1_2_9_75_1
  article-title: Ovarian tumor characterization and classification: a class of GyneScan™ systems
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– ident: e_1_2_9_48_1
  doi: 10.1007/s00404-022-06578-1
– ident: e_1_2_9_33_1
  doi: 10.1016/j.ultrasmedbio.2015.11.014
– ident: e_1_2_9_76_1
  doi: 10.7785/tcrt.2012.500272
– ident: e_1_2_9_45_1
  doi: 10.3389/fgene.2021.753948
– ident: e_1_2_9_78_1
  doi: 10.1007/s10278-012-9553-8
– volume: 21
  year: 2022
  ident: e_1_2_9_64_1
  article-title: The influence of different ultrasonic machines on Radiomics models in prediction lymph node metastasis for patients with cervical cancer
  publication-title: Technol Cancer Res Treat
– ident: e_1_2_9_72_1
– ident: e_1_2_9_21_1
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_9_28_1
  doi: 10.1016/j.eclinm.2022.101662
– ident: e_1_2_9_9_1
  doi: 10.1200/JCO.2005.01.7632
– ident: e_1_2_9_37_1
  doi: 10.1038/s41598-020-73505-2
– volume: 2022
  start-page: 1
  year: 2022
  ident: e_1_2_9_53_1
  article-title: Clinical analysis of 137 cases of ovarian tumors in pregnancy
  publication-title: J Oncol
  doi: 10.1155/2022/1907322
– ident: e_1_2_9_25_1
  doi: 10.1038/nrclinonc.2017.141
– ident: e_1_2_9_62_1
  doi: 10.1007/s10278-022-00620-z
– ident: e_1_2_9_77_1
  doi: 10.1055/s-0033-1354809
– ident: e_1_2_9_81_1
  doi: 10.1109/ICRCICN.2015.7434224
– ident: e_1_2_9_38_1
  doi: 10.1007/978-981-33-4673-4_22
– ident: e_1_2_9_60_1
  doi: 10.1007/s00330-020-06692-1
SSID ssj0011504
Score 2.543639
SecondaryResourceType review_article
Snippet The aim of this paper was to explore the role of artificial intelligence (AI) applied to ultrasound imaging in gynecology oncology. Web of Science, PubMed, and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1832
SubjectTerms Artificial Intelligence
Cervical cancer
Diagnosis
Endometrial cancer
Endometrial Neoplasms - diagnostic imaging
Endometrial Neoplasms - pathology
Female
Genital Neoplasms, Female - diagnostic imaging
Genital Neoplasms, Female - pathology
Gynecological cancer
Gynecology
Gynecology - methods
Humans
Image processing
Machine Learning
Malignancy
Oncology
Ovarian cancer
Ovarian Neoplasms - diagnostic imaging
Ovarian Neoplasms - pathology
Radiomics
Systematic review
tumors
Ultrasonic imaging
ultrasonography
Ultrasonography - methods
Ultrasound
Uterine cancer
Uterine Cervical Neoplasms - diagnostic imaging
Uterine Cervical Neoplasms - pathology
Title Role of artificial intelligence applied to ultrasound in gynecology oncology: A systematic review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.35092
https://www.ncbi.nlm.nih.gov/pubmed/38989809
https://www.proquest.com/docview/3129105956
https://www.proquest.com/docview/3078718915
Volume 155
WOSCitedRecordID wos001268819700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0215
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011504
  issn: 0020-7136
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB9Epfhi1VZ7aiVKH3zZmmRvd7P6JNZDRUXElntb8rVy5diV-xD87ztJ9tZKLQi-LFl2loTMTOaXhPkNwLekVEJJoaJSZnnUFTqOFAZCdDyeGkWN0j49-tdldn0t-v38Zg6OZrkwgR-iPXBznuHXa-fgUo0PnklDB7_19xjDHa6_C4zFwtVt4N2b9goBkU5DwUwj3ImlM1ohyg_aX18Go38Q5kvA6iNO7-O7xroCyw3QJMfBMlZhzlZr8OGquUr_BPK2HlpSl8TZTqCRIIO_-DmJDPiUTGoyHU5GcuwKMKEIuX-qrOe6fiJ1FRqH5Jg8c0KTkA_zGe56p3cnZ1FTbyHSsQPaVtvElFR7EjGhcmtpYhAQpAghM8WEYEwLyg2VOZdpRrmSuJdlxuA7S1W8DvNVXdkvQEQitBaZYSZOu7lWkmqNa6_OS2PKlNMO7M_mvdANF7kriTEsAosyL3DGCj9jHdhrRR8CAcdrQtsz5RWND46LGKGMQ49J2oHd9jN6j7sSkZWtpyiDCAmjc86SDmwEpbe9xK6ypqA5Dtbr9v_dF-cXJ76x-XbRLVjiiI9cWiNLtmF-Mprar7CoHyeD8WjHmzI-s77YgYUft72fl38APl_4Hg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9VBQ1egI0NCmXzpj3wkuEkTeIgXhCs4qNUU1VQ3yJ_BRVVCeoHEv895zgNVIA0iTdHOcvW-c73s637HcDvIBVMcCaclEex02LSdwQGQnQ8L1SCKiGL9OibTtTtssEg_leDo3kujOWHqC7cjGcU-7VxcHMhffDMGjq8k398jHe4AS-10IzQvpdOe-3rTvWKgGCnZGGmDh7GwjmzEPUOqs6L8egVyFzErEXQaa9_bLobsFaCTXJsreMz1HT2BT5dlc_pm8B7-UiTPCXGfiyVBBm-4Ogk3GJUMs3JbDQd84kpwoQi5PYx0wXf9SPJM9s4JMfkmRea2JyYr9Bv_-2fnDllzQVH-gZsa6kDlVJZEIkxEWtNA4WgIEQYGQmXMdeVjHqK8tjjYUQ9wfE86yqF324o_G9Qz_JMbwNhAZOSRcpVftiKpeBUStx_ZZwqlYYebcD-XPGJLPnITVmMUWKZlL0ENZYUGmvAr0r03pJwvCXUnK9eUvrhJPERzhgEGYQN-Fn9Rg8yzyI80_kMZRAlYYSO3aABW3bVq1F8U12T0RgnWyzu-8Mn5xcnRWPn_0V_wMpZ_6qTdM67l7uw6iFeMmmObtCE-nQ803uwLB-mw8n4e2nZT_8b-xw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB5kFfHF-1jPKD74Uk3bbZuKL6IuHusiouJbyVVZWVrZQ_DfO2m6VVFB8C2lUxImmZkvHeYbgN0gFUxwJpyUR7HTYNJ3BAZCNDwvVIIqIYvy6IdW1G6zx8f4ZgyORrUwlh-i-uFmLKPw18bA9YtKDz5YQzvPct_HeIcOeLxhmsjUYPz0tnnfqrIICHZKFmbq4GUsHDELUe-g-vhrPPoGMr9i1iLoNGf-t9xZmC7BJjm2p2MOxnQ2D5PXZTp9Afht3tUkT4k5P5ZKgnQ-cXQSbjEqGeRk2B30eN80YUIR8vSW6YLv-o3kmR0ckmPywQtNbE3MItw1z-5Ozp2y54IjfQO2tdSBSqksiMSYiLWmgUJQECKMjITLmOtKRj1FeezxMKKe4HifdZXCZzcU_hLUsjzTK0BYwKRkkXKVHzZiKTiVEv2vjFOl0tCjddgbKT6RJR-5aYvRTSyTspegxpJCY3XYqURfLAnHT0Lro91LSjvsJz7CGYMgg7AO29VrtCCTFuGZzocogygJI3TsBnVYtrtezeKb7pqMxrjYYnN_nz65uDwpBqt_F92CyZvTZtK6aF-twZSHcMlUObrBOtQGvaHegAn5Ouj0e5vlwX4HkZb6lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+artificial+intelligence+applied+to+ultrasound+in+gynecology+oncology%3A+A+systematic+review&rft.jtitle=International+journal+of+cancer&rft.au=Moro%2C+Francesca&rft.au=Ciancia%2C+Marianna&rft.au=Zace%2C+Drieda&rft.au=Vagni%2C+Marica&rft.date=2024-11-15&rft.issn=0020-7136&rft.eissn=1097-0215&rft.volume=155&rft.issue=10&rft.spage=1832&rft.epage=1845&rft_id=info:doi/10.1002%2Fijc.35092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ijc_35092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7136&client=summon