Transcranial Magnetic Stimulation Exerts “Rejuvenation” Effects on Corticostriatal Synapses after Partial Dopamine Depletion

Background In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N‐methyl‐D‐aspartate receptors (NMDAR)‐mediated functions. Repetitive transcrania...

Full description

Saved in:
Bibliographic Details
Published in:Movement disorders Vol. 36; no. 10; pp. 2254 - 2263
Main Authors: Natale, Giuseppina, Pignataro, Annabella, Marino, Gioia, Campanelli, Federica, Calabrese, Valeria, Cardinale, Antonella, Pelucchi, Silvia, Marcello, Elena, Gardoni, Fabrizio, Viscomi, Maria Teresa, Picconi, Barbara, Ammassari‐Teule, Martine, Calabresi, Paolo, Ghiglieri, Veronica
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.10.2021
Wiley Subscription Services, Inc
Subjects:
ISSN:0885-3185, 1531-8257, 1531-8257
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N‐methyl‐D‐aspartate receptors (NMDAR)‐mediated functions. Repetitive transcranial magnetic stimulation (rTMS) induces modifications in glutamatergic and dopaminergic systems, suggesting that it may have an impact on glutamatergic synapses modulated by dopamine neurotransmission. However, no studies have so far explored the mechanisms of rTMS effects at early stages of PD. Objectives We tested the hypothesis that in vivo application of rTMS with intermittent theta‐burst stimulation (iTBS) pattern alleviates corticostriatal dysfunctions by modulating NMDAR‐dependent plasticity in a rat model of early parkinsonism. Methods Dorsolateral striatal spiny projection neurons (SPNs) activity was studied through ex vivo whole‐cell patch‐clamp recordings in corticostriatal slices obtained from 6‐hydroxydopamine‐lesioned rats, subjected to a single session (acute) of iTBS and tested for forelimb akinesia with the stepping test. Immunohistochemical analyses were performed to analyze morphological correlates of plasticity in SPNs. Results Acute iTBS ameliorated limb akinesia and rescued corticostriatal long‐term potentiation (LTP) in SPNs of partially lesioned rats. This effect was abolished by applying a selective inhibitor of GluN2B‐subunit‐containing NMDAR, suggesting that iTBS treatment could be associated with an enhanced activation of specific NMDAR subunits, which are major regulators of structural plasticity during synapse development. Morphological analyses of SPNs revealed that iTBS treatment reverted dendritic spine loss inducing a prevalence of thin‐elongated spines in the biocytin‐filled SPNs. Conclusions Taken together, our data identify that an acute iTBS treatment produces a series of plastic changes underlying striatal compensatory adaptation in the parkinsonian basal ganglia circuit. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
AbstractList In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N-methyl-D-aspartate receptors (NMDAR)-mediated functions. Repetitive transcranial magnetic stimulation (rTMS) induces modifications in glutamatergic and dopaminergic systems, suggesting that it may have an impact on glutamatergic synapses modulated by dopamine neurotransmission. However, no studies have so far explored the mechanisms of rTMS effects at early stages of PD.BACKGROUNDIn experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N-methyl-D-aspartate receptors (NMDAR)-mediated functions. Repetitive transcranial magnetic stimulation (rTMS) induces modifications in glutamatergic and dopaminergic systems, suggesting that it may have an impact on glutamatergic synapses modulated by dopamine neurotransmission. However, no studies have so far explored the mechanisms of rTMS effects at early stages of PD.We tested the hypothesis that in vivo application of rTMS with intermittent theta-burst stimulation (iTBS) pattern alleviates corticostriatal dysfunctions by modulating NMDAR-dependent plasticity in a rat model of early parkinsonism.OBJECTIVESWe tested the hypothesis that in vivo application of rTMS with intermittent theta-burst stimulation (iTBS) pattern alleviates corticostriatal dysfunctions by modulating NMDAR-dependent plasticity in a rat model of early parkinsonism.Dorsolateral striatal spiny projection neurons (SPNs) activity was studied through ex vivo whole-cell patch-clamp recordings in corticostriatal slices obtained from 6-hydroxydopamine-lesioned rats, subjected to a single session (acute) of iTBS and tested for forelimb akinesia with the stepping test. Immunohistochemical analyses were performed to analyze morphological correlates of plasticity in SPNs.METHODSDorsolateral striatal spiny projection neurons (SPNs) activity was studied through ex vivo whole-cell patch-clamp recordings in corticostriatal slices obtained from 6-hydroxydopamine-lesioned rats, subjected to a single session (acute) of iTBS and tested for forelimb akinesia with the stepping test. Immunohistochemical analyses were performed to analyze morphological correlates of plasticity in SPNs.Acute iTBS ameliorated limb akinesia and rescued corticostriatal long-term potentiation (LTP) in SPNs of partially lesioned rats. This effect was abolished by applying a selective inhibitor of GluN2B-subunit-containing NMDAR, suggesting that iTBS treatment could be associated with an enhanced activation of specific NMDAR subunits, which are major regulators of structural plasticity during synapse development. Morphological analyses of SPNs revealed that iTBS treatment reverted dendritic spine loss inducing a prevalence of thin-elongated spines in the biocytin-filled SPNs.RESULTSAcute iTBS ameliorated limb akinesia and rescued corticostriatal long-term potentiation (LTP) in SPNs of partially lesioned rats. This effect was abolished by applying a selective inhibitor of GluN2B-subunit-containing NMDAR, suggesting that iTBS treatment could be associated with an enhanced activation of specific NMDAR subunits, which are major regulators of structural plasticity during synapse development. Morphological analyses of SPNs revealed that iTBS treatment reverted dendritic spine loss inducing a prevalence of thin-elongated spines in the biocytin-filled SPNs.Taken together, our data identify that an acute iTBS treatment produces a series of plastic changes underlying striatal compensatory adaptation in the parkinsonian basal ganglia circuit. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.CONCLUSIONSTaken together, our data identify that an acute iTBS treatment produces a series of plastic changes underlying striatal compensatory adaptation in the parkinsonian basal ganglia circuit. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Background In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N‐methyl‐D‐aspartate receptors (NMDAR)‐mediated functions. Repetitive transcranial magnetic stimulation (rTMS) induces modifications in glutamatergic and dopaminergic systems, suggesting that it may have an impact on glutamatergic synapses modulated by dopamine neurotransmission. However, no studies have so far explored the mechanisms of rTMS effects at early stages of PD. Objectives We tested the hypothesis that in vivo application of rTMS with intermittent theta‐burst stimulation (iTBS) pattern alleviates corticostriatal dysfunctions by modulating NMDAR‐dependent plasticity in a rat model of early parkinsonism. Methods Dorsolateral striatal spiny projection neurons (SPNs) activity was studied through ex vivo whole‐cell patch‐clamp recordings in corticostriatal slices obtained from 6‐hydroxydopamine‐lesioned rats, subjected to a single session (acute) of iTBS and tested for forelimb akinesia with the stepping test. Immunohistochemical analyses were performed to analyze morphological correlates of plasticity in SPNs. Results Acute iTBS ameliorated limb akinesia and rescued corticostriatal long‐term potentiation (LTP) in SPNs of partially lesioned rats. This effect was abolished by applying a selective inhibitor of GluN2B‐subunit‐containing NMDAR, suggesting that iTBS treatment could be associated with an enhanced activation of specific NMDAR subunits, which are major regulators of structural plasticity during synapse development. Morphological analyses of SPNs revealed that iTBS treatment reverted dendritic spine loss inducing a prevalence of thin‐elongated spines in the biocytin‐filled SPNs. Conclusions Taken together, our data identify that an acute iTBS treatment produces a series of plastic changes underlying striatal compensatory adaptation in the parkinsonian basal ganglia circuit. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N-methyl-D-aspartate receptors (NMDAR)-mediated functions. Repetitive transcranial magnetic stimulation (rTMS) induces modifications in glutamatergic and dopaminergic systems, suggesting that it may have an impact on glutamatergic synapses modulated by dopamine neurotransmission. However, no studies have so far explored the mechanisms of rTMS effects at early stages of PD. We tested the hypothesis that in vivo application of rTMS with intermittent theta-burst stimulation (iTBS) pattern alleviates corticostriatal dysfunctions by modulating NMDAR-dependent plasticity in a rat model of early parkinsonism. Dorsolateral striatal spiny projection neurons (SPNs) activity was studied through ex vivo whole-cell patch-clamp recordings in corticostriatal slices obtained from 6-hydroxydopamine-lesioned rats, subjected to a single session (acute) of iTBS and tested for forelimb akinesia with the stepping test. Immunohistochemical analyses were performed to analyze morphological correlates of plasticity in SPNs. Acute iTBS ameliorated limb akinesia and rescued corticostriatal long-term potentiation (LTP) in SPNs of partially lesioned rats. This effect was abolished by applying a selective inhibitor of GluN2B-subunit-containing NMDAR, suggesting that iTBS treatment could be associated with an enhanced activation of specific NMDAR subunits, which are major regulators of structural plasticity during synapse development. Morphological analyses of SPNs revealed that iTBS treatment reverted dendritic spine loss inducing a prevalence of thin-elongated spines in the biocytin-filled SPNs. Taken together, our data identify that an acute iTBS treatment produces a series of plastic changes underlying striatal compensatory adaptation in the parkinsonian basal ganglia circuit. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
BackgroundIn experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic alterations that depend on progressive changes in N‐methyl‐D‐aspartate receptors (NMDAR)‐mediated functions. Repetitive transcranial magnetic stimulation (rTMS) induces modifications in glutamatergic and dopaminergic systems, suggesting that it may have an impact on glutamatergic synapses modulated by dopamine neurotransmission. However, no studies have so far explored the mechanisms of rTMS effects at early stages of PD.ObjectivesWe tested the hypothesis that in vivo application of rTMS with intermittent theta‐burst stimulation (iTBS) pattern alleviates corticostriatal dysfunctions by modulating NMDAR‐dependent plasticity in a rat model of early parkinsonism.MethodsDorsolateral striatal spiny projection neurons (SPNs) activity was studied through ex vivo whole‐cell patch‐clamp recordings in corticostriatal slices obtained from 6‐hydroxydopamine‐lesioned rats, subjected to a single session (acute) of iTBS and tested for forelimb akinesia with the stepping test. Immunohistochemical analyses were performed to analyze morphological correlates of plasticity in SPNs.ResultsAcute iTBS ameliorated limb akinesia and rescued corticostriatal long‐term potentiation (LTP) in SPNs of partially lesioned rats. This effect was abolished by applying a selective inhibitor of GluN2B‐subunit‐containing NMDAR, suggesting that iTBS treatment could be associated with an enhanced activation of specific NMDAR subunits, which are major regulators of structural plasticity during synapse development. Morphological analyses of SPNs revealed that iTBS treatment reverted dendritic spine loss inducing a prevalence of thin‐elongated spines in the biocytin‐filled SPNs.ConclusionsTaken together, our data identify that an acute iTBS treatment produces a series of plastic changes underlying striatal compensatory adaptation in the parkinsonian basal ganglia circuit. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Author Calabresi, Paolo
Marino, Gioia
Gardoni, Fabrizio
Natale, Giuseppina
Picconi, Barbara
Campanelli, Federica
Calabrese, Valeria
Viscomi, Maria Teresa
Pelucchi, Silvia
Marcello, Elena
Pignataro, Annabella
Ammassari‐Teule, Martine
Ghiglieri, Veronica
Cardinale, Antonella
Author_xml – sequence: 1
  givenname: Giuseppina
  surname: Natale
  fullname: Natale, Giuseppina
  organization: Università Cattolica del Sacro Cuore
– sequence: 2
  givenname: Annabella
  surname: Pignataro
  fullname: Pignataro, Annabella
  organization: IRCCS Fondazione Santa Lucia c/o CERC
– sequence: 3
  givenname: Gioia
  surname: Marino
  fullname: Marino, Gioia
  organization: Università Cattolica del Sacro Cuore
– sequence: 4
  givenname: Federica
  surname: Campanelli
  fullname: Campanelli, Federica
  organization: Università Cattolica del Sacro Cuore
– sequence: 5
  givenname: Valeria
  surname: Calabrese
  fullname: Calabrese, Valeria
  organization: IRCCS San Raffaele Pisana
– sequence: 6
  givenname: Antonella
  surname: Cardinale
  fullname: Cardinale, Antonella
  organization: IRCCS San Raffaele Pisana
– sequence: 7
  givenname: Silvia
  surname: Pelucchi
  fullname: Pelucchi, Silvia
  organization: University of Milano
– sequence: 8
  givenname: Elena
  surname: Marcello
  fullname: Marcello, Elena
  organization: University of Milano
– sequence: 9
  givenname: Fabrizio
  surname: Gardoni
  fullname: Gardoni, Fabrizio
  organization: University of Milano
– sequence: 10
  givenname: Maria Teresa
  surname: Viscomi
  fullname: Viscomi, Maria Teresa
  organization: Università Cattolica del Sacro Cuore
– sequence: 11
  givenname: Barbara
  surname: Picconi
  fullname: Picconi, Barbara
  organization: San Raffaele University
– sequence: 12
  givenname: Martine
  surname: Ammassari‐Teule
  fullname: Ammassari‐Teule, Martine
  organization: Institute of Biochemistry and Cell Biology (IBBC), National Research Council
– sequence: 13
  givenname: Paolo
  surname: Calabresi
  fullname: Calabresi, Paolo
  organization: Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS
– sequence: 14
  givenname: Veronica
  orcidid: 0000-0003-2885-8298
  surname: Ghiglieri
  fullname: Ghiglieri, Veronica
  email: veronica.ghiglieri@uniroma5.it
  organization: IRCCS Fondazione Santa Lucia c/o CERC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34339069$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URNPCghdAI7Ghi2l9x_aMs0RJ-JFagUhZj26cO8jRjGewPYXs8iDl5fokuElhUQk2tnTvd46uzjlhR653xNhL4OfAeXHRrcN5ocsKnrAJKAG5LlR1xCZca5UL0OqYnYSw4RxAQfmMHQspxJSX0wnbXXt0waTHYptd4TdH0ZpsGW03thht77LFT_IxZHe72y-0GW_I7cd3u1_ZomnIpFWCZr1Puj5EbzEmp-XW4RAoZNhE8tlnTOs0nvcDdtZRNqehpXuf5-xpg22gFw__Kfv6bnE9-5Bffnr_cfb2MjdCa8glF6oxspQrKAioFCUhB8krQEBToJKVkBWWK1lybEyxBlRcEmnDjVKyEafszcF38P33kUKsOxsMtS066sdQF0pVKqUCkNDXj9BNP3qXrkuULsqprGCaqFcP1LjqaF0P3nbot_WfbBNwdgCM70Pw1PxFgNf3vdWpt3rfW2IvHrHGxn3O0aNt_6f4YVva_tu6vpovD4rftj6r-w
CitedBy_id crossref_primary_10_3389_fncel_2022_878345
crossref_primary_10_1016_j_nbd_2022_105878
crossref_primary_10_1016_j_brainresbull_2025_111349
crossref_primary_10_3389_fnagi_2023_1258315
crossref_primary_10_1016_j_pbiomolbio_2024_09_004
crossref_primary_10_1016_j_neuint_2025_106021
crossref_primary_10_1016_j_brainresbull_2025_111258
crossref_primary_10_1016_j_nbd_2022_105697
crossref_primary_10_3390_cells12111525
crossref_primary_10_2174_011570159X336597241217062042
crossref_primary_10_3390_ijms231810336
crossref_primary_10_1038_s41531_024_00836_6
crossref_primary_10_1016_j_pneurobio_2023_102548
crossref_primary_10_1016_j_clinph_2025_04_012
crossref_primary_10_3390_jcm11174972
crossref_primary_10_1002_mds_29599
Cites_doi 10.1016/j.tips.2014.05.005
10.1523/JNEUROSCI.2149-10.2010
10.1111/j.1749-6632.2003.tb07458.x
10.1016/S1353-8020(09)70828-4
10.1016/j.nbd.2015.11.022
10.1093/brain/116.2.433
10.3389/fphys.2017.00457
10.1523/JNEUROSCI.2664-12.2012
10.1016/0022-510X(73)90175-5
10.1093/brain/awg268
10.1073/pnas.1012676108
10.1523/JNEUROSCI.15-05-03863.1995
10.1016/S0166-2236(03)00162-0
10.1016/j.neuron.2012.04.031
10.1038/srep41432
10.1016/j.biopsych.2014.04.002
10.1002/syn.20381
10.1111/nan.12297
10.1155/2015/651469
10.1002/ana.25682
10.1113/jphysiol.2011.206573
10.1016/j.brainres.2009.04.016
10.1038/nature09986
10.1016/S0896-6273(02)00776-6
10.1523/JNEUROSCI.12-11-04224.1992
10.1038/nn1040
10.1016/0006-8993(89)91686-7
10.1523/JNEUROSCI.1379-10.2011
10.1016/j.neuron.2004.12.033
10.1002/mds.26982
10.1016/j.parkreldis.2008.04.015
10.1111/j.1460-9568.1992.tb00119.x
10.3389/fnins.2020.00137
10.1016/j.tins.2004.05.010
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
– notice: 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1002/mds.28671
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8257
EndPage 2263
ExternalDocumentID 34339069
10_1002_mds_28671
MDS28671
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministero della Salute
– fundername: the Fresco Parkinson Institute to New York University School of Medicine and The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
24P
31~
33P
3PY
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
YCJ
ZGI
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c3881-4035fc464b12e1e636ea014071a1ac2a547347a6b460afc2d1a504ee8c0c554f3
IEDL.DBID 24P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000680070300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-3185
1531-8257
IngestDate Sun Nov 09 11:05:42 EST 2025
Sat Nov 29 14:23:46 EST 2025
Wed Feb 19 02:27:28 EST 2025
Tue Nov 18 21:38:38 EST 2025
Sat Nov 29 07:07:34 EST 2025
Wed Jan 22 16:27:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords partial dopamine denervation
striatum
dendritic spines
GluN2B
noninvasive brain stimulation
Language English
License Attribution-NonCommercial
2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3881-4035fc464b12e1e636ea014071a1ac2a547347a6b460afc2d1a504ee8c0c554f3
Notes Relevant conflicts of interest/financial disclosures
Funding agencies
This work was supported by grants from the Fresco Parkinson Institute to New York University School of Medicine and The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, which were made possible with support from Marlene and Paolo Fresco (V.G., P.C., and A.C.) and by the Italian Ministry of Health, Ricerca Corrente (B.P. and P.C.).
Giuseppina Natale and Annabella Pignataro contributed equally.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2885-8298
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.28671
PMID 34339069
PQID 2582694719
PQPubID 1016421
PageCount 10
ParticipantIDs proquest_miscellaneous_2557533911
proquest_journals_2582694719
pubmed_primary_34339069
crossref_primary_10_1002_mds_28671
crossref_citationtrail_10_1002_mds_28671
wiley_primary_10_1002_mds_28671_MDS28671
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Movement disorders
PublicationTitleAlternate Mov Disord
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 7
2017; 8
1995; 15
2004; 27
2002; 35
2015; 77
2008; 14
2011; 31
2020; 14
1992; 12
2012; 32
2006; 991
2005; 45
2011; 474
2012; 74
2011; 589
2011; 108
1973; 20
1989; 503
2003; 6
2017; 32
2015; 2015
2016; 86
2016; 42
2003; 26
2014; 35
2007; 61
2020; 87
2003; 126
1993; 116
2009; 1274
2010; 30
2009; 15
1992; 4
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Calabresi P (e_1_2_9_22_1) 1993; 116
e_1_2_9_20_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
34921459 - Mov Disord. 2021 Dec;36(12):2979-2980
34921453 - Mov Disord. 2021 Dec;36(12):2979
References_xml – volume: 1274
  start-page: 40
  year: 2009
  end-page: 46
  article-title: NR2A‐containing NMDA receptors are required for LTP induction in rat dorsolateral striatum in vitro
  publication-title: Brain Res
– volume: 32
  start-page: 17921
  issue: 49
  year: 2012
  end-page: 17931
  article-title: Rebalance of striatal NMDA/AMPA receptor ratio underlies the reduced emergence of dyskinesia during D2‐like dopamine agonist treatment in experimental Parkinson's disease
  publication-title: J Neurosci
– volume: 2015
  start-page: 651469
  year: 2015
  article-title: CREB regulates experience‐dependent spine formation and enlargement in mouse barrel cortex
  publication-title: Neural Plast
– volume: 15
  start-page: S13
  issue: Suppl 4
  year: 2009
  end-page: S17
  article-title: Rodent models of treatment‐induced motor complications in Parkinson's disease
  publication-title: Parkinsonism Relat Disord
– volume: 30
  start-page: 14182
  issue: 42
  year: 2010
  end-page: 14193
  article-title: Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition
  publication-title: J Neurosci
– volume: 74
  start-page: 1023
  issue: 6
  year: 2012
  end-page: 1030
  article-title: Activity‐dependent growth of new dendritic spines is regulated by the proteasome
  publication-title: Neuron
– volume: 86
  start-page: 140
  year: 2016
  end-page: 153
  article-title: Modulation of serotonergic transmission by eltoprazine in L‐DOPA‐induced dyskinesia: behavioral, molecular, and synaptic mechanisms
  publication-title: Neurobiol Dis
– volume: 503
  start-page: 334
  issue: 2
  year: 1989
  end-page: 338
  article-title: Spine density on neostriatal neurones changes with 6‐hydroxydopamine lesions and with age
  publication-title: Brain Res
– volume: 42
  start-page: 77
  issue: 1
  year: 2016
  end-page: 94
  article-title: Review: Parkinson's disease: from synaptic loss to connectome dysfunction
  publication-title: Neuropathol Appl Neurobiol
– volume: 31
  start-page: 1193
  issue: 4
  year: 2011
  end-page: 1203
  article-title: Theta‐burst transcranial magnetic stimulation alters cortical inhibition
  publication-title: J Neurosci
– volume: 126
  start-page: 2609
  issue: Pt 12
  year: 2003
  end-page: 2615
  article-title: Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex
  publication-title: Brain
– volume: 61
  start-page: 450
  issue: 6
  year: 2007
  end-page: 458
  article-title: Alterations in dendritic morphology of the prefrontal cortical and striatum neurons in the unilateral 6‐OHDA‐rat model of Parkinson's disease
  publication-title: Synapse
– volume: 27
  start-page: 428
  issue: 7
  year: 2004
  end-page: 437
  article-title: Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal
  publication-title: Trends in Neurosciences
– volume: 77
  start-page: 106
  issue: 2
  year: 2015
  end-page: 115
  article-title: Derangement of Ras‐guanine nucleotide‐releasing factor 1 (Ras‐GRF1) and extracellular signal‐regulated kinase (ERK) dependent striatal plasticity in L‐DOPA‐induced dyskinesia
  publication-title: Biol Psychiatry
– volume: 35
  start-page: 374
  issue: 8
  year: 2014
  end-page: 383
  article-title: The neural rejuvenation hypothesis of cocaine addiction
  publication-title: Trends Pharmacol Sci
– volume: 20
  start-page: 415
  issue: 4
  year: 1973
  end-page: 455
  article-title: Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations
  publication-title: J Neurol Sci
– volume: 87
  start-page: 329
  issue: 3
  year: 2020
  end-page: 338
  article-title: Synaptic changes in Parkinson disease assessed with in vivo imaging
  publication-title: Ann Neurol
– volume: 474
  start-page: 100
  issue: 7349
  year: 2011
  end-page: 104
  article-title: Glutamate induces de novo growth of functional spines in developing cortex
  publication-title: Nature
– volume: 7
  start-page: 41432
  year: 2017
  article-title: Striatal neurons expressing D1 and D2 receptors are morphologically distinct and differently affected by dopamine denervation in mice
  publication-title: Sci Rep
– volume: 8
  start-page: 457
  year: 2017
  article-title: Mechanism of action for rTMS: a working hypothesis based on animal studies
  publication-title: Front Physiol
– volume: 589
  start-page: 4423
  issue: Pt 18
  year: 2011
  end-page: 4435
  article-title: Modulation of cortical inhibition by rTMS ‐ findings obtained from animal models
  publication-title: J Physiol
– volume: 14
  start-page: 137
  year: 2020
  article-title: rTMS‐induced changes in glutamatergic and dopaminergic systems: relevance to cocaine and methamphetamine use disorders
  publication-title: Front Neurosci
– volume: 12
  start-page: 4224
  issue: 11
  year: 1992
  end-page: 4233
  article-title: Long‐term synaptic depression in the striatum: physiological and pharmacological characterization
  publication-title: J Neurosci
– volume: 116
  start-page: 433
  issue: Pt 2
  year: 1993
  end-page: 452
  article-title: Electrophysiology of dopamine‐denervated striatal neurons. Implications for Parkinson's disease
  publication-title: Brain
– volume: 26
  start-page: 360
  issue: 7
  year: 2003
  end-page: 368
  article-title: Structure‐stability‐function relationships of dendritic spines
  publication-title: Trends Neurosci
– volume: 4
  start-page: 929
  issue: 10
  year: 1992
  end-page: 935
  article-title: Long‐term potentiation in the striatum is unmasked by removing the voltage‐dependent magnesium block of NMDA receptor channels
  publication-title: Eur J Neurosci
– volume: 108
  start-page: 5855
  issue: 14
  year: 2011
  end-page: 5860
  article-title: NMDA receptor subunit composition controls synaptogenesis and synapse stabilization
  publication-title: Proc Natl Acad Sci U S A
– volume: 991
  start-page: 1
  issue: 1
  year: 2006
  end-page: 14
  article-title: Description of Parkinson's Disease as a Clinical Syndrome
  publication-title: Annals of the New York Academy of Sciences
– volume: 14
  start-page: S124
  issue: Suppl 2
  year: 2008
  end-page: S129
  article-title: The 6‐hydroxydopamine model: news from the past
  publication-title: Parkinsonism Relat Disord
– volume: 35
  start-page: 345
  issue: 2
  year: 2002
  end-page: 353
  article-title: Subunit‐specific NMDA receptor trafficking to synapses
  publication-title: Neuron
– volume: 15
  start-page: 3863
  issue: 5 Pt 2
  year: 1995
  end-page: 3875
  article-title: Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test
  publication-title: J Neurosci
– volume: 6
  start-page: 501
  issue: 5
  year: 2003
  end-page: 506
  article-title: Loss of bidirectional striatal synaptic plasticity in L‐DOPA‐induced dyskinesia
  publication-title: Nat Neurosci
– volume: 45
  start-page: 201
  issue: 2
  year: 2005
  end-page: 206
  article-title: Theta burst stimulation of the human motor cortex
  publication-title: Neuron
– volume: 32
  start-page: 1035
  issue: 7
  year: 2017
  end-page: 1046
  article-title: Intermittent theta‐burst stimulation rescues dopamine‐dependent corticostriatal synaptic plasticity and motor behavior in experimental parkinsonism: possible role of glial activity
  publication-title: Mov Disord
– ident: e_1_2_9_33_1
  doi: 10.1016/j.tips.2014.05.005
– ident: e_1_2_9_10_1
  doi: 10.1523/JNEUROSCI.2149-10.2010
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1749-6632.2003.tb07458.x
– ident: e_1_2_9_8_1
  doi: 10.1016/S1353-8020(09)70828-4
– ident: e_1_2_9_20_1
  doi: 10.1016/j.nbd.2015.11.022
– volume: 116
  start-page: 433
  issue: 2
  year: 1993
  ident: e_1_2_9_22_1
  article-title: Electrophysiology of dopamine‐denervated striatal neurons. Implications for Parkinson's disease
  publication-title: Brain
  doi: 10.1093/brain/116.2.433
– ident: e_1_2_9_7_1
  doi: 10.3389/fphys.2017.00457
– ident: e_1_2_9_14_1
  doi: 10.1523/JNEUROSCI.2664-12.2012
– ident: e_1_2_9_3_1
  doi: 10.1016/0022-510X(73)90175-5
– ident: e_1_2_9_4_1
  doi: 10.1093/brain/awg268
– ident: e_1_2_9_35_1
  doi: 10.1073/pnas.1012676108
– ident: e_1_2_9_13_1
  doi: 10.1523/JNEUROSCI.15-05-03863.1995
– ident: e_1_2_9_27_1
  doi: 10.1016/S0166-2236(03)00162-0
– ident: e_1_2_9_24_1
  doi: 10.1016/j.neuron.2012.04.031
– ident: e_1_2_9_29_1
  doi: 10.1038/srep41432
– ident: e_1_2_9_16_1
  doi: 10.1016/j.biopsych.2014.04.002
– ident: e_1_2_9_26_1
  doi: 10.1002/syn.20381
– ident: e_1_2_9_28_1
  doi: 10.1111/nan.12297
– ident: e_1_2_9_19_1
  doi: 10.1155/2015/651469
– ident: e_1_2_9_31_1
  doi: 10.1002/ana.25682
– ident: e_1_2_9_5_1
  doi: 10.1113/jphysiol.2011.206573
– ident: e_1_2_9_23_1
  doi: 10.1016/j.brainres.2009.04.016
– ident: e_1_2_9_25_1
  doi: 10.1038/nature09986
– ident: e_1_2_9_32_1
  doi: 10.1016/S0896-6273(02)00776-6
– ident: e_1_2_9_17_1
  doi: 10.1523/JNEUROSCI.12-11-04224.1992
– ident: e_1_2_9_21_1
  doi: 10.1038/nn1040
– ident: e_1_2_9_30_1
  doi: 10.1016/0006-8993(89)91686-7
– ident: e_1_2_9_15_1
  doi: 10.1523/JNEUROSCI.1379-10.2011
– ident: e_1_2_9_6_1
  doi: 10.1016/j.neuron.2004.12.033
– ident: e_1_2_9_11_1
  doi: 10.1002/mds.26982
– ident: e_1_2_9_9_1
  doi: 10.1016/j.parkreldis.2008.04.015
– ident: e_1_2_9_18_1
  doi: 10.1111/j.1460-9568.1992.tb00119.x
– ident: e_1_2_9_12_1
  doi: 10.3389/fnins.2020.00137
– ident: e_1_2_9_34_1
  doi: 10.1016/j.tins.2004.05.010
– reference: 34921459 - Mov Disord. 2021 Dec;36(12):2979-2980
– reference: 34921453 - Mov Disord. 2021 Dec;36(12):2979
SSID ssj0011516
Score 2.4668167
Snippet Background In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of...
In experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of synaptic...
BackgroundIn experimental models of Parkinson's disease (PD), different degrees of degeneration to the nigrostriatal pathway produce distinct profiles of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2254
SubjectTerms Akinesia
Animals
Basal ganglia
Biocytin
Central nervous system diseases
Corpus Striatum
Degeneration
Dendritic spines
Developmental plasticity
Dopamine
Dopamine receptors
GluN2B
Glutamate receptors
Glutamatergic transmission
Long-term potentiation
Magnetic fields
Morphology
Movement disorders
N-Methyl-D-aspartic acid receptors
Neostriatum
Neurodegenerative diseases
Neuronal Plasticity
Neurotransmission
noninvasive brain stimulation
Parkinson's disease
partial dopamine denervation
Rats
striatum
Synapses
Transcranial Magnetic Stimulation
Title Transcranial Magnetic Stimulation Exerts “Rejuvenation” Effects on Corticostriatal Synapses after Partial Dopamine Depletion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.28671
https://www.ncbi.nlm.nih.gov/pubmed/34339069
https://www.proquest.com/docview/2582694719
https://www.proquest.com/docview/2557533911
Volume 36
WOSCitedRecordID wos000680070300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1531-8257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011516
  issn: 0885-3185
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VFqFe-IcuLZVBHHoJjX_iJOoJdbvi0K1WXYr2FjmOXRWxyWqzi9rbPgi8XJ-EsZMNqgAJiYsVxWM5smc8MxnPNwDvLJ6AkmkTSFHE6KBEMlBKpkHIbM5iTZXwEd3Pp_HZWTKZpKMNOFrnwjT4EN0PNycZ_rx2Aq7y-vAXaOi0qN8zh852D7Yo5Ymr28DEqAshoCqTjQkZ-RThNaxQyA67oXeV0W8W5l2D1WucwaP_-tbH8LA1NMmHhjOewIYpn8KDYRtKfwYrr6U0NsiBZKguS5fOSMaLq2lb0YucXJv5oia3q-_n5ssST0X_-nb1gzSYxzVBouPKzVD58h9oyJPxTalmtamJrz5ORo418XUfnfMpTkz6ZubwvqvyOVwMTj4dfwzacgyB5kniPE0eWS2kyCkz1EgujXL-WUwVVZopV8VYxErmQobKalZQFYXCmESHGo0Wy1_AZlmVZgcID620RlIqbSFoYdLQSGFTVqS51oLrHhys9yXTLVa5K5nxNWtQllmGK5r5Fe3B24501gB0_Ilob725WSuj2BMlLo03pmkP3nTdKF0uZKJKUy0dDZqznKNG6MHLhim6WbjAjlDi6AO_93-fPhv2x_7h1b-T7sI2c9dn_L3BPdhczJfmNdzX3xZX9Xzfszq28STZh63--eDi9CdsBwZB
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-Ngdhe-LtB2QCDeNhLtvhPnETiZVo3DdFWFR1ob5Hr2NMQTaqmneCtHwS-3D4JZycNmgAJiZcois9yZN_57ny-3wG8sbgDSqZNIEUeo4MSyUApmQYhs2MWa6qEj-h-6sWDQXJ-ng7X4O0qF6bGh2gP3Jxk-P3aCbg7kD74hRo6yat95uDZbsFtgVrGcTkTwzaGgLpM1jZk5HOEV7hCITtou97URr-ZmDctVq9yTu7_388-gHuNqUkOa954CGumeAR3-00w_TEsvZ7S-EAeJH11UbiERjKaX06aml7k-KuZzStyvfz-wXxe4L7oP18vf5Aa9bgiSHRUuhFKXwAETXky-laoaWUq4uuPk6FjTvzcRfd8ggOTrpk6xO-y2IKPJ8dnR6dBU5Ah0DxJnK_JI6uFFGPKDDWSS6OchxZTRZVmytUxFrGSYyFDZTXLqYpCYUyiQ41mi-XbsF6UhXkKhIdWWiMplTYXNDdpaKSwKcvTsdaC6w7srRYm0w1auSua8SWrcZZZhjOa-RntwOuWdFpDdPyJaHe1ulkjpdgSJS6RN6ZpB161zShfLmiiClMuHA0atJyjTujAk5or2lG4wIZQYu89v_h_Hz7rd0f-5dm_k76EjdOzfi_rvRu834FN5i7T-FuEu7A-ny3Mc7ijr-aX1eyF5_ufnCIHpA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXbTiwvtRWMAgDnsJGz_iJBIXtNkKRFtVWxbtLXIdGy2iSdW0CG79IfDn9pcwdtKgFSAhcYkieyxH9oxnJuP5BuCFxRNQMm0CKYoYHZRIBkrJNAiZnbFYUyV8RPfDMB6Pk7OzdLIDr7a5MA0-RPfDzUmGP6-dgJtFYQ9_oYbOi_olc_BsV2BXuCIyPdjNTganwy6KgNpMNlZk5LOEt8hCITvsBl_WR78ZmZdtVq90Bjf-73NvwvXW2CSvG-64BTumvA17ozacfgc2XlNpfCAXkpH6WLqURjJdnc_bql7k-KtZrmpysfl-Yj6t8WT0zRebH6TBPa4JEh1VbobKlwBBY55Mv5VqUZua-ArkZOLYE5szdNDnODHJzMJhflflXTgdHL8_ehO0JRkCzZPEeZs8slpIMaPMUCO5NMr5aDFVVGmmXCVjESs5EzJUVrOCqigUxiQ61Gi4WH4PemVVmgdAeGilNZJSaQtBC5OGRgqbsiKdaS247sPBdmNy3eKVu7IZn_MGaZnluKK5X9E-PO9IFw1Ix5-I9re7m7dyij1R4lJ5Y5r24VnXjRLmwiaqNNXa0aBJyzlqhT7cb7iim4UL7Agljj7wm__36fNRNvUvD_-d9CnsTbJBPnw7fvcIrjF3m8ZfI9yH3mq5No_hqv6yOq-XT1rG_wnj0wi6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcranial+Magnetic+Stimulation+Exerts+%E2%80%9CRejuvenation%E2%80%9D+Effects+on+Corticostriatal+Synapses+after+Partial+Dopamine+Depletion&rft.jtitle=Movement+disorders&rft.au=Natale%2C+Giuseppina&rft.au=Pignataro%2C+Annabella&rft.au=Marino%2C+Gioia&rft.au=Campanelli%2C+Federica&rft.date=2021-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0885-3185&rft.eissn=1531-8257&rft.volume=36&rft.issue=10&rft.spage=2254&rft.epage=2263&rft_id=info:doi/10.1002%2Fmds.28671&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon