Ab initio protein fold prediction using evolutionary algorithms: Influence of design and control parameters on performance
True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to t...
Uloženo v:
| Vydáno v: | Journal of computational chemistry Ročník 27; číslo 11; s. 1177 - 1195 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.08.2006
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0192-8651, 1096-987X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15‐residue polyalanine molecule—design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady‐state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady‐state designs based on real encoding and multipoint crossover. Application of the steady‐state design to met‐enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met‐enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1177–1195, 2006 |
|---|---|
| AbstractList | True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15-residue polyalanine molecule-design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady-state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady-state designs based on real encoding and multipoint crossover. Application of the steady-state design to met-enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met-enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used.True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15-residue polyalanine molecule-design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady-state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady-state designs based on real encoding and multipoint crossover. Application of the steady-state design to met-enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met-enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used. True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15‐residue polyalanine molecule—design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady‐state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady‐state designs based on real encoding and multipoint crossover. Application of the steady‐state design to met‐enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met‐enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1177–1195, 2006 True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15-residue polyalanine molecule-design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady-state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady-state designs based on real encoding and multipoint crossover. Application of the steady-state design to met-enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met-enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used. True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15-residue polyalanine molecule - design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady-state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady-state designs based on real encoding and multipoint crossover. Application of the steady-state design to met-enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met-enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used. [PUBLICATION ABSTRACT] True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15‐residue polyalanine molecule—design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady‐state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady‐state designs based on real encoding and multipoint crossover. Application of the steady‐state design to met‐enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met‐enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1177–1195, 2006 |
| Author | Djurdjevic, Dusan P. Biggs, Mark J. |
| Author_xml | – sequence: 1 givenname: Dusan P. surname: Djurdjevic fullname: Djurdjevic, Dusan P. organization: Institute for Materials and Processes, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, United Kingdom – sequence: 2 givenname: Mark J. surname: Biggs fullname: Biggs, Mark J. email: M.Biggs@ed.ac.uk organization: Institute for Materials and Processes, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16752367$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kVFvFCEUhYmpsdvqg3_AEB9MfJgWmGEGfKsb3dY0NTFN9I0wzGVlZWCFGbX-elm31aSJ8kIu-c7J5ZwjdBBiAISeUnJCCWGnG2NOGGka8gAtKJFtJUX36QAtCJWsEi2nh-go5w0hpOZt8wgd0rbjrG67Bfp51mMX3OQi3qY4gQvYRj-UAQZnynPAc3ZhjeFb9PNu1ukGa7-OyU2fx_wKXwTrZwgGcLR4gOzWAeswYBPDlKLHW530CBOkjIvZFpKNadSFf4weWu0zPLm9j9H12zfXy_Pq8v3qYnl2WZlaCFINWppOUBC94bLWoAeghomBgJGWd8RQ2eu-58x2jWkaK2Uz8FZroLoxAupj9GJvW_73dYY8qdFlA97rAHHOqhWkLWF0BXx-D9zEOYWymmLlCM6ELNCzW2juRxjUNrmxJKLuEi3Ayz1gUsw5gf2LELVrS5W21O-2Cnt6jzVu0ruQp6Sd_5_iu_Nw829r9W65vFNUe4XLE_z4o9Dpiyrbdlx9vFqp8xV7LT-wWl3VvwCmzLc6 |
| CODEN | JCCHDD |
| CitedBy_id | crossref_primary_10_1162_evco_2010_18_2_18204 crossref_primary_10_1186_1471_2105_9_357 crossref_primary_10_1186_1758_2946_1_16 crossref_primary_10_1002_wcms_70 crossref_primary_10_1007_s10710_009_9087_0 crossref_primary_10_1002_jcc_20924 crossref_primary_10_1186_1472_6807_13_S1_S4 crossref_primary_10_1016_j_nano_2008_03_008 |
| Cites_doi | 10.1016/S0959-440X(99)80025-6 10.1109/TSMC.1986.289288 10.1002/bip.10226 10.1007/3-540-45712-7_10 10.1002/(SICI)1096-987X(19970715)18:9<1222::AID-JCC10>3.0.CO;2-7 10.1006/jmbi.1996.0115 10.1093/protein/5.4.313 10.1063/1.1592796 10.1016/j.sbi.2003.12.001 10.1126/science.1853201 10.1002/anie.200200539 10.1002/jcc.540161112 10.1002/(SICI)1097-0134(1997)1 <179::AID-PROT23>3.0.CO;2-K 10.1080/08927029408021995 10.1073/pnas.96.5.2025 10.1080/08927029708024151 10.1021/ie010149z 10.1016/0141-8130(95)01036-X 10.1016/S0020-0255(03)00178-6 10.1002/(SICI)1097-461X(2000)77:1<90::AID-QUA10>3.0.CO;2-L 10.1021/jp0001743 10.1002/prot.10530 10.1016/S0014-5793(02)03290-8 10.1016/S1359-6446(02)02398-X 10.1002/jcc.540040211 10.1016/S0959-440X(99)80022-0 10.1090/dimacs/047/07 10.1073/pnas.91.10.4436 10.1016/0022-2836(69)90487-2 10.1007/3-540-44869-1_41 10.1023/A:1008224308626 10.1063/1.1387478 10.1007/PL00010719 10.1007/BFb0056937 10.1006/jmbi.1997.1010 10.1089/cmb.1997.4.1 10.1073/pnas.041609598 10.1007/3-540-48990-8_2 10.1038/358086a0 10.1016/S0958-1669(97)80122-X 10.3109/10409239409086797 10.1007/BF01100239 10.1007/BFb0029729 10.1021/ja00299a024 10.1016/S0959-440X(97)80027-9 10.1007/3-540-58484-6_256 10.1002/jcc.540070216 10.1016/S0039-6028(01)01809-X 10.1093/protein/10.8.877 10.1006/jmbi.1993.1258 10.1016/S0959-440X(00)00067-1 10.1016/j.polymer.2003.10.081 10.1109/TEVC.2002.804323 10.1002/(SICI)1096-987X(199910)20:13<1329::AID-JCC1>3.0.CO;2-H 10.1093/protein/8.8.769 10.1021/j100234a011 10.1021/ci950106r 10.1002/pro.5560020508 10.1016/B978-0-934613-64-4.50021-9 10.1089/cmb.1998.5.27 10.1016/S0006-3495(95)79906-4 10.1002/(SICI)1097-0282(199808)46:2<103::AID-BIP5>3.0.CO;2-Q 10.1016/S0167-7799(01)01666-3 10.1002/(SICI)1097-0134(19980515)31:3<247::AID-PROT2>3.0.CO;2-G 10.1093/protein/5.7.637 10.1109/4235.850651 10.1109/4235.797972 10.1007/s008940050125 10.1063/1.473514 10.1007/BF02337560 10.1006/jmbi.1994.1193 10.1137/S0036144594278060 10.1146/annurev.biophys.29.1.291 10.1007/BF02460703 10.1080/07391102.2003.10506906 10.1002/bip.360270808 10.1007/BFb0026595 10.1016/S0022-2836(05)80068-3 10.1007/3-540-45110-2_56 10.1109/20.952626 10.1021/ja00124a002 10.1080/09528139008953717 10.1007/BF00203032 10.1002/prot.340230319 10.1002/(SICI)1097-0134(19981115)33:3<343::AID-PROT4>3.0.CO;2-B 10.1016/S0092-8240(05)80170-3 |
| ContentType | Journal Article |
| Copyright | Copyright © 2006 Wiley Periodicals, Inc. Copyright 2006 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Aug 2006 |
| Copyright_xml | – notice: Copyright © 2006 Wiley Periodicals, Inc. – notice: Copyright 2006 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Aug 2006 |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 |
| DOI | 10.1002/jcc.20440 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Computer Science Collection CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1096-987X |
| EndPage | 1195 |
| ExternalDocumentID | 1146142011 16752367 10_1002_jcc_20440 JCC20440 ark_67375_WNG_HG2B9R23_N |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
| GrantInformation_xml | – fundername: University of Edinburgh and Overseas Research Support (ORS) Scheme |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 31~ 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M21 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YQT ZCG ZY4 ZZTAW ~IA ~KM ~WT AAYXX CITATION O8X AAHHS ABTAH ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM YCJ JQ2 7X8 |
| ID | FETCH-LOGICAL-c3880-da9c781e8bc593aeade1c28d0ec9f570c19babb52f74c44f994d56aae1a4c8e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000238586600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0192-8651 |
| IngestDate | Sun Nov 09 10:36:57 EST 2025 Fri Jul 25 19:10:35 EDT 2025 Thu Apr 03 07:04:37 EDT 2025 Tue Nov 18 22:25:14 EST 2025 Sat Nov 29 02:55:33 EST 2025 Thu Sep 25 07:34:29 EDT 2025 Sun Sep 21 06:17:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright 2006 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3880-da9c781e8bc593aeade1c28d0ec9f570c19babb52f74c44f994d56aae1a4c8e3 |
| Notes | ark:/67375/WNG-HG2B9R23-N istex:99301276664319A6EA14513AE00EF2A6B661614C University of Edinburgh and Overseas Research Support (ORS) Scheme ArticleID:JCC20440 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 16752367 |
| PQID | 222285289 |
| PQPubID | 48816 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_68065237 proquest_journals_222285289 pubmed_primary_16752367 crossref_primary_10_1002_jcc_20440 crossref_citationtrail_10_1002_jcc_20440 wiley_primary_10_1002_jcc_20440_JCC20440 istex_primary_ark_67375_WNG_HG2B9R23_N |
| PublicationCentury | 2000 |
| PublicationDate | 2006-08 August 2006 2006-08-00 2006-Aug 20060801 |
| PublicationDateYYYYMMDD | 2006-08-01 |
| PublicationDate_xml | – month: 08 year: 2006 text: 2006-08 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States – name: New York |
| PublicationTitle | Journal of computational chemistry |
| PublicationTitleAlternate | J. Comput. Chem |
| PublicationYear | 2006 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
| References | Kasemo, B. Surf Sci 2002, 500, 656. Venclovas, È;Zemla, A.;Fidelis, K.;Moult, J. Proteins 2003, 53, 585. (c) Argos, P.;Dandeker, T. In Protein Structure by Distance Analysis; Bohr, H.; Brunak, S., Eds.; IOS Press Amsterdam, 1994, p. 315 Hendlich, M.;Lacker, P.;Weitckus, S.;Floeckner, H.;Froschauer, R.;Gottsbacher, K.;Casari, G.;Sippl, M. J. J Mol Biol 1990, 216, 167. Osguthorpe, D. J. Curr Opin Struct Biol 2000, 10, 146. (d) Dandekar, T.;Argos, P. Int J Biol Macromol 1996, 18, 1 Radcliffe, N. J. In Parallel Problem Solving from Nature 2 (PPSN-II); Männer, R.; Manderick, B., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1992, p. 259. (c) Pedersen, J. T.;Moult, J. J Mol Biol 1997, 269, 240. Jiang, T.;Cui, Q.;Shi, G.;Ma, S. J Chem Phys 2003, 119, 4592. Baltzer, L. Top Curr Chem 1999, 202, 39. Le Grand, S. M.;Merz, K. M.,Jr. Mol Sim 1994, 13, 299. (a) Sun, S. Protein Sci 1993, 2, 762 Pillardy, A.;Czaplewski, C.;Liwo, A.;Lee, J.;Ripoll, D. R.;Kazmierkiewicz, R.;Oldziej, S.;Wedemeyer, W. J.;Gibson, K. D.;Arnautova, Y. A.;Saunders, J.;Ye, Y. J.;Scheraga, H. A. Proc Natl Acad Sci USA 2001, 98, 2329. Rogers, A.;Prügel-Bennett, A. IEEE Trans Evolut Comp 1999, 3, 298. Weiner, S. J.;Kollman, P. A.;Nguyen, D. T.;Case, D. A. J Comp Chem 1986, 7, 230. Garduño-Juárez, R.;Morales, L. B. J Biomol Struct Dyn 2003, 21, 65. Ahn, C. W.;Ramakhrishna, R. S. IEEE Trans Evol Comput 2002, 6, 566. Jones, D. T.;Thornton, J. M. J Comput Aided Mol Design 1993, 7, 439. Goldberg, D. E.;Deb, K. In Foundations of Genetic Algorithms (FGA); Rawlins, G. J. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 69. Némethy, G.;Pottle, M. S.;Scheraga, H. A. J Phys Chem 1983, 87, 1883. Dimopoulos, C.;Zalzala, A. M. S. IEEE Trans Evolut Comput 2000, 4, 93. Caplan, M. R.;Lauffenburger, D. A. Ind Eng Chem Res 2002, 41, 403. Gray, J. J. Curr Opin Struct Biol 2004, 14, 110. Betz, S. F.;Baxter, S. M.;Fetrow, J. S. Drug Discov Today 2002, 7, 865. Rogers, A.;Prügel-Bennett, A. In Fundamentals of Genetic Algorithms 5 (FGA-5); Banzhaf, W.; Reeves, C., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 1998, p. 57. Beasley, D.;Bull, D. R.;Martin, R. R. J Comput 1993, 15, 170. Le Grand, S. M.;Merz, K. M.,Jr. J Global Opt 1993, 3, 49. Jones, D. T.;Taylor, W. R.;Thornton, J. M. Nature 1992, 358, 86. Androulakis, I. P.;Maranas, C. D.;Floudas, C. A. J Global Opt 1997, 11, 1. Liepins, G. E.;Vose, M. D. J Exp Theor Artif Intell 1990, 2, 101. Floudas, C. A.;Klepeis, J. L.;Pardalos, P. M. Discrete Math Theor Comput Sci 2000, 47, 141. Doniach, S.;Eastman, P. Curr Opin Struct Biol 1999, 9, 157. Browne, W. J.;North, A. C. T.;Phillips, D. C.;Brew, K.;Vanman, T. C.;Hill, R. L. J Mol Biol 1969, 42, 65. Press, W. H.;Teukolsky, S. A.;Vetterling, W. T.;Flannery, B. P. Numerical Recipes in C; Cambridge University Press: Cambridge, UK, 1995, 2nd ed. Hubbard, R. E. Curr Opin Biotechnol 1997, 8, 696. Gunn, J. R. J Chem Phys 1997, 106, 4270. Fogel, D. B.;Atmar, J. W. Biol Cybern 1990, 63, 111. Davis, L. Handbook of Genetic Algorithms; Van Nostrand Reinhold, New York, 1991. (f) Dandekar, T.;Argos, P. Protein Eng 1997, 10, 877 Saunders, J. A.;Scheraga, H. A. Biopolymers 2003, 68, 300. Schulze-Kremer, S.;Levin, A. In Advances in Molecular Bioinformatics; Schulze-Kremer, S., Ed.; IOS Press: Amsterdam, 1994, p. 201. Holland, J. H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI, 1975. Goldberg, D. E.;Korb, B.;Deb, K. Complex Sys 1989, 3, 493. Wright, A. W. In Foundations of Genetic Algorithms (FGA); Rawlins, G. J. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 205. Lee, J.;Liwo, A.;Ripoll, D. R.;Pillardy, J.;Saunders, J. A.;Gibson, K. D.; Scheraga, H. A. Int J Quantum Chem 2000, 77, 90. Maggio, E. T.;Ramnarayan, K. Trends Biotechnol 2001, 19, 266. Bowie, J. U.;Eisenberg, D. Proc Natl Acad Sci USA 1994, 91, 4436. Davis, A. M.;Teague, S. J.;Kleywegt, G. J. Angew Chem Int Ed 2003, 42, 2718. Lee, J.;Scheraga, H. A.;Rackovsky, S. J Comp Chem 1997, 18, 1222. Davis, L. In Handbook of Genetic Algorithms; Davis, L., Ed.; Van Nostrand Reinhold: New York, 1991, p. 62. Cornell, W. D.; Cieplak, P.;Bayly, C. I.;Gould, I. R.;Merz, K. M.; Ferguson, D. M.;Spellmeyer, D. C.;Fox, T.;Caldwell, J. W.;Kollman, P. A. J Am Chem Soc 1995, 117, 5179. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer-Verlag: Berlin, 1999, 3rd ed. Unger, R.;Moult, J. In Computer Aided Innovation of Materials II; Doyama, M.; Kihara, J.; Tanaka, M.; Yamamoto, R., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1993, p. 1283. Park, C.;Goddard, W. A. J Phys Chem B 2000, 104, 7784. Schulze-Kremer, S. In Parallel Problem Solving from Nature 2 (PPSN-II). Männer, R.; Manderick, B., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1992, p. 391. Dewar, M.;Zoebisch, E.;Healy, E.;Stewart, J. J Am Chem Soc 1985, 107, 3902. Werten, P. J. L.;Rémigy, H. W.;de Groot, B. L.;Fotiadis, D.;Philippsen, A.;Stahlberg, H.;Grubmüller, H.;Engel, A. FEBS Lett 2002, 529, 65. Khimasia, M. N.;Coveney, P. V. Mol Sim 1997, 19, 205. Unger, R.;Moult, J. Bull Math Biol 1993, 55, 1183. Hart, W. E.;Istrail, S. J Comput Biol 1997, 4, 1. (b) Pedersen, J. T.;Moult, J. Proteins 1997, Suppl 1, 179 Spears, W.W.;de Jong, K. A. In Foundations of Genetic Algorithms (FGA); Rawlins, J. G. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 301. Del Carpio, C. A. J Chem Inf Comput Sci 1996, 36, 258. Lee, J.;Liwo, A.;Scheraga, H. A. Proc Natl Acad Sci USA 1999, 96, 2025. Chakraborty, U. K.;Janikow, C. Z. Inform Sci 2003, 156, 253. Bowie, J. U.;Lüthy, R.;Eisenberg, D. Science 1991, 253, 164. Jin, A. Y.;Leung, F. Y.;Weaver, D. F. J Comp Chem 1999, 20, 1329. (h) König, R.;Dandekar, T. J Mol Model 1999, 5, 317. Bertsch, R. A.;Vaidehi, N.;Chan, S. I.;Goddard, W. A. Proteins 1998, 33, 343. Czaplewski, C.;Liwo, A.;Pillardy, J.;Ołdziej, S.;Scheraga, H. A. Polymer 2004, 45, 677. Martí-Renom, M. A.;Stuart, A. C.;Fiser, A.;Sánchez, R.;Melo, F.;Šali, A. Annu Rev Biophys Biomol Struct 2000, 29, 291. Whitley, D.;Barbulescu, L.;Watson, J. P. In Fundamentals of Genetic Algorithms 6 (FGA-6); Martin, W. N.; Spears, W. M., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 2001, p. 295. Vasconcelos, J. A.;Ramírez, J. A.;Takahashi, R. H. C.;Saldanha, R. R. IEEE Trans Magnet 2001, 37, 3414. Sánchez, R.;Šali, A. Curr Opin Struct Biol 1997, 7, 206. (a) Pedersen, J. T.;Moult, J. Proteins 1995, 23, 454 Goldberg, D. E.;Rudnick, M. Complex Sys 1991, 5, 265 Brooks, B. R.;Bruccoleri, R. E.;Olafson, B. D.;States, D. J.;Swaminathan, S.;Karplus, M. J Comp Chem 1983, 4, 187. Deb, K.;Agarwal, S. In Fundamentals of Genetic Algorithms 5 (FGA-5); Banzhaf, W.; Reeves, C., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 1998, p. 265. (a) Dandekar, T.;Argos, P. Protein Eng 1992, 5, 637 (g) Dandekar, T.;Du, F. J Mol Model 1999, 5, 78 Johnson, M. S.;Srinivasan, N.;Sowdhamini, R.;Blundell, T. L. Crit Rev Biochem Mol Biol 1994, 29, 1. Ripoll, D. R.;Scheraga, H. A. Biopolymers 1988, 27, 1283. Grefenstette, J. J. IEEE Trans Sys Man Cybernet 1986, 16, 122. Goldberg, D. E. Genetic Algorithms; Addison Wesley Longman: Reading, MA, 1989. (e) Dandekar, T.;Argos, P. J Mol Biol 1996, 256, 645 Neumaier, A. SIAM Rev 1997, 39, 407. Fraenkel, A. S. Bull Math Biol 1993, 55, 1199. Berger, B.;Leighton, T. J Comput Biol 1998, 5, 27. (b) Dandekar, T.;Argos, P. J Mol Biol 1994, 236, 844 Liang, F.;Wong, W. H. J Chem Phys 2001, 115, 3374. Schwefel, H.-P. Numerical Optimization of Computer Models; Wiley: Chichester, 1981. (c) Sun, S.;Thomas, P. D.;Dill, K. A. Protein Eng 1995, 8, 769. Cui, Y.;Chen, R. S.;Wong, W. H. Proteins 1998, 31, 247. De Jong, K. A.;Sarma, J. In Fundamentals of Genetic Algorithms 2 (FGA-2); Whitley, L. D., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1993, p. 19. Unger, R.;Moult, J. J Mol Biol 1993, 231, 75. Ngo, J. T.;Marks, J. Protein Eng 1992, 5, 313. Hansmann, U. H. E.;Okamoto, Y. Curr Opin Struct Biol 1999, 9, 177. Lee, J.; Scheraga, H. A.;Rackovsky, S. Biopolymers 1998, 46, 103. Smith, J.;Vavak, F. In Fundamentals of Genetic Algorithms 5 (FGA-5); Banzhaf, W.; Reeves, C., Ed.; Morgan Kaufmann Publishers: San Francisco, CA, 1999, p. 219. (b) Sun, S. Biophys J 1995, 69, 340 Syswerda, G. In Foundations of Genetic Algorithms (FGA); Rawlins, G. J. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 94. Herrmann, F.;Suhai, S. J Comp Chem 1995, 16, 1434. 1993; 7 2003; 119 2000; 47 2000; 4 1983; 4 1975 1999; 202 1994; 29 1996; 36 1997; 4 2003; 156 2003; 53 1993; 3 1992 1994 1994 1996 1996 1997 1999 1999; 5 236 18 256 10 5 5 1998; 1498 1997; 7 1997; 8 1998; 46 1997; 106 1990; 216 2002; 41 2001 1986; 7 1997; 11 2000; 10 1969; 42 2001; 19 1992; 358 1997; 19 1997; 18 2002; 500 1985 1999; 96 1981 1994; 866 2003; 42 1989 1992; 5 2001; 98 1988 1991; 253 1989; 3 2003; 2687 2000; 29 2003; 2724 1991; 496 2002; 2439 1995; 16 2002; 6 2002; 7 2004; 45 1998 1995; 117 1986; 16 1995 1994 1999; 20 1993 1999; 3 1992 1985; 107 1991 2002 1993 1995 1995; 2 69 8 1999; 9 1999 1991; 5 1993; 15 1990; 63 1990; 2 2000; 104 2004; 14 1993; 55 2000; 77 1988; 27 2003; 68 1983; 87 1997; 39 1994; 13 2001; 37 2002; 529 1995 1997 1997; 23 269 1998; 1363 1994; 91 1998; 5 1998; 31 2001; 115 1993; 231 2003; 21 1998; 33 e_1_2_6_114_2 e_1_2_6_53_2 De Jong K. A. (e_1_2_6_107_2) 1991 e_1_2_6_118_2 e_1_2_6_91_2 Smith J. (e_1_2_6_115_2) 1999 e_1_2_6_133_2 e_1_2_6_19_2 Bindewald E. (e_1_2_6_46_2) 1998 e_1_2_6_11_2 e_1_2_6_76_2 Thierens D. (e_1_2_6_124_2) 1994 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_99_2 e_1_2_6_102_2 e_1_2_6_125_2 e_1_2_6_83_2 e_1_2_6_64_2 e_1_2_6_41_3 e_1_2_6_106_2 e_1_2_6_129_2 e_1_2_6_41_2 e_1_2_6_60_2 Spears W.W. (e_1_2_6_128_2) 1991 e_1_2_6_121_2 Cotta C. (e_1_2_6_72_2) 2003 Rogers A. (e_1_2_6_111_2) 1998 e_1_2_6_9_2 Goldberg D. E. (e_1_2_6_31_2) 1989 Michalewicz Z. (e_1_2_6_34_2) 1999 Piccolboni A. (e_1_2_6_88_2) 1998 e_1_2_6_5_2 e_1_2_6_22_2 e_1_2_6_49_2 Radcliffe N. J. (e_1_2_6_87_2) 1992 e_1_2_6_41_4 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_113_2 e_1_2_6_117_2 Whitley D. (e_1_2_6_92_2) 2001 e_1_2_6_132_2 Rothlauf R. (e_1_2_6_89_2) 2002 Schwefel H.‐P. (e_1_2_6_120_2) 1981 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_2 Argos P. (e_1_2_6_36_4) 1994 Goldberg D. E. (e_1_2_6_119_2) 1989; 3 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_42_2 e_1_2_6_105_2 e_1_2_6_80_2 e_1_2_6_109_2 De Jong K. A. (e_1_2_6_112_2) 1993 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_27_2 e_1_2_6_51_2 e_1_2_6_97_2 e_1_2_6_74_2 e_1_2_6_116_2 e_1_2_6_93_2 e_1_2_6_70_2 Zhang J. (e_1_2_6_100_2) 2003 Goldberg D. E. (e_1_2_6_101_2) 1991; 5 e_1_2_6_36_9 e_1_2_6_36_8 e_1_2_6_36_7 e_1_2_6_36_6 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_36_5 e_1_2_6_17_2 e_1_2_6_55_2 Press W. H. (e_1_2_6_131_2) 1995 e_1_2_6_36_3 e_1_2_6_36_2 e_1_2_6_78_2 e_1_2_6_62_2 Syswerda G. (e_1_2_6_110_2) 1991 e_1_2_6_104_2 e_1_2_6_127_2 e_1_2_6_20_2 Schulze–Kremer S. (e_1_2_6_38_2) 1994 e_1_2_6_108_2 Beasley D. (e_1_2_6_33_2) 1993; 15 e_1_2_6_81_2 Wright A. W. (e_1_2_6_95_2) 1991 Davis L. (e_1_2_6_96_2) 1991 e_1_2_6_123_2 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 Schulze–Kremer S. (e_1_2_6_48_2) 1992 Goldberg D. E. (e_1_2_6_122_2) 1991 Holland J. H. (e_1_2_6_30_2) 1975 e_1_2_6_52_2 e_1_2_6_75_2 e_1_2_6_94_2 e_1_2_6_71_2 e_1_2_6_90_2 e_1_2_6_130_2 e_1_2_6_134_2 e_1_2_6_18_2 Deb K. (e_1_2_6_85_2) 1998 Davis L. (e_1_2_6_32_2) 1991 e_1_2_6_10_2 e_1_2_6_37_4 e_1_2_6_37_3 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_79_2 e_1_2_6_98_2 e_1_2_6_103_2 e_1_2_6_63_2 e_1_2_6_86_2 e_1_2_6_126_2 e_1_2_6_40_2 e_1_2_6_82_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 Unger R. (e_1_2_6_65_2) 1993 e_1_2_6_21_2 e_1_2_6_44_2 e_1_2_6_67_2 e_1_2_6_25_2 |
| References_xml | – reference: Jin, A. Y.;Leung, F. Y.;Weaver, D. F. J Comp Chem 1999, 20, 1329. – reference: (b) Dandekar, T.;Argos, P. J Mol Biol 1994, 236, 844; – reference: (c) Sun, S.;Thomas, P. D.;Dill, K. A. Protein Eng 1995, 8, 769. – reference: Radcliffe, N. J. In Parallel Problem Solving from Nature 2 (PPSN-II); Männer, R.; Manderick, B., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1992, p. 259. – reference: Lee, J.;Liwo, A.;Ripoll, D. R.;Pillardy, J.;Saunders, J. A.;Gibson, K. D.; Scheraga, H. A. Int J Quantum Chem 2000, 77, 90. – reference: (a) Dandekar, T.;Argos, P. Protein Eng 1992, 5, 637; – reference: Weiner, S. J.;Kollman, P. A.;Nguyen, D. T.;Case, D. A. J Comp Chem 1986, 7, 230. – reference: Ripoll, D. R.;Scheraga, H. A. Biopolymers 1988, 27, 1283. – reference: (e) Dandekar, T.;Argos, P. J Mol Biol 1996, 256, 645; – reference: Dewar, M.;Zoebisch, E.;Healy, E.;Stewart, J. J Am Chem Soc 1985, 107, 3902. – reference: Unger, R.;Moult, J. In Computer Aided Innovation of Materials II; Doyama, M.; Kihara, J.; Tanaka, M.; Yamamoto, R., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1993, p. 1283. – reference: (d) Dandekar, T.;Argos, P. Int J Biol Macromol 1996, 18, 1; – reference: Schwefel, H.-P. Numerical Optimization of Computer Models; Wiley: Chichester, 1981. – reference: Werten, P. J. L.;Rémigy, H. W.;de Groot, B. L.;Fotiadis, D.;Philippsen, A.;Stahlberg, H.;Grubmüller, H.;Engel, A. FEBS Lett 2002, 529, 65. – reference: Herrmann, F.;Suhai, S. J Comp Chem 1995, 16, 1434. – reference: Bertsch, R. A.;Vaidehi, N.;Chan, S. I.;Goddard, W. A. Proteins 1998, 33, 343. – reference: Schulze-Kremer, S. In Parallel Problem Solving from Nature 2 (PPSN-II). Männer, R.; Manderick, B., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1992, p. 391. – reference: Garduño-Juárez, R.;Morales, L. B. J Biomol Struct Dyn 2003, 21, 65. – reference: Browne, W. J.;North, A. C. T.;Phillips, D. C.;Brew, K.;Vanman, T. C.;Hill, R. L. J Mol Biol 1969, 42, 65. – reference: Brooks, B. R.;Bruccoleri, R. E.;Olafson, B. D.;States, D. J.;Swaminathan, S.;Karplus, M. J Comp Chem 1983, 4, 187. – reference: Doniach, S.;Eastman, P. Curr Opin Struct Biol 1999, 9, 157. – reference: Sánchez, R.;Šali, A. Curr Opin Struct Biol 1997, 7, 206. – reference: Le Grand, S. M.;Merz, K. M.,Jr. Mol Sim 1994, 13, 299. – reference: Ahn, C. W.;Ramakhrishna, R. S. IEEE Trans Evol Comput 2002, 6, 566. – reference: Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer-Verlag: Berlin, 1999, 3rd ed. – reference: Venclovas, È;Zemla, A.;Fidelis, K.;Moult, J. Proteins 2003, 53, 585. – reference: (f) Dandekar, T.;Argos, P. Protein Eng 1997, 10, 877; – reference: Kasemo, B. Surf Sci 2002, 500, 656. – reference: (c) Argos, P.;Dandeker, T. In Protein Structure by Distance Analysis; Bohr, H.; Brunak, S., Eds.; IOS Press Amsterdam, 1994, p. 315; – reference: Whitley, D.;Barbulescu, L.;Watson, J. P. In Fundamentals of Genetic Algorithms 6 (FGA-6); Martin, W. N.; Spears, W. M., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 2001, p. 295. – reference: Berger, B.;Leighton, T. J Comput Biol 1998, 5, 27. – reference: Liang, F.;Wong, W. H. J Chem Phys 2001, 115, 3374. – reference: Spears, W.W.;de Jong, K. A. In Foundations of Genetic Algorithms (FGA); Rawlins, J. G. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 301. – reference: Davis, L. Handbook of Genetic Algorithms; Van Nostrand Reinhold, New York, 1991. – reference: Pillardy, A.;Czaplewski, C.;Liwo, A.;Lee, J.;Ripoll, D. R.;Kazmierkiewicz, R.;Oldziej, S.;Wedemeyer, W. J.;Gibson, K. D.;Arnautova, Y. A.;Saunders, J.;Ye, Y. J.;Scheraga, H. A. Proc Natl Acad Sci USA 2001, 98, 2329. – reference: (h) König, R.;Dandekar, T. J Mol Model 1999, 5, 317. – reference: Davis, L. In Handbook of Genetic Algorithms; Davis, L., Ed.; Van Nostrand Reinhold: New York, 1991, p. 62. – reference: Khimasia, M. N.;Coveney, P. V. Mol Sim 1997, 19, 205. – reference: Holland, J. H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI, 1975. – reference: Wright, A. W. In Foundations of Genetic Algorithms (FGA); Rawlins, G. J. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 205. – reference: Floudas, C. A.;Klepeis, J. L.;Pardalos, P. M. Discrete Math Theor Comput Sci 2000, 47, 141. – reference: (b) Pedersen, J. T.;Moult, J. Proteins 1997, Suppl 1, 179; – reference: Park, C.;Goddard, W. A. J Phys Chem B 2000, 104, 7784. – reference: Grefenstette, J. J. IEEE Trans Sys Man Cybernet 1986, 16, 122. – reference: Fogel, D. B.;Atmar, J. W. Biol Cybern 1990, 63, 111. – reference: Saunders, J. A.;Scheraga, H. A. Biopolymers 2003, 68, 300. – reference: Hansmann, U. H. E.;Okamoto, Y. Curr Opin Struct Biol 1999, 9, 177. – reference: (b) Sun, S. Biophys J 1995, 69, 340; – reference: Le Grand, S. M.;Merz, K. M.,Jr. J Global Opt 1993, 3, 49. – reference: Betz, S. F.;Baxter, S. M.;Fetrow, J. S. Drug Discov Today 2002, 7, 865. – reference: Gray, J. J. Curr Opin Struct Biol 2004, 14, 110. – reference: Goldberg, D. E.;Rudnick, M. Complex Sys 1991, 5, 265 – reference: Lee, J.;Liwo, A.;Scheraga, H. A. Proc Natl Acad Sci USA 1999, 96, 2025. – reference: Vasconcelos, J. A.;Ramírez, J. A.;Takahashi, R. H. C.;Saldanha, R. R. IEEE Trans Magnet 2001, 37, 3414. – reference: Rogers, A.;Prügel-Bennett, A. IEEE Trans Evolut Comp 1999, 3, 298. – reference: Gunn, J. R. J Chem Phys 1997, 106, 4270. – reference: (c) Pedersen, J. T.;Moult, J. J Mol Biol 1997, 269, 240. – reference: Goldberg, D. E. Genetic Algorithms; Addison Wesley Longman: Reading, MA, 1989. – reference: Liepins, G. E.;Vose, M. D. J Exp Theor Artif Intell 1990, 2, 101. – reference: Smith, J.;Vavak, F. In Fundamentals of Genetic Algorithms 5 (FGA-5); Banzhaf, W.; Reeves, C., Ed.; Morgan Kaufmann Publishers: San Francisco, CA, 1999, p. 219. – reference: (g) Dandekar, T.;Du, F. J Mol Model 1999, 5, 78; – reference: Hubbard, R. E. Curr Opin Biotechnol 1997, 8, 696. – reference: Jiang, T.;Cui, Q.;Shi, G.;Ma, S. J Chem Phys 2003, 119, 4592. – reference: Schulze-Kremer, S.;Levin, A. In Advances in Molecular Bioinformatics; Schulze-Kremer, S., Ed.; IOS Press: Amsterdam, 1994, p. 201. – reference: Osguthorpe, D. J. Curr Opin Struct Biol 2000, 10, 146. – reference: Johnson, M. S.;Srinivasan, N.;Sowdhamini, R.;Blundell, T. L. Crit Rev Biochem Mol Biol 1994, 29, 1. – reference: Jones, D. T.;Taylor, W. R.;Thornton, J. M. Nature 1992, 358, 86. – reference: Androulakis, I. P.;Maranas, C. D.;Floudas, C. A. J Global Opt 1997, 11, 1. – reference: Unger, R.;Moult, J. J Mol Biol 1993, 231, 75. – reference: Neumaier, A. SIAM Rev 1997, 39, 407. – reference: Czaplewski, C.;Liwo, A.;Pillardy, J.;Ołdziej, S.;Scheraga, H. A. Polymer 2004, 45, 677. – reference: Cui, Y.;Chen, R. S.;Wong, W. H. Proteins 1998, 31, 247. – reference: Némethy, G.;Pottle, M. S.;Scheraga, H. A. J Phys Chem 1983, 87, 1883. – reference: Press, W. H.;Teukolsky, S. A.;Vetterling, W. T.;Flannery, B. P. Numerical Recipes in C; Cambridge University Press: Cambridge, UK, 1995, 2nd ed. – reference: Bowie, J. U.;Lüthy, R.;Eisenberg, D. Science 1991, 253, 164. – reference: (a) Sun, S. Protein Sci 1993, 2, 762; – reference: Beasley, D.;Bull, D. R.;Martin, R. R. J Comput 1993, 15, 170. – reference: Goldberg, D. E.;Korb, B.;Deb, K. Complex Sys 1989, 3, 493. – reference: Syswerda, G. In Foundations of Genetic Algorithms (FGA); Rawlins, G. J. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 94. – reference: Martí-Renom, M. A.;Stuart, A. C.;Fiser, A.;Sánchez, R.;Melo, F.;Šali, A. Annu Rev Biophys Biomol Struct 2000, 29, 291. – reference: Hendlich, M.;Lacker, P.;Weitckus, S.;Floeckner, H.;Froschauer, R.;Gottsbacher, K.;Casari, G.;Sippl, M. J. J Mol Biol 1990, 216, 167. – reference: Goldberg, D. E.;Deb, K. In Foundations of Genetic Algorithms (FGA); Rawlins, G. J. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 69. – reference: Chakraborty, U. K.;Janikow, C. Z. Inform Sci 2003, 156, 253. – reference: Hart, W. E.;Istrail, S. J Comput Biol 1997, 4, 1. – reference: Ngo, J. T.;Marks, J. Protein Eng 1992, 5, 313. – reference: Deb, K.;Agarwal, S. In Fundamentals of Genetic Algorithms 5 (FGA-5); Banzhaf, W.; Reeves, C., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 1998, p. 265. – reference: Maggio, E. T.;Ramnarayan, K. Trends Biotechnol 2001, 19, 266. – reference: Bowie, J. U.;Eisenberg, D. Proc Natl Acad Sci USA 1994, 91, 4436. – reference: Rogers, A.;Prügel-Bennett, A. In Fundamentals of Genetic Algorithms 5 (FGA-5); Banzhaf, W.; Reeves, C., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 1998, p. 57. – reference: Dimopoulos, C.;Zalzala, A. M. S. IEEE Trans Evolut Comput 2000, 4, 93. – reference: Lee, J.;Scheraga, H. A.;Rackovsky, S. J Comp Chem 1997, 18, 1222. – reference: Lee, J.; Scheraga, H. A.;Rackovsky, S. Biopolymers 1998, 46, 103. – reference: Del Carpio, C. A. J Chem Inf Comput Sci 1996, 36, 258. – reference: Cornell, W. D.; Cieplak, P.;Bayly, C. I.;Gould, I. R.;Merz, K. M.; Ferguson, D. M.;Spellmeyer, D. C.;Fox, T.;Caldwell, J. W.;Kollman, P. A. J Am Chem Soc 1995, 117, 5179. – reference: Caplan, M. R.;Lauffenburger, D. A. Ind Eng Chem Res 2002, 41, 403. – reference: Jones, D. T.;Thornton, J. M. J Comput Aided Mol Design 1993, 7, 439. – reference: Davis, A. M.;Teague, S. J.;Kleywegt, G. J. Angew Chem Int Ed 2003, 42, 2718. – reference: Baltzer, L. Top Curr Chem 1999, 202, 39. – reference: De Jong, K. A.;Sarma, J. In Fundamentals of Genetic Algorithms 2 (FGA-2); Whitley, L. D., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1993, p. 19. – reference: (a) Pedersen, J. T.;Moult, J. Proteins 1995, 23, 454; – reference: Unger, R.;Moult, J. Bull Math Biol 1993, 55, 1183. – reference: Fraenkel, A. S. Bull Math Biol 1993, 55, 1199. – volume: 29 start-page: 1 year: 1994 publication-title: Crit Rev Biochem Mol Biol – volume: 2 69 8 start-page: 762 340 769 year: 1993 1995 1995 publication-title: Protein Sci Biophys J Protein Eng – volume: 77 start-page: 90 year: 2000 publication-title: Int J Quantum Chem – volume: 42 start-page: 2718 year: 2003 publication-title: Angew Chem Int Ed – start-page: 9 year: 1995 – year: 1981 – volume: 104 start-page: 7784 year: 2000 publication-title: J Phys Chem B – start-page: 2 year: 1989 – volume: 91 start-page: 4436 year: 1994 publication-title: Proc Natl Acad Sci USA – volume: 19 start-page: 266 year: 2001 publication-title: Trends Biotechnol – year: 1989 – start-page: 51 year: 1989 – start-page: 153 year: 1988 – year: 1975 – start-page: 632 year: 1993 – start-page: 94 year: 1991 – volume: 8 start-page: 696 year: 1997 publication-title: Curr Opin Biotechnol – volume: 9 start-page: 157 year: 1999 publication-title: Curr Opin Struct Biol – year: 1998 – start-page: 62 year: 1991 – volume: 216 start-page: 167 year: 1990 publication-title: J Mol Biol – volume: 10 start-page: 146 year: 2000 publication-title: Curr Opin Struct Biol – start-page: 118 year: 1988 – volume: 87 start-page: 1883 year: 1983 publication-title: J Phys Chem – start-page: 142 year: 1989 – volume: 866 start-page: 119 year: 1994 – start-page: 104 year: 1989 – volume: 31 start-page: 247 year: 1998 publication-title: Proteins – volume: 4 start-page: 187 year: 1983 publication-title: J Comp Chem – volume: 46 start-page: 103 year: 1998 publication-title: Biopolymers – start-page: 1596 year: 1999 – start-page: 65 year: 1995 – volume: 53 start-page: 585 year: 2003 publication-title: Proteins – volume: 9 start-page: 177 year: 1999 publication-title: Curr Opin Struct Biol – start-page: 1283 year: 1993 – start-page: 259 year: 1992 – start-page: 230 year: 1991 – start-page: 92 year: 1991 – volume: 55 start-page: 1199 year: 1993 publication-title: Bull Math Biol – start-page: 295 year: 2001 – start-page: 1367 year: 2001 – start-page: 208 year: 1998 – volume: 500 start-page: 656 year: 2002 publication-title: Surf Sci – volume: 13 start-page: 299 year: 1994 publication-title: Mol Sim – start-page: 31 year: 1991 – start-page: 375 year: 2001 – volume: 115 start-page: 3374 year: 2001 publication-title: J Chem Phys – volume: 117 start-page: 5179 year: 1995 publication-title: J Am Chem Soc – volume: 55 start-page: 1183 year: 1993 publication-title: Bull Math Biol – volume: 23 269 start-page: 454 179 240 issue: Suppl 1 year: 1995 1997 1997 publication-title: Proteins Proteins J Mol Biol – volume: 21 start-page: 65 year: 2003 publication-title: J Biomol Struct Dyn – volume: 1498 start-page: 959 year: 1998 – volume: 1363 start-page: 123 year: 1998 – start-page: 19 year: 1993 – year: 1995 – volume: 63 start-page: 111 year: 1990 publication-title: Biol Cybern – volume: 119 start-page: 4592 year: 2003 publication-title: J Chem Phys – start-page: 78 year: 1998 – volume: 529 start-page: 65 year: 2002 publication-title: FEBS Lett – start-page: 61 year: 1991 – volume: 3 start-page: 298 year: 1999 publication-title: IEEE Trans Evolut Comp – start-page: 201 year: 1994 – volume: 4 start-page: 93 year: 2000 publication-title: IEEE Trans Evolut Comput – volume: 96 start-page: 2025 year: 1999 publication-title: Proc Natl Acad Sci USA – year: 2001 – volume: 16 start-page: 122 year: 1986 publication-title: IEEE Trans Sys Man Cybernet – volume: 2439 start-page: 99 year: 2002 – volume: 7 start-page: 865 year: 2002 publication-title: Drug Discov Today – volume: 358 start-page: 86 year: 1992 publication-title: Nature – volume: 7 start-page: 439 year: 1993 publication-title: J Comput Aided Mol Design – volume: 39 start-page: 407 year: 1997 publication-title: SIAM Rev – volume: 42 start-page: 65 year: 1969 publication-title: J Mol Biol – start-page: 574 year: 1995 – volume: 14 start-page: 110 year: 2004 publication-title: Curr Opin Struct Biol – volume: 68 start-page: 300 year: 2003 publication-title: Biopolymers – start-page: 101 year: 1985 – volume: 2724 start-page: 1624 year: 2003 – volume: 3 start-page: 493 year: 1989 publication-title: Complex Sys – volume: 37 start-page: 3414 year: 2001 publication-title: IEEE Trans Magnet – start-page: 219 year: 1999 – volume: 107 start-page: 3902 year: 1985 publication-title: J Am Chem Soc – volume: 231 start-page: 75 year: 1993 publication-title: J Mol Biol – start-page: 391 year: 1992 – volume: 20 start-page: 1329 year: 1999 publication-title: J Comp Chem – volume: 156 start-page: 253 year: 2003 publication-title: Inform Sci – volume: 2687 start-page: 321 year: 2003 – start-page: 301 year: 1991 – start-page: 495 year: 2002 – volume: 16 start-page: 1434 year: 1995 publication-title: J Comp Chem – start-page: 336 year: 2001 – volume: 2 start-page: 101 year: 1990 publication-title: J Exp Theor Artif Intell – start-page: 726 year: 1999 – start-page: 69 year: 1991 – volume: 33 start-page: 343 year: 1998 publication-title: Proteins – volume: 6 start-page: 566 year: 2002 publication-title: IEEE Trans Evol Comput – volume: 45 start-page: 677 year: 2004 publication-title: Polymer – start-page: 86 year: 1989 – volume: 27 start-page: 1283 year: 1988 publication-title: Biopolymers – start-page: 265 year: 1998 – start-page: 205 year: 1991 – volume: 47 start-page: 141 year: 2000 publication-title: Discrete Math Theor Comput Sci – volume: 5 236 18 256 10 5 5 start-page: 637 844 315 1 645 877 78 317 year: 1992 1994 1994 1996 1996 1997 1999 1999 publication-title: Protein Eng J Mol Biol Int J Biol Macromol J Mol Biol Protein Eng J Mol Model J Mol Model – volume: 98 start-page: 2329 year: 2001 publication-title: Proc Natl Acad Sci USA – start-page: 359 year: 1998 – volume: 5 start-page: 313 year: 1992 publication-title: Protein Eng – volume: 4 start-page: 1 year: 1997 publication-title: J Comput Biol – volume: 7 start-page: 230 year: 1986 publication-title: J Comp Chem – volume: 18 start-page: 1222 year: 1997 publication-title: J Comp Chem – volume: 3 start-page: 49 year: 1993 publication-title: J Global Opt – start-page: 116 year: 1989 – volume: 29 start-page: 291 year: 2000 publication-title: Annu Rev Biophys Biomol Struct – volume: 202 start-page: 39 year: 1999 publication-title: Top Curr Chem – start-page: 10 year: 1989 – volume: 5 start-page: 27 year: 1998 publication-title: J Comput Biol – volume: 253 start-page: 164 year: 1991 publication-title: Science – volume: 11 start-page: 1 year: 1997 publication-title: J Global Opt – volume: 36 start-page: 258 year: 1996 publication-title: J Chem Inf Comput Sci – volume: 106 start-page: 4270 year: 1997 publication-title: J Chem Phys – volume: 15 start-page: 170 year: 1993 publication-title: J Comput – volume: 5 start-page: 265 year: 1991 publication-title: Complex Sys – year: 1991 – volume: 496 start-page: 38 year: 1991 – volume: 7 start-page: 206 year: 1997 publication-title: Curr Opin Struct Biol – start-page: 581 year: 1993 – start-page: 57 year: 1998 – volume: 41 start-page: 403 year: 2002 publication-title: Ind Eng Chem Res – year: 1999 – volume: 19 start-page: 205 year: 1997 publication-title: Mol Sim – volume-title: Numerical Recipes in C year: 1995 ident: e_1_2_6_131_2 – ident: e_1_2_6_83_2 – start-page: 391 volume-title: Parallel Problem Solving from Nature 2 (PPSN‐II) year: 1992 ident: e_1_2_6_48_2 – ident: e_1_2_6_27_2 doi: 10.1016/S0959-440X(99)80025-6 – ident: e_1_2_6_105_2 doi: 10.1109/TSMC.1986.289288 – ident: e_1_2_6_61_2 doi: 10.1002/bip.10226 – start-page: 99 year: 2002 ident: e_1_2_6_89_2 doi: 10.1007/3-540-45712-7_10 – ident: e_1_2_6_56_2 doi: 10.1002/(SICI)1096-987X(19970715)18:9<1222::AID-JCC10>3.0.CO;2-7 – ident: e_1_2_6_36_6 doi: 10.1006/jmbi.1996.0115 – ident: e_1_2_6_20_2 doi: 10.1093/protein/5.4.313 – ident: e_1_2_6_84_2 – volume-title: Handbook of Genetic Algorithms year: 1991 ident: e_1_2_6_32_2 – ident: e_1_2_6_106_2 – ident: e_1_2_6_63_2 doi: 10.1063/1.1592796 – start-page: 301 volume-title: Foundations of Genetic Algorithms (FGA) year: 1991 ident: e_1_2_6_128_2 – ident: e_1_2_6_70_2 – start-page: 19 volume-title: Fundamentals of Genetic Algorithms 2 (FGA‐2) year: 1993 ident: e_1_2_6_112_2 – volume: 5 start-page: 265 year: 1991 ident: e_1_2_6_101_2 publication-title: Complex Sys – ident: e_1_2_6_6_2 doi: 10.1016/j.sbi.2003.12.001 – ident: e_1_2_6_79_2 – ident: e_1_2_6_15_2 doi: 10.1126/science.1853201 – ident: e_1_2_6_68_2 – ident: e_1_2_6_74_2 doi: 10.1002/anie.200200539 – ident: e_1_2_6_121_2 – start-page: 205 volume-title: Foundations of Genetic Algorithms (FGA) year: 1991 ident: e_1_2_6_95_2 – ident: e_1_2_6_54_2 doi: 10.1002/jcc.540161112 – ident: e_1_2_6_82_2 – ident: e_1_2_6_98_2 – ident: e_1_2_6_41_3 doi: 10.1002/(SICI)1097-0134(1997)1 <179::AID-PROT23>3.0.CO;2-K – start-page: 315 volume-title: Protein Structure by Distance Analysis year: 1994 ident: e_1_2_6_36_4 – ident: e_1_2_6_71_2 – ident: e_1_2_6_40_2 doi: 10.1080/08927029408021995 – ident: e_1_2_6_58_2 doi: 10.1073/pnas.96.5.2025 – ident: e_1_2_6_73_2 doi: 10.1080/08927029708024151 – ident: e_1_2_6_9_2 doi: 10.1021/ie010149z – ident: e_1_2_6_36_5 doi: 10.1016/0141-8130(95)01036-X – ident: e_1_2_6_97_2 doi: 10.1016/S0020-0255(03)00178-6 – ident: e_1_2_6_108_2 – ident: e_1_2_6_59_2 doi: 10.1002/(SICI)1097-461X(2000)77:1<90::AID-QUA10>3.0.CO;2-L – start-page: 69 volume-title: Foundations of Genetic Algorithms (FGA) year: 1991 ident: e_1_2_6_122_2 – ident: e_1_2_6_77_2 doi: 10.1021/jp0001743 – ident: e_1_2_6_18_2 doi: 10.1002/prot.10530 – ident: e_1_2_6_125_2 – start-page: 219 volume-title: Fundamentals of Genetic Algorithms 5 (FGA‐5) year: 1999 ident: e_1_2_6_115_2 – ident: e_1_2_6_7_2 doi: 10.1016/S0014-5793(02)03290-8 – volume-title: Adaptation in Natural and Artificial Systems year: 1975 ident: e_1_2_6_30_2 – ident: e_1_2_6_109_2 – ident: e_1_2_6_103_2 – ident: e_1_2_6_3_2 doi: 10.1016/S1359-6446(02)02398-X – ident: e_1_2_6_49_2 doi: 10.1002/jcc.540040211 – ident: e_1_2_6_99_2 – ident: e_1_2_6_26_2 doi: 10.1016/S0959-440X(99)80022-0 – ident: e_1_2_6_29_2 doi: 10.1090/dimacs/047/07 – ident: e_1_2_6_39_2 doi: 10.1073/pnas.91.10.4436 – ident: e_1_2_6_45_2 – volume: 3 start-page: 493 year: 1989 ident: e_1_2_6_119_2 publication-title: Complex Sys – ident: e_1_2_6_10_2 doi: 10.1016/0022-2836(69)90487-2 – ident: e_1_2_6_118_2 – start-page: 321 year: 2003 ident: e_1_2_6_72_2 doi: 10.1007/3-540-44869-1_41 – ident: e_1_2_6_134_2 doi: 10.1023/A:1008224308626 – ident: e_1_2_6_67_2 – ident: e_1_2_6_62_2 doi: 10.1063/1.1387478 – volume-title: Genetic Algorithms + Data Structures = Evolution Programs year: 1999 ident: e_1_2_6_34_2 – ident: e_1_2_6_36_9 doi: 10.1007/PL00010719 – start-page: 259 volume-title: Parallel Problem Solving from Nature 2 (PPSN‐II) year: 1992 ident: e_1_2_6_87_2 – start-page: 959 year: 1998 ident: e_1_2_6_46_2 doi: 10.1007/BFb0056937 – ident: e_1_2_6_41_4 doi: 10.1006/jmbi.1997.1010 – ident: e_1_2_6_23_2 doi: 10.1089/cmb.1997.4.1 – ident: e_1_2_6_133_2 doi: 10.1002/(SICI)1096-987X(19970715)18:9<1222::AID-JCC10>3.0.CO;2-7 – ident: e_1_2_6_60_2 doi: 10.1073/pnas.041609598 – ident: e_1_2_6_8_2 doi: 10.1007/3-540-48990-8_2 – ident: e_1_2_6_16_2 doi: 10.1038/358086a0 – ident: e_1_2_6_2_2 doi: 10.1016/S0958-1669(97)80122-X – start-page: 1283 volume-title: Computer Aided Innovation of Materials II year: 1993 ident: e_1_2_6_65_2 – ident: e_1_2_6_11_2 doi: 10.3109/10409239409086797 – ident: e_1_2_6_50_2 doi: 10.1007/BF01100239 – start-page: 57 volume-title: Fundamentals of Genetic Algorithms 5 (FGA‐5) year: 1998 ident: e_1_2_6_111_2 – start-page: 38 year: 1991 ident: e_1_2_6_107_2 doi: 10.1007/BFb0029729 – ident: e_1_2_6_55_2 doi: 10.1021/ja00299a024 – ident: e_1_2_6_129_2 – ident: e_1_2_6_12_2 doi: 10.1016/S0959-440X(97)80027-9 – start-page: 119 year: 1994 ident: e_1_2_6_124_2 doi: 10.1007/3-540-58484-6_256 – ident: e_1_2_6_51_2 doi: 10.1002/jcc.540070216 – ident: e_1_2_6_130_2 – ident: e_1_2_6_5_2 doi: 10.1016/S0039-6028(01)01809-X – ident: e_1_2_6_36_7 doi: 10.1093/protein/10.8.877 – ident: e_1_2_6_132_2 – ident: e_1_2_6_66_2 doi: 10.1006/jmbi.1993.1258 – ident: e_1_2_6_19_2 doi: 10.1016/S0959-440X(00)00067-1 – ident: e_1_2_6_25_2 doi: 10.1016/j.polymer.2003.10.081 – ident: e_1_2_6_104_2 doi: 10.1109/TEVC.2002.804323 – ident: e_1_2_6_52_2 doi: 10.1002/(SICI)1096-987X(199910)20:13<1329::AID-JCC1>3.0.CO;2-H – ident: e_1_2_6_37_4 doi: 10.1093/protein/8.8.769 – ident: e_1_2_6_53_2 doi: 10.1021/j100234a011 – ident: e_1_2_6_90_2 – ident: e_1_2_6_42_2 doi: 10.1021/ci950106r – start-page: 62 volume-title: Handbook of Genetic Algorithms year: 1991 ident: e_1_2_6_96_2 – ident: e_1_2_6_102_2 – ident: e_1_2_6_116_2 – ident: e_1_2_6_37_2 doi: 10.1002/pro.5560020508 – ident: e_1_2_6_93_2 doi: 10.1016/B978-0-934613-64-4.50021-9 – ident: e_1_2_6_24_2 doi: 10.1089/cmb.1998.5.27 – ident: e_1_2_6_37_3 doi: 10.1016/S0006-3495(95)79906-4 – volume: 15 start-page: 170 year: 1993 ident: e_1_2_6_33_2 publication-title: J Comput – ident: e_1_2_6_57_2 doi: 10.1002/(SICI)1097-0282(199808)46:2<103::AID-BIP5>3.0.CO;2-Q – ident: e_1_2_6_127_2 – ident: e_1_2_6_4_2 doi: 10.1016/S0167-7799(01)01666-3 – ident: e_1_2_6_47_2 – ident: e_1_2_6_44_2 doi: 10.1002/(SICI)1097-0134(19980515)31:3<247::AID-PROT2>3.0.CO;2-G – ident: e_1_2_6_117_2 – ident: e_1_2_6_36_2 doi: 10.1093/protein/5.7.637 – ident: e_1_2_6_35_2 doi: 10.1109/4235.850651 – ident: e_1_2_6_113_2 doi: 10.1109/4235.797972 – ident: e_1_2_6_69_2 – ident: e_1_2_6_36_8 doi: 10.1007/s008940050125 – ident: e_1_2_6_43_2 doi: 10.1063/1.473514 – ident: e_1_2_6_17_2 doi: 10.1007/BF02337560 – ident: e_1_2_6_36_3 doi: 10.1006/jmbi.1994.1193 – ident: e_1_2_6_28_2 doi: 10.1137/S0036144594278060 – ident: e_1_2_6_13_2 doi: 10.1146/annurev.biophys.29.1.291 – ident: e_1_2_6_126_2 – ident: e_1_2_6_21_2 doi: 10.1007/BF02460703 – ident: e_1_2_6_81_2 – ident: e_1_2_6_64_2 doi: 10.1080/07391102.2003.10506906 – ident: e_1_2_6_76_2 doi: 10.1002/bip.360270808 – start-page: 123 year: 1998 ident: e_1_2_6_88_2 doi: 10.1007/BFb0026595 – start-page: 295 volume-title: Fundamentals of Genetic Algorithms 6 (FGA‐6) year: 2001 ident: e_1_2_6_92_2 – start-page: 265 volume-title: Fundamentals of Genetic Algorithms 5 (FGA‐5) year: 1998 ident: e_1_2_6_85_2 – volume-title: Numerical Optimization of Computer Models year: 1981 ident: e_1_2_6_120_2 – ident: e_1_2_6_14_2 doi: 10.1016/S0022-2836(05)80068-3 – start-page: 1624 year: 2003 ident: e_1_2_6_100_2 doi: 10.1007/3-540-45110-2_56 – ident: e_1_2_6_114_2 doi: 10.1109/20.952626 – volume-title: Genetic Algorithms year: 1989 ident: e_1_2_6_31_2 – start-page: 201 volume-title: Advances in Molecular Bioinformatics year: 1994 ident: e_1_2_6_38_2 – ident: e_1_2_6_78_2 doi: 10.1021/ja00124a002 – ident: e_1_2_6_86_2 doi: 10.1080/09528139008953717 – ident: e_1_2_6_80_2 doi: 10.1007/BF00203032 – ident: e_1_2_6_41_2 doi: 10.1002/prot.340230319 – ident: e_1_2_6_123_2 – ident: e_1_2_6_75_2 doi: 10.1002/(SICI)1097-0134(19981115)33:3<343::AID-PROT4>3.0.CO;2-B – ident: e_1_2_6_22_2 doi: 10.1016/S0092-8240(05)80170-3 – ident: e_1_2_6_91_2 – ident: e_1_2_6_94_2 – start-page: 94 volume-title: Foundations of Genetic Algorithms (FGA) year: 1991 ident: e_1_2_6_110_2 |
| SSID | ssj0003564 |
| Score | 1.9238287 |
| Snippet | True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for... True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1177 |
| SubjectTerms | Algorithms biomaterials biosensors Chromosomes - genetics Computer Simulation Enkephalin, Methionine - chemistry Enkephalin, Methionine - genetics Enkephalin, Methionine - metabolism Evolution, Molecular genetic algorithm (GA) Genetic algorithms interfaces met-enkephalin Models, Molecular Molecular structure Mutation - genetics Parameter optimization Peptides - chemistry Peptides - genetics Peptides - metabolism polyalanine Probability protein fold Protein Folding Protein Structure, Tertiary protein tertiary structure stochastic optimization Studies |
| Title | Ab initio protein fold prediction using evolutionary algorithms: Influence of design and control parameters on performance |
| URI | https://api.istex.fr/ark:/67375/WNG-HG2B9R23-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.20440 https://www.ncbi.nlm.nih.gov/pubmed/16752367 https://www.proquest.com/docview/222285289 https://www.proquest.com/docview/68065237 |
| Volume | 27 |
| WOSCitedRecordID | wos000238586600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1096-987X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003564 issn: 0192-8651 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_qnaAvfldjtS4i4ktostkku_pUT69VyiGl4r0t-5V6ek3K5VrEv96dfB2FCoJvCZkkm52ZzXztbwBeIQic0zwJWUw1RqviUEUmCzGFFWnrDDcNuv5RPpvx-Vx82YJ3_V6YFh9iCLihZjTrNSq40vXeBjT0h0EEQsa8vz6mXm7ZCMYfjqdfj4aFOElb9ChvxIQ8S-MeWCiie8PNV35HY5zZX9fZmldN1-bfM737X6O-B3c6k5PstzJyH7Zc-QBuTfpObw_h974mCywiqkgD27AoSVEtrT_BLA5yjmB5_Clxl52g-vcTtTytVov197P6LfnUtzohVUFsUxRCVGlJVwhPEGD8DAtvauIfdr7ZrPAITqYfTyaHYdeTITQIGxNaJUzOY8e1SUWisNw6NpTbyBlRpHlkYqGV1iktcmYYK4RgNs2UcrFihrtkG0ZlVbonQJgwPLfWaJcqptFRownz8pR5vlkR2QDe9JyRpsMrx7YZS9kiLVPp51I2cxnAy4H0vAXpuI7odcPegUKtfmJVW57Kb7MDeXhA34tjmshZADs9_2Wn0LWkGClLvXcawIvhqmcTpldU6aqLWmaYo6ZJHsDjVmg2Y_FeGSLl-U9qZOPvg5SfJ5Pm4Om_k-7A7TYuhFWJz2C0Xl2453DTXK4X9WoXbuRzvtupxh8xvxGX |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB_KnVC_-H7Eql1ExC-hyWbzWPFLPb1e9TyknNhvy75Sr70m5XIt4l_vTl5HoYLgt4RMwmRnZnd2ZvY3AK8RBM6qLPJZSBVGq0JfBjrxMYUVKGN1pmt0_Wk6m2XHx_zbFrzvzsI0-BB9wA0to56v0cAxIL23QQ091QhByJjbsA-ZU6N4AMOPR-Pv034mjuIGPsp5MX6WxGGHLBTQvf7la-vREIf2103O5nXftV58xnf_j-17cKd1Osl-oyX3YcsWD2B71PV6ewi_9xVZYBlRSWrghkVB8nJp3A3mcVB2BAvkT4i9alXVMUDk8qRcLdY_z6t35LBrdkLKnJi6LITIwpC2FJ4gxPg5lt5UxH3sYnNc4RHMx5_mo4nfdmXwNQLH-EZynWahzZSOeSSx4DrUNDOB1TyP00CHXEmlYpqnTDOWc85MnEhpQ8l0ZqPHMCjKwj4FwrjOUmO0srFkCrdqNGJOoxInOMMD48HbTjRCt4jl2DhjKRqsZSrcWIp6LD141ZNeNDAdNxG9qeXbU8jVGda1pbH4MTsQkwP6gR_RSMw82OkUQLQmXQmKsbLY7U892O2fOjFhgkUWtrysRIJZahqlHjxptGbDi9uXIVae-6VaOf7OpPg8GtUXz_6ddBe2J_OvUzE9nH3ZgdtNlAhrFJ_DYL26tC_glr5aL6rVy9ZC_gASVhSf |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9KT9QXv6uxahcR8SU02ewmu-JLvXpt9QilVOzbsl-pp9fkuFyL-Ne7k6-jUEHwLSGTMNmZ2Z2dmf0NQm8ABM5pnoQ0JhqiVXGoIpOGkMKKtHWGmwZdf5rlOT87E8cb6EN_FqbFhxgCbmAZzXwNBu4Wtthdo4b-MABBSKnfsI8oE6k3y9H-yeTrdJiJE9bCR3kvJuQpi3tkoYjsDi9fW49GMLS_bnI2r_uuzeIzuf9_bD9A9zqnE--1WvIQbbjyEboz7nu9PUa_9zSeQRlRhRvghlmJi2pu_Q3kcUB2GArkz7G76lTVM4DV_LxazlbfL-r3-KhvdoKrAtumLASr0uKuFB4DxPgFlN7U2H9ssT6u8ASdTj6djg_DritDaAA4JrRKmIzHjmvDRKKg4Do2hNvIGVGwLDKx0EprRoqMGkoLIahlqVIuVtRwl2yhzbIq3TOEqTA8s9ZoxxTVsFUjCfUalXrBWRHZAL3rRSNNh1gOjTPmssVaJtKPpWzGMkCvB9JFC9NxE9HbRr4DhVr-hLq2jMlv-YE8PCAfxQlJZB6g7V4BZGfStSQQK2N-fxqgneGpFxMkWFTpqstappClJkkWoKet1qx58fsywMrzv9Qox9-ZlJ_H4-bi-b-T7qDbx_sTOT3Kv2yju22QCEoUX6DN1fLSvUS3zNVqVi9fdQbyB4BnFBo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ab+initio+protein+fold+prediction+using+evolutionary+algorithms%3A+Influence+of+design+and+control+parameters+on+performance&rft.jtitle=Journal+of+computational+chemistry&rft.au=Djurdjevic%2C+Dusan+P.&rft.au=Biggs%2C+Mark+J.&rft.date=2006-08-01&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=27&rft.issue=11&rft.spage=1177&rft.epage=1195&rft_id=info:doi/10.1002%2Fjcc.20440&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcc_20440 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |