Ab initio protein fold prediction using evolutionary algorithms: Influence of design and control parameters on performance

True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry Jg. 27; H. 11; S. 1177 - 1195
Hauptverfasser: Djurdjevic, Dusan P., Biggs, Mark J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2006
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0192-8651, 1096-987X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15‐residue polyalanine molecule—design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady‐state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady‐state designs based on real encoding and multipoint crossover. Application of the steady‐state design to met‐enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met‐enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1177–1195, 2006
AbstractList True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15-residue polyalanine molecule-design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady-state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady-state designs based on real encoding and multipoint crossover. Application of the steady-state design to met-enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met-enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used.True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15-residue polyalanine molecule-design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady-state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady-state designs based on real encoding and multipoint crossover. Application of the steady-state design to met-enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met-enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used.
True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15‐residue polyalanine molecule—design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady‐state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady‐state designs based on real encoding and multipoint crossover. Application of the steady‐state design to met‐enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met‐enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1177–1195, 2006
True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15-residue polyalanine molecule-design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady-state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady-state designs based on real encoding and multipoint crossover. Application of the steady-state design to met-enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met-enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used.
True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15-residue polyalanine molecule - design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady-state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady-state designs based on real encoding and multipoint crossover. Application of the steady-state design to met-enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met-enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used. [PUBLICATION ABSTRACT]
True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for identifying the free energy global minimum. Various characteristics of evolutionary algorithms (EAs) mean they are in principle well suited to the latter. Studies to date have been less than encouraging, however. This is because of the limited consideration given to EA design and control parameter issues. A comprehensive study of these issues was, therefore, undertaken for ab initio protein fold prediction using a full atomistic protein model. The performance and optimal control parameter settings of twelve EA designs where first established using a 15‐residue polyalanine molecule—design aspects varied include the encoding alphabet, crossover operator, and replacement strategy. It can be concluded that real encoding and multipoint crossover are superior, while both generational and steady‐state replacement strategies have merits. The scaling between the optimal control parameter settings and polyalanine size was also identified for both generational and steady‐state designs based on real encoding and multipoint crossover. Application of the steady‐state design to met‐enkephalin indicated that these scalings are potentially transferable to real proteins. Comparison of the performance of the steady state design for met‐enkephalin with other ab initio methods indicates that EAs can be competitive provided the correct design and control parameter values are used. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1177–1195, 2006
Author Djurdjevic, Dusan P.
Biggs, Mark J.
Author_xml – sequence: 1
  givenname: Dusan P.
  surname: Djurdjevic
  fullname: Djurdjevic, Dusan P.
  organization: Institute for Materials and Processes, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, United Kingdom
– sequence: 2
  givenname: Mark J.
  surname: Biggs
  fullname: Biggs, Mark J.
  email: M.Biggs@ed.ac.uk
  organization: Institute for Materials and Processes, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16752367$$D View this record in MEDLINE/PubMed
BookMark eNp9kVFvFCEUhYmpsdvqg3_AEB9MfJgWmGEGfKsb3dY0NTFN9I0wzGVlZWCFGbX-elm31aSJ8kIu-c7J5ZwjdBBiAISeUnJCCWGnG2NOGGka8gAtKJFtJUX36QAtCJWsEi2nh-go5w0hpOZt8wgd0rbjrG67Bfp51mMX3OQi3qY4gQvYRj-UAQZnynPAc3ZhjeFb9PNu1ukGa7-OyU2fx_wKXwTrZwgGcLR4gOzWAeswYBPDlKLHW530CBOkjIvZFpKNadSFf4weWu0zPLm9j9H12zfXy_Pq8v3qYnl2WZlaCFINWppOUBC94bLWoAeghomBgJGWd8RQ2eu-58x2jWkaK2Uz8FZroLoxAupj9GJvW_73dYY8qdFlA97rAHHOqhWkLWF0BXx-D9zEOYWymmLlCM6ELNCzW2juRxjUNrmxJKLuEi3Ayz1gUsw5gf2LELVrS5W21O-2Cnt6jzVu0ruQp6Sd_5_iu_Nw829r9W65vFNUe4XLE_z4o9Dpiyrbdlx9vFqp8xV7LT-wWl3VvwCmzLc6
CODEN JCCHDD
CitedBy_id crossref_primary_10_1162_evco_2010_18_2_18204
crossref_primary_10_1186_1471_2105_9_357
crossref_primary_10_1186_1758_2946_1_16
crossref_primary_10_1002_wcms_70
crossref_primary_10_1007_s10710_009_9087_0
crossref_primary_10_1002_jcc_20924
crossref_primary_10_1186_1472_6807_13_S1_S4
crossref_primary_10_1016_j_nano_2008_03_008
Cites_doi 10.1016/S0959-440X(99)80025-6
10.1109/TSMC.1986.289288
10.1002/bip.10226
10.1007/3-540-45712-7_10
10.1002/(SICI)1096-987X(19970715)18:9<1222::AID-JCC10>3.0.CO;2-7
10.1006/jmbi.1996.0115
10.1093/protein/5.4.313
10.1063/1.1592796
10.1016/j.sbi.2003.12.001
10.1126/science.1853201
10.1002/anie.200200539
10.1002/jcc.540161112
10.1002/(SICI)1097-0134(1997)1 <179::AID-PROT23>3.0.CO;2-K
10.1080/08927029408021995
10.1073/pnas.96.5.2025
10.1080/08927029708024151
10.1021/ie010149z
10.1016/0141-8130(95)01036-X
10.1016/S0020-0255(03)00178-6
10.1002/(SICI)1097-461X(2000)77:1<90::AID-QUA10>3.0.CO;2-L
10.1021/jp0001743
10.1002/prot.10530
10.1016/S0014-5793(02)03290-8
10.1016/S1359-6446(02)02398-X
10.1002/jcc.540040211
10.1016/S0959-440X(99)80022-0
10.1090/dimacs/047/07
10.1073/pnas.91.10.4436
10.1016/0022-2836(69)90487-2
10.1007/3-540-44869-1_41
10.1023/A:1008224308626
10.1063/1.1387478
10.1007/PL00010719
10.1007/BFb0056937
10.1006/jmbi.1997.1010
10.1089/cmb.1997.4.1
10.1073/pnas.041609598
10.1007/3-540-48990-8_2
10.1038/358086a0
10.1016/S0958-1669(97)80122-X
10.3109/10409239409086797
10.1007/BF01100239
10.1007/BFb0029729
10.1021/ja00299a024
10.1016/S0959-440X(97)80027-9
10.1007/3-540-58484-6_256
10.1002/jcc.540070216
10.1016/S0039-6028(01)01809-X
10.1093/protein/10.8.877
10.1006/jmbi.1993.1258
10.1016/S0959-440X(00)00067-1
10.1016/j.polymer.2003.10.081
10.1109/TEVC.2002.804323
10.1002/(SICI)1096-987X(199910)20:13<1329::AID-JCC1>3.0.CO;2-H
10.1093/protein/8.8.769
10.1021/j100234a011
10.1021/ci950106r
10.1002/pro.5560020508
10.1016/B978-0-934613-64-4.50021-9
10.1089/cmb.1998.5.27
10.1016/S0006-3495(95)79906-4
10.1002/(SICI)1097-0282(199808)46:2<103::AID-BIP5>3.0.CO;2-Q
10.1016/S0167-7799(01)01666-3
10.1002/(SICI)1097-0134(19980515)31:3<247::AID-PROT2>3.0.CO;2-G
10.1093/protein/5.7.637
10.1109/4235.850651
10.1109/4235.797972
10.1007/s008940050125
10.1063/1.473514
10.1007/BF02337560
10.1006/jmbi.1994.1193
10.1137/S0036144594278060
10.1146/annurev.biophys.29.1.291
10.1007/BF02460703
10.1080/07391102.2003.10506906
10.1002/bip.360270808
10.1007/BFb0026595
10.1016/S0022-2836(05)80068-3
10.1007/3-540-45110-2_56
10.1109/20.952626
10.1021/ja00124a002
10.1080/09528139008953717
10.1007/BF00203032
10.1002/prot.340230319
10.1002/(SICI)1097-0134(19981115)33:3<343::AID-PROT4>3.0.CO;2-B
10.1016/S0092-8240(05)80170-3
ContentType Journal Article
Copyright Copyright © 2006 Wiley Periodicals, Inc.
Copyright 2006 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Aug 2006
Copyright_xml – notice: Copyright © 2006 Wiley Periodicals, Inc.
– notice: Copyright 2006 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Aug 2006
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
DOI 10.1002/jcc.20440
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
ProQuest Computer Science Collection
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 1195
ExternalDocumentID 1146142011
16752367
10_1002_jcc_20440
JCC20440
ark_67375_WNG_HG2B9R23_N
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: University of Edinburgh and Overseas Research Support (ORS) Scheme
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
31~
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M21
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZCG
ZY4
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
O8X
AAHHS
ABTAH
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
YCJ
JQ2
7X8
ID FETCH-LOGICAL-c3880-da9c781e8bc593aeade1c28d0ec9f570c19babb52f74c44f994d56aae1a4c8e3
IEDL.DBID DRFUL
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000238586600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0192-8651
IngestDate Sun Nov 09 10:36:57 EST 2025
Fri Jul 25 19:10:35 EDT 2025
Thu Apr 03 07:04:37 EDT 2025
Tue Nov 18 22:25:14 EST 2025
Sat Nov 29 02:55:33 EST 2025
Thu Sep 25 07:34:29 EDT 2025
Sun Sep 21 06:17:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2006 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3880-da9c781e8bc593aeade1c28d0ec9f570c19babb52f74c44f994d56aae1a4c8e3
Notes ark:/67375/WNG-HG2B9R23-N
istex:99301276664319A6EA14513AE00EF2A6B661614C
University of Edinburgh and Overseas Research Support (ORS) Scheme
ArticleID:JCC20440
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 16752367
PQID 222285289
PQPubID 48816
PageCount 19
ParticipantIDs proquest_miscellaneous_68065237
proquest_journals_222285289
pubmed_primary_16752367
crossref_primary_10_1002_jcc_20440
crossref_citationtrail_10_1002_jcc_20440
wiley_primary_10_1002_jcc_20440_JCC20440
istex_primary_ark_67375_WNG_HG2B9R23_N
PublicationCentury 2000
PublicationDate 2006-08
August 2006
2006-08-00
2006-Aug
20060801
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J. Comput. Chem
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Kasemo, B. Surf Sci 2002, 500, 656.
Venclovas, È;Zemla, A.;Fidelis, K.;Moult, J. Proteins 2003, 53, 585.
(c) Argos, P.;Dandeker, T. In Protein Structure by Distance Analysis; Bohr, H.; Brunak, S., Eds.; IOS Press Amsterdam, 1994, p. 315
Hendlich, M.;Lacker, P.;Weitckus, S.;Floeckner, H.;Froschauer, R.;Gottsbacher, K.;Casari, G.;Sippl, M. J. J Mol Biol 1990, 216, 167.
Osguthorpe, D. J. Curr Opin Struct Biol 2000, 10, 146.
(d) Dandekar, T.;Argos, P. Int J Biol Macromol 1996, 18, 1
Radcliffe, N. J. In Parallel Problem Solving from Nature 2 (PPSN-II); Männer, R.; Manderick, B., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1992, p. 259.
(c) Pedersen, J. T.;Moult, J. J Mol Biol 1997, 269, 240.
Jiang, T.;Cui, Q.;Shi, G.;Ma, S. J Chem Phys 2003, 119, 4592.
Baltzer, L. Top Curr Chem 1999, 202, 39.
Le Grand, S. M.;Merz, K. M.,Jr. Mol Sim 1994, 13, 299.
(a) Sun, S. Protein Sci 1993, 2, 762
Pillardy, A.;Czaplewski, C.;Liwo, A.;Lee, J.;Ripoll, D. R.;Kazmierkiewicz, R.;Oldziej, S.;Wedemeyer, W. J.;Gibson, K. D.;Arnautova, Y. A.;Saunders, J.;Ye, Y. J.;Scheraga, H. A. Proc Natl Acad Sci USA 2001, 98, 2329.
Rogers, A.;Prügel-Bennett, A. IEEE Trans Evolut Comp 1999, 3, 298.
Weiner, S. J.;Kollman, P. A.;Nguyen, D. T.;Case, D. A. J Comp Chem 1986, 7, 230.
Garduño-Juárez, R.;Morales, L. B. J Biomol Struct Dyn 2003, 21, 65.
Ahn, C. W.;Ramakhrishna, R. S. IEEE Trans Evol Comput 2002, 6, 566.
Jones, D. T.;Thornton, J. M. J Comput Aided Mol Design 1993, 7, 439.
Goldberg, D. E.;Deb, K. In Foundations of Genetic Algorithms (FGA); Rawlins, G. J. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 69.
Némethy, G.;Pottle, M. S.;Scheraga, H. A. J Phys Chem 1983, 87, 1883.
Dimopoulos, C.;Zalzala, A. M. S. IEEE Trans Evolut Comput 2000, 4, 93.
Caplan, M. R.;Lauffenburger, D. A. Ind Eng Chem Res 2002, 41, 403.
Gray, J. J. Curr Opin Struct Biol 2004, 14, 110.
Betz, S. F.;Baxter, S. M.;Fetrow, J. S. Drug Discov Today 2002, 7, 865.
Rogers, A.;Prügel-Bennett, A. In Fundamentals of Genetic Algorithms 5 (FGA-5); Banzhaf, W.; Reeves, C., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 1998, p. 57.
Beasley, D.;Bull, D. R.;Martin, R. R. J Comput 1993, 15, 170.
Le Grand, S. M.;Merz, K. M.,Jr. J Global Opt 1993, 3, 49.
Jones, D. T.;Taylor, W. R.;Thornton, J. M. Nature 1992, 358, 86.
Androulakis, I. P.;Maranas, C. D.;Floudas, C. A. J Global Opt 1997, 11, 1.
Liepins, G. E.;Vose, M. D. J Exp Theor Artif Intell 1990, 2, 101.
Floudas, C. A.;Klepeis, J. L.;Pardalos, P. M. Discrete Math Theor Comput Sci 2000, 47, 141.
Doniach, S.;Eastman, P. Curr Opin Struct Biol 1999, 9, 157.
Browne, W. J.;North, A. C. T.;Phillips, D. C.;Brew, K.;Vanman, T. C.;Hill, R. L. J Mol Biol 1969, 42, 65.
Press, W. H.;Teukolsky, S. A.;Vetterling, W. T.;Flannery, B. P. Numerical Recipes in C; Cambridge University Press: Cambridge, UK, 1995, 2nd ed.
Hubbard, R. E. Curr Opin Biotechnol 1997, 8, 696.
Gunn, J. R. J Chem Phys 1997, 106, 4270.
Fogel, D. B.;Atmar, J. W. Biol Cybern 1990, 63, 111.
Davis, L. Handbook of Genetic Algorithms; Van Nostrand Reinhold, New York, 1991.
(f) Dandekar, T.;Argos, P. Protein Eng 1997, 10, 877
Saunders, J. A.;Scheraga, H. A. Biopolymers 2003, 68, 300.
Schulze-Kremer, S.;Levin, A. In Advances in Molecular Bioinformatics; Schulze-Kremer, S., Ed.; IOS Press: Amsterdam, 1994, p. 201.
Holland, J. H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI, 1975.
Goldberg, D. E.;Korb, B.;Deb, K. Complex Sys 1989, 3, 493.
Wright, A. W. In Foundations of Genetic Algorithms (FGA); Rawlins, G. J. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 205.
Lee, J.;Liwo, A.;Ripoll, D. R.;Pillardy, J.;Saunders, J. A.;Gibson, K. D.; Scheraga, H. A. Int J Quantum Chem 2000, 77, 90.
Maggio, E. T.;Ramnarayan, K. Trends Biotechnol 2001, 19, 266.
Bowie, J. U.;Eisenberg, D. Proc Natl Acad Sci USA 1994, 91, 4436.
Davis, A. M.;Teague, S. J.;Kleywegt, G. J. Angew Chem Int Ed 2003, 42, 2718.
Lee, J.;Scheraga, H. A.;Rackovsky, S. J Comp Chem 1997, 18, 1222.
Davis, L. In Handbook of Genetic Algorithms; Davis, L., Ed.; Van Nostrand Reinhold: New York, 1991, p. 62.
Cornell, W. D.; Cieplak, P.;Bayly, C. I.;Gould, I. R.;Merz, K. M.; Ferguson, D. M.;Spellmeyer, D. C.;Fox, T.;Caldwell, J. W.;Kollman, P. A. J Am Chem Soc 1995, 117, 5179.
Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer-Verlag: Berlin, 1999, 3rd ed.
Unger, R.;Moult, J. In Computer Aided Innovation of Materials II; Doyama, M.; Kihara, J.; Tanaka, M.; Yamamoto, R., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1993, p. 1283.
Park, C.;Goddard, W. A. J Phys Chem B 2000, 104, 7784.
Schulze-Kremer, S. In Parallel Problem Solving from Nature 2 (PPSN-II). Männer, R.; Manderick, B., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1992, p. 391.
Dewar, M.;Zoebisch, E.;Healy, E.;Stewart, J. J Am Chem Soc 1985, 107, 3902.
Werten, P. J. L.;Rémigy, H. W.;de Groot, B. L.;Fotiadis, D.;Philippsen, A.;Stahlberg, H.;Grubmüller, H.;Engel, A. FEBS Lett 2002, 529, 65.
Khimasia, M. N.;Coveney, P. V. Mol Sim 1997, 19, 205.
Unger, R.;Moult, J. Bull Math Biol 1993, 55, 1183.
Hart, W. E.;Istrail, S. J Comput Biol 1997, 4, 1.
(b) Pedersen, J. T.;Moult, J. Proteins 1997, Suppl 1, 179
Spears, W.W.;de Jong, K. A. In Foundations of Genetic Algorithms (FGA); Rawlins, J. G. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 301.
Del Carpio, C. A. J Chem Inf Comput Sci 1996, 36, 258.
Lee, J.;Liwo, A.;Scheraga, H. A. Proc Natl Acad Sci USA 1999, 96, 2025.
Chakraborty, U. K.;Janikow, C. Z. Inform Sci 2003, 156, 253.
Bowie, J. U.;Lüthy, R.;Eisenberg, D. Science 1991, 253, 164.
Jin, A. Y.;Leung, F. Y.;Weaver, D. F. J Comp Chem 1999, 20, 1329.
(h) König, R.;Dandekar, T. J Mol Model 1999, 5, 317.
Bertsch, R. A.;Vaidehi, N.;Chan, S. I.;Goddard, W. A. Proteins 1998, 33, 343.
Czaplewski, C.;Liwo, A.;Pillardy, J.;Ołdziej, S.;Scheraga, H. A. Polymer 2004, 45, 677.
Martí-Renom, M. A.;Stuart, A. C.;Fiser, A.;Sánchez, R.;Melo, F.;Šali, A. Annu Rev Biophys Biomol Struct 2000, 29, 291.
Whitley, D.;Barbulescu, L.;Watson, J. P. In Fundamentals of Genetic Algorithms 6 (FGA-6); Martin, W. N.; Spears, W. M., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 2001, p. 295.
Vasconcelos, J. A.;Ramírez, J. A.;Takahashi, R. H. C.;Saldanha, R. R. IEEE Trans Magnet 2001, 37, 3414.
Sánchez, R.;Šali, A. Curr Opin Struct Biol 1997, 7, 206.
(a) Pedersen, J. T.;Moult, J. Proteins 1995, 23, 454
Goldberg, D. E.;Rudnick, M. Complex Sys 1991, 5, 265
Brooks, B. R.;Bruccoleri, R. E.;Olafson, B. D.;States, D. J.;Swaminathan, S.;Karplus, M. J Comp Chem 1983, 4, 187.
Deb, K.;Agarwal, S. In Fundamentals of Genetic Algorithms 5 (FGA-5); Banzhaf, W.; Reeves, C., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 1998, p. 265.
(a) Dandekar, T.;Argos, P. Protein Eng 1992, 5, 637
(g) Dandekar, T.;Du, F. J Mol Model 1999, 5, 78
Johnson, M. S.;Srinivasan, N.;Sowdhamini, R.;Blundell, T. L. Crit Rev Biochem Mol Biol 1994, 29, 1.
Ripoll, D. R.;Scheraga, H. A. Biopolymers 1988, 27, 1283.
Grefenstette, J. J. IEEE Trans Sys Man Cybernet 1986, 16, 122.
Goldberg, D. E. Genetic Algorithms; Addison Wesley Longman: Reading, MA, 1989.
(e) Dandekar, T.;Argos, P. J Mol Biol 1996, 256, 645
Neumaier, A. SIAM Rev 1997, 39, 407.
Fraenkel, A. S. Bull Math Biol 1993, 55, 1199.
Berger, B.;Leighton, T. J Comput Biol 1998, 5, 27.
(b) Dandekar, T.;Argos, P. J Mol Biol 1994, 236, 844
Liang, F.;Wong, W. H. J Chem Phys 2001, 115, 3374.
Schwefel, H.-P. Numerical Optimization of Computer Models; Wiley: Chichester, 1981.
(c) Sun, S.;Thomas, P. D.;Dill, K. A. Protein Eng 1995, 8, 769.
Cui, Y.;Chen, R. S.;Wong, W. H. Proteins 1998, 31, 247.
De Jong, K. A.;Sarma, J. In Fundamentals of Genetic Algorithms 2 (FGA-2); Whitley, L. D., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1993, p. 19.
Unger, R.;Moult, J. J Mol Biol 1993, 231, 75.
Ngo, J. T.;Marks, J. Protein Eng 1992, 5, 313.
Hansmann, U. H. E.;Okamoto, Y. Curr Opin Struct Biol 1999, 9, 177.
Lee, J.; Scheraga, H. A.;Rackovsky, S. Biopolymers 1998, 46, 103.
Smith, J.;Vavak, F. In Fundamentals of Genetic Algorithms 5 (FGA-5); Banzhaf, W.; Reeves, C., Ed.; Morgan Kaufmann Publishers: San Francisco, CA, 1999, p. 219.
(b) Sun, S. Biophys J 1995, 69, 340
Syswerda, G. In Foundations of Genetic Algorithms (FGA); Rawlins, G. J. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 94.
Herrmann, F.;Suhai, S. J Comp Chem 1995, 16, 1434.
1993; 7
2003; 119
2000; 47
2000; 4
1983; 4
1975
1999; 202
1994; 29
1996; 36
1997; 4
2003; 156
2003; 53
1993; 3
1992 1994 1994 1996 1996 1997 1999 1999; 5 236 18 256 10 5 5
1998; 1498
1997; 7
1997; 8
1998; 46
1997; 106
1990; 216
2002; 41
2001
1986; 7
1997; 11
2000; 10
1969; 42
2001; 19
1992; 358
1997; 19
1997; 18
2002; 500
1985
1999; 96
1981
1994; 866
2003; 42
1989
1992; 5
2001; 98
1988
1991; 253
1989; 3
2003; 2687
2000; 29
2003; 2724
1991; 496
2002; 2439
1995; 16
2002; 6
2002; 7
2004; 45
1998
1995; 117
1986; 16
1995
1994
1999; 20
1993
1999; 3
1992
1985; 107
1991
2002
1993 1995 1995; 2 69 8
1999; 9
1999
1991; 5
1993; 15
1990; 63
1990; 2
2000; 104
2004; 14
1993; 55
2000; 77
1988; 27
2003; 68
1983; 87
1997; 39
1994; 13
2001; 37
2002; 529
1995 1997 1997; 23 269
1998; 1363
1994; 91
1998; 5
1998; 31
2001; 115
1993; 231
2003; 21
1998; 33
e_1_2_6_114_2
e_1_2_6_53_2
De Jong K. A. (e_1_2_6_107_2) 1991
e_1_2_6_118_2
e_1_2_6_91_2
Smith J. (e_1_2_6_115_2) 1999
e_1_2_6_133_2
e_1_2_6_19_2
Bindewald E. (e_1_2_6_46_2) 1998
e_1_2_6_11_2
e_1_2_6_76_2
Thierens D. (e_1_2_6_124_2) 1994
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_99_2
e_1_2_6_102_2
e_1_2_6_125_2
e_1_2_6_83_2
e_1_2_6_64_2
e_1_2_6_41_3
e_1_2_6_106_2
e_1_2_6_129_2
e_1_2_6_41_2
e_1_2_6_60_2
Spears W.W. (e_1_2_6_128_2) 1991
e_1_2_6_121_2
Cotta C. (e_1_2_6_72_2) 2003
Rogers A. (e_1_2_6_111_2) 1998
e_1_2_6_9_2
Goldberg D. E. (e_1_2_6_31_2) 1989
Michalewicz Z. (e_1_2_6_34_2) 1999
Piccolboni A. (e_1_2_6_88_2) 1998
e_1_2_6_5_2
e_1_2_6_22_2
e_1_2_6_49_2
Radcliffe N. J. (e_1_2_6_87_2) 1992
e_1_2_6_41_4
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_113_2
e_1_2_6_117_2
Whitley D. (e_1_2_6_92_2) 2001
e_1_2_6_132_2
Rothlauf R. (e_1_2_6_89_2) 2002
Schwefel H.‐P. (e_1_2_6_120_2) 1981
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
Argos P. (e_1_2_6_36_4) 1994
Goldberg D. E. (e_1_2_6_119_2) 1989; 3
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_42_2
e_1_2_6_105_2
e_1_2_6_80_2
e_1_2_6_109_2
De Jong K. A. (e_1_2_6_112_2) 1993
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_27_2
e_1_2_6_51_2
e_1_2_6_97_2
e_1_2_6_74_2
e_1_2_6_116_2
e_1_2_6_93_2
e_1_2_6_70_2
Zhang J. (e_1_2_6_100_2) 2003
Goldberg D. E. (e_1_2_6_101_2) 1991; 5
e_1_2_6_36_9
e_1_2_6_36_8
e_1_2_6_36_7
e_1_2_6_36_6
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_36_5
e_1_2_6_17_2
e_1_2_6_55_2
Press W. H. (e_1_2_6_131_2) 1995
e_1_2_6_36_3
e_1_2_6_36_2
e_1_2_6_78_2
e_1_2_6_62_2
Syswerda G. (e_1_2_6_110_2) 1991
e_1_2_6_104_2
e_1_2_6_127_2
e_1_2_6_20_2
Schulze–Kremer S. (e_1_2_6_38_2) 1994
e_1_2_6_108_2
Beasley D. (e_1_2_6_33_2) 1993; 15
e_1_2_6_81_2
Wright A. W. (e_1_2_6_95_2) 1991
Davis L. (e_1_2_6_96_2) 1991
e_1_2_6_123_2
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
Schulze–Kremer S. (e_1_2_6_48_2) 1992
Goldberg D. E. (e_1_2_6_122_2) 1991
Holland J. H. (e_1_2_6_30_2) 1975
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_94_2
e_1_2_6_71_2
e_1_2_6_90_2
e_1_2_6_130_2
e_1_2_6_134_2
e_1_2_6_18_2
Deb K. (e_1_2_6_85_2) 1998
Davis L. (e_1_2_6_32_2) 1991
e_1_2_6_10_2
e_1_2_6_37_4
e_1_2_6_37_3
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_79_2
e_1_2_6_98_2
e_1_2_6_103_2
e_1_2_6_63_2
e_1_2_6_86_2
e_1_2_6_126_2
e_1_2_6_40_2
e_1_2_6_82_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
Unger R. (e_1_2_6_65_2) 1993
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_67_2
e_1_2_6_25_2
References_xml – reference: Jin, A. Y.;Leung, F. Y.;Weaver, D. F. J Comp Chem 1999, 20, 1329.
– reference: (b) Dandekar, T.;Argos, P. J Mol Biol 1994, 236, 844;
– reference: (c) Sun, S.;Thomas, P. D.;Dill, K. A. Protein Eng 1995, 8, 769.
– reference: Radcliffe, N. J. In Parallel Problem Solving from Nature 2 (PPSN-II); Männer, R.; Manderick, B., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1992, p. 259.
– reference: Lee, J.;Liwo, A.;Ripoll, D. R.;Pillardy, J.;Saunders, J. A.;Gibson, K. D.; Scheraga, H. A. Int J Quantum Chem 2000, 77, 90.
– reference: (a) Dandekar, T.;Argos, P. Protein Eng 1992, 5, 637;
– reference: Weiner, S. J.;Kollman, P. A.;Nguyen, D. T.;Case, D. A. J Comp Chem 1986, 7, 230.
– reference: Ripoll, D. R.;Scheraga, H. A. Biopolymers 1988, 27, 1283.
– reference: (e) Dandekar, T.;Argos, P. J Mol Biol 1996, 256, 645;
– reference: Dewar, M.;Zoebisch, E.;Healy, E.;Stewart, J. J Am Chem Soc 1985, 107, 3902.
– reference: Unger, R.;Moult, J. In Computer Aided Innovation of Materials II; Doyama, M.; Kihara, J.; Tanaka, M.; Yamamoto, R., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1993, p. 1283.
– reference: (d) Dandekar, T.;Argos, P. Int J Biol Macromol 1996, 18, 1;
– reference: Schwefel, H.-P. Numerical Optimization of Computer Models; Wiley: Chichester, 1981.
– reference: Werten, P. J. L.;Rémigy, H. W.;de Groot, B. L.;Fotiadis, D.;Philippsen, A.;Stahlberg, H.;Grubmüller, H.;Engel, A. FEBS Lett 2002, 529, 65.
– reference: Herrmann, F.;Suhai, S. J Comp Chem 1995, 16, 1434.
– reference: Bertsch, R. A.;Vaidehi, N.;Chan, S. I.;Goddard, W. A. Proteins 1998, 33, 343.
– reference: Schulze-Kremer, S. In Parallel Problem Solving from Nature 2 (PPSN-II). Männer, R.; Manderick, B., Eds.; Elsevier Science Publishers B.V.: Amsterdam, 1992, p. 391.
– reference: Garduño-Juárez, R.;Morales, L. B. J Biomol Struct Dyn 2003, 21, 65.
– reference: Browne, W. J.;North, A. C. T.;Phillips, D. C.;Brew, K.;Vanman, T. C.;Hill, R. L. J Mol Biol 1969, 42, 65.
– reference: Brooks, B. R.;Bruccoleri, R. E.;Olafson, B. D.;States, D. J.;Swaminathan, S.;Karplus, M. J Comp Chem 1983, 4, 187.
– reference: Doniach, S.;Eastman, P. Curr Opin Struct Biol 1999, 9, 157.
– reference: Sánchez, R.;Šali, A. Curr Opin Struct Biol 1997, 7, 206.
– reference: Le Grand, S. M.;Merz, K. M.,Jr. Mol Sim 1994, 13, 299.
– reference: Ahn, C. W.;Ramakhrishna, R. S. IEEE Trans Evol Comput 2002, 6, 566.
– reference: Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer-Verlag: Berlin, 1999, 3rd ed.
– reference: Venclovas, È;Zemla, A.;Fidelis, K.;Moult, J. Proteins 2003, 53, 585.
– reference: (f) Dandekar, T.;Argos, P. Protein Eng 1997, 10, 877;
– reference: Kasemo, B. Surf Sci 2002, 500, 656.
– reference: (c) Argos, P.;Dandeker, T. In Protein Structure by Distance Analysis; Bohr, H.; Brunak, S., Eds.; IOS Press Amsterdam, 1994, p. 315;
– reference: Whitley, D.;Barbulescu, L.;Watson, J. P. In Fundamentals of Genetic Algorithms 6 (FGA-6); Martin, W. N.; Spears, W. M., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 2001, p. 295.
– reference: Berger, B.;Leighton, T. J Comput Biol 1998, 5, 27.
– reference: Liang, F.;Wong, W. H. J Chem Phys 2001, 115, 3374.
– reference: Spears, W.W.;de Jong, K. A. In Foundations of Genetic Algorithms (FGA); Rawlins, J. G. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 301.
– reference: Davis, L. Handbook of Genetic Algorithms; Van Nostrand Reinhold, New York, 1991.
– reference: Pillardy, A.;Czaplewski, C.;Liwo, A.;Lee, J.;Ripoll, D. R.;Kazmierkiewicz, R.;Oldziej, S.;Wedemeyer, W. J.;Gibson, K. D.;Arnautova, Y. A.;Saunders, J.;Ye, Y. J.;Scheraga, H. A. Proc Natl Acad Sci USA 2001, 98, 2329.
– reference: (h) König, R.;Dandekar, T. J Mol Model 1999, 5, 317.
– reference: Davis, L. In Handbook of Genetic Algorithms; Davis, L., Ed.; Van Nostrand Reinhold: New York, 1991, p. 62.
– reference: Khimasia, M. N.;Coveney, P. V. Mol Sim 1997, 19, 205.
– reference: Holland, J. H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI, 1975.
– reference: Wright, A. W. In Foundations of Genetic Algorithms (FGA); Rawlins, G. J. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 205.
– reference: Floudas, C. A.;Klepeis, J. L.;Pardalos, P. M. Discrete Math Theor Comput Sci 2000, 47, 141.
– reference: (b) Pedersen, J. T.;Moult, J. Proteins 1997, Suppl 1, 179;
– reference: Park, C.;Goddard, W. A. J Phys Chem B 2000, 104, 7784.
– reference: Grefenstette, J. J. IEEE Trans Sys Man Cybernet 1986, 16, 122.
– reference: Fogel, D. B.;Atmar, J. W. Biol Cybern 1990, 63, 111.
– reference: Saunders, J. A.;Scheraga, H. A. Biopolymers 2003, 68, 300.
– reference: Hansmann, U. H. E.;Okamoto, Y. Curr Opin Struct Biol 1999, 9, 177.
– reference: (b) Sun, S. Biophys J 1995, 69, 340;
– reference: Le Grand, S. M.;Merz, K. M.,Jr. J Global Opt 1993, 3, 49.
– reference: Betz, S. F.;Baxter, S. M.;Fetrow, J. S. Drug Discov Today 2002, 7, 865.
– reference: Gray, J. J. Curr Opin Struct Biol 2004, 14, 110.
– reference: Goldberg, D. E.;Rudnick, M. Complex Sys 1991, 5, 265
– reference: Lee, J.;Liwo, A.;Scheraga, H. A. Proc Natl Acad Sci USA 1999, 96, 2025.
– reference: Vasconcelos, J. A.;Ramírez, J. A.;Takahashi, R. H. C.;Saldanha, R. R. IEEE Trans Magnet 2001, 37, 3414.
– reference: Rogers, A.;Prügel-Bennett, A. IEEE Trans Evolut Comp 1999, 3, 298.
– reference: Gunn, J. R. J Chem Phys 1997, 106, 4270.
– reference: (c) Pedersen, J. T.;Moult, J. J Mol Biol 1997, 269, 240.
– reference: Goldberg, D. E. Genetic Algorithms; Addison Wesley Longman: Reading, MA, 1989.
– reference: Liepins, G. E.;Vose, M. D. J Exp Theor Artif Intell 1990, 2, 101.
– reference: Smith, J.;Vavak, F. In Fundamentals of Genetic Algorithms 5 (FGA-5); Banzhaf, W.; Reeves, C., Ed.; Morgan Kaufmann Publishers: San Francisco, CA, 1999, p. 219.
– reference: (g) Dandekar, T.;Du, F. J Mol Model 1999, 5, 78;
– reference: Hubbard, R. E. Curr Opin Biotechnol 1997, 8, 696.
– reference: Jiang, T.;Cui, Q.;Shi, G.;Ma, S. J Chem Phys 2003, 119, 4592.
– reference: Schulze-Kremer, S.;Levin, A. In Advances in Molecular Bioinformatics; Schulze-Kremer, S., Ed.; IOS Press: Amsterdam, 1994, p. 201.
– reference: Osguthorpe, D. J. Curr Opin Struct Biol 2000, 10, 146.
– reference: Johnson, M. S.;Srinivasan, N.;Sowdhamini, R.;Blundell, T. L. Crit Rev Biochem Mol Biol 1994, 29, 1.
– reference: Jones, D. T.;Taylor, W. R.;Thornton, J. M. Nature 1992, 358, 86.
– reference: Androulakis, I. P.;Maranas, C. D.;Floudas, C. A. J Global Opt 1997, 11, 1.
– reference: Unger, R.;Moult, J. J Mol Biol 1993, 231, 75.
– reference: Neumaier, A. SIAM Rev 1997, 39, 407.
– reference: Czaplewski, C.;Liwo, A.;Pillardy, J.;Ołdziej, S.;Scheraga, H. A. Polymer 2004, 45, 677.
– reference: Cui, Y.;Chen, R. S.;Wong, W. H. Proteins 1998, 31, 247.
– reference: Némethy, G.;Pottle, M. S.;Scheraga, H. A. J Phys Chem 1983, 87, 1883.
– reference: Press, W. H.;Teukolsky, S. A.;Vetterling, W. T.;Flannery, B. P. Numerical Recipes in C; Cambridge University Press: Cambridge, UK, 1995, 2nd ed.
– reference: Bowie, J. U.;Lüthy, R.;Eisenberg, D. Science 1991, 253, 164.
– reference: (a) Sun, S. Protein Sci 1993, 2, 762;
– reference: Beasley, D.;Bull, D. R.;Martin, R. R. J Comput 1993, 15, 170.
– reference: Goldberg, D. E.;Korb, B.;Deb, K. Complex Sys 1989, 3, 493.
– reference: Syswerda, G. In Foundations of Genetic Algorithms (FGA); Rawlins, G. J. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 94.
– reference: Martí-Renom, M. A.;Stuart, A. C.;Fiser, A.;Sánchez, R.;Melo, F.;Šali, A. Annu Rev Biophys Biomol Struct 2000, 29, 291.
– reference: Hendlich, M.;Lacker, P.;Weitckus, S.;Floeckner, H.;Froschauer, R.;Gottsbacher, K.;Casari, G.;Sippl, M. J. J Mol Biol 1990, 216, 167.
– reference: Goldberg, D. E.;Deb, K. In Foundations of Genetic Algorithms (FGA); Rawlins, G. J. E., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1991, p. 69.
– reference: Chakraborty, U. K.;Janikow, C. Z. Inform Sci 2003, 156, 253.
– reference: Hart, W. E.;Istrail, S. J Comput Biol 1997, 4, 1.
– reference: Ngo, J. T.;Marks, J. Protein Eng 1992, 5, 313.
– reference: Deb, K.;Agarwal, S. In Fundamentals of Genetic Algorithms 5 (FGA-5); Banzhaf, W.; Reeves, C., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 1998, p. 265.
– reference: Maggio, E. T.;Ramnarayan, K. Trends Biotechnol 2001, 19, 266.
– reference: Bowie, J. U.;Eisenberg, D. Proc Natl Acad Sci USA 1994, 91, 4436.
– reference: Rogers, A.;Prügel-Bennett, A. In Fundamentals of Genetic Algorithms 5 (FGA-5); Banzhaf, W.; Reeves, C., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, 1998, p. 57.
– reference: Dimopoulos, C.;Zalzala, A. M. S. IEEE Trans Evolut Comput 2000, 4, 93.
– reference: Lee, J.;Scheraga, H. A.;Rackovsky, S. J Comp Chem 1997, 18, 1222.
– reference: Lee, J.; Scheraga, H. A.;Rackovsky, S. Biopolymers 1998, 46, 103.
– reference: Del Carpio, C. A. J Chem Inf Comput Sci 1996, 36, 258.
– reference: Cornell, W. D.; Cieplak, P.;Bayly, C. I.;Gould, I. R.;Merz, K. M.; Ferguson, D. M.;Spellmeyer, D. C.;Fox, T.;Caldwell, J. W.;Kollman, P. A. J Am Chem Soc 1995, 117, 5179.
– reference: Caplan, M. R.;Lauffenburger, D. A. Ind Eng Chem Res 2002, 41, 403.
– reference: Jones, D. T.;Thornton, J. M. J Comput Aided Mol Design 1993, 7, 439.
– reference: Davis, A. M.;Teague, S. J.;Kleywegt, G. J. Angew Chem Int Ed 2003, 42, 2718.
– reference: Baltzer, L. Top Curr Chem 1999, 202, 39.
– reference: De Jong, K. A.;Sarma, J. In Fundamentals of Genetic Algorithms 2 (FGA-2); Whitley, L. D., Ed.; Morgan Kaufmann Publishers: San Mateo, CA, 1993, p. 19.
– reference: (a) Pedersen, J. T.;Moult, J. Proteins 1995, 23, 454;
– reference: Unger, R.;Moult, J. Bull Math Biol 1993, 55, 1183.
– reference: Fraenkel, A. S. Bull Math Biol 1993, 55, 1199.
– volume: 29
  start-page: 1
  year: 1994
  publication-title: Crit Rev Biochem Mol Biol
– volume: 2 69 8
  start-page: 762 340 769
  year: 1993 1995 1995
  publication-title: Protein Sci Biophys J Protein Eng
– volume: 77
  start-page: 90
  year: 2000
  publication-title: Int J Quantum Chem
– volume: 42
  start-page: 2718
  year: 2003
  publication-title: Angew Chem Int Ed
– start-page: 9
  year: 1995
– year: 1981
– volume: 104
  start-page: 7784
  year: 2000
  publication-title: J Phys Chem B
– start-page: 2
  year: 1989
– volume: 91
  start-page: 4436
  year: 1994
  publication-title: Proc Natl Acad Sci USA
– volume: 19
  start-page: 266
  year: 2001
  publication-title: Trends Biotechnol
– year: 1989
– start-page: 51
  year: 1989
– start-page: 153
  year: 1988
– year: 1975
– start-page: 632
  year: 1993
– start-page: 94
  year: 1991
– volume: 8
  start-page: 696
  year: 1997
  publication-title: Curr Opin Biotechnol
– volume: 9
  start-page: 157
  year: 1999
  publication-title: Curr Opin Struct Biol
– year: 1998
– start-page: 62
  year: 1991
– volume: 216
  start-page: 167
  year: 1990
  publication-title: J Mol Biol
– volume: 10
  start-page: 146
  year: 2000
  publication-title: Curr Opin Struct Biol
– start-page: 118
  year: 1988
– volume: 87
  start-page: 1883
  year: 1983
  publication-title: J Phys Chem
– start-page: 142
  year: 1989
– volume: 866
  start-page: 119
  year: 1994
– start-page: 104
  year: 1989
– volume: 31
  start-page: 247
  year: 1998
  publication-title: Proteins
– volume: 4
  start-page: 187
  year: 1983
  publication-title: J Comp Chem
– volume: 46
  start-page: 103
  year: 1998
  publication-title: Biopolymers
– start-page: 1596
  year: 1999
– start-page: 65
  year: 1995
– volume: 53
  start-page: 585
  year: 2003
  publication-title: Proteins
– volume: 9
  start-page: 177
  year: 1999
  publication-title: Curr Opin Struct Biol
– start-page: 1283
  year: 1993
– start-page: 259
  year: 1992
– start-page: 230
  year: 1991
– start-page: 92
  year: 1991
– volume: 55
  start-page: 1199
  year: 1993
  publication-title: Bull Math Biol
– start-page: 295
  year: 2001
– start-page: 1367
  year: 2001
– start-page: 208
  year: 1998
– volume: 500
  start-page: 656
  year: 2002
  publication-title: Surf Sci
– volume: 13
  start-page: 299
  year: 1994
  publication-title: Mol Sim
– start-page: 31
  year: 1991
– start-page: 375
  year: 2001
– volume: 115
  start-page: 3374
  year: 2001
  publication-title: J Chem Phys
– volume: 117
  start-page: 5179
  year: 1995
  publication-title: J Am Chem Soc
– volume: 55
  start-page: 1183
  year: 1993
  publication-title: Bull Math Biol
– volume: 23 269
  start-page: 454 179 240
  issue: Suppl 1
  year: 1995 1997 1997
  publication-title: Proteins Proteins J Mol Biol
– volume: 21
  start-page: 65
  year: 2003
  publication-title: J Biomol Struct Dyn
– volume: 1498
  start-page: 959
  year: 1998
– volume: 1363
  start-page: 123
  year: 1998
– start-page: 19
  year: 1993
– year: 1995
– volume: 63
  start-page: 111
  year: 1990
  publication-title: Biol Cybern
– volume: 119
  start-page: 4592
  year: 2003
  publication-title: J Chem Phys
– start-page: 78
  year: 1998
– volume: 529
  start-page: 65
  year: 2002
  publication-title: FEBS Lett
– start-page: 61
  year: 1991
– volume: 3
  start-page: 298
  year: 1999
  publication-title: IEEE Trans Evolut Comp
– start-page: 201
  year: 1994
– volume: 4
  start-page: 93
  year: 2000
  publication-title: IEEE Trans Evolut Comput
– volume: 96
  start-page: 2025
  year: 1999
  publication-title: Proc Natl Acad Sci USA
– year: 2001
– volume: 16
  start-page: 122
  year: 1986
  publication-title: IEEE Trans Sys Man Cybernet
– volume: 2439
  start-page: 99
  year: 2002
– volume: 7
  start-page: 865
  year: 2002
  publication-title: Drug Discov Today
– volume: 358
  start-page: 86
  year: 1992
  publication-title: Nature
– volume: 7
  start-page: 439
  year: 1993
  publication-title: J Comput Aided Mol Design
– volume: 39
  start-page: 407
  year: 1997
  publication-title: SIAM Rev
– volume: 42
  start-page: 65
  year: 1969
  publication-title: J Mol Biol
– start-page: 574
  year: 1995
– volume: 14
  start-page: 110
  year: 2004
  publication-title: Curr Opin Struct Biol
– volume: 68
  start-page: 300
  year: 2003
  publication-title: Biopolymers
– start-page: 101
  year: 1985
– volume: 2724
  start-page: 1624
  year: 2003
– volume: 3
  start-page: 493
  year: 1989
  publication-title: Complex Sys
– volume: 37
  start-page: 3414
  year: 2001
  publication-title: IEEE Trans Magnet
– start-page: 219
  year: 1999
– volume: 107
  start-page: 3902
  year: 1985
  publication-title: J Am Chem Soc
– volume: 231
  start-page: 75
  year: 1993
  publication-title: J Mol Biol
– start-page: 391
  year: 1992
– volume: 20
  start-page: 1329
  year: 1999
  publication-title: J Comp Chem
– volume: 156
  start-page: 253
  year: 2003
  publication-title: Inform Sci
– volume: 2687
  start-page: 321
  year: 2003
– start-page: 301
  year: 1991
– start-page: 495
  year: 2002
– volume: 16
  start-page: 1434
  year: 1995
  publication-title: J Comp Chem
– start-page: 336
  year: 2001
– volume: 2
  start-page: 101
  year: 1990
  publication-title: J Exp Theor Artif Intell
– start-page: 726
  year: 1999
– start-page: 69
  year: 1991
– volume: 33
  start-page: 343
  year: 1998
  publication-title: Proteins
– volume: 6
  start-page: 566
  year: 2002
  publication-title: IEEE Trans Evol Comput
– volume: 45
  start-page: 677
  year: 2004
  publication-title: Polymer
– start-page: 86
  year: 1989
– volume: 27
  start-page: 1283
  year: 1988
  publication-title: Biopolymers
– start-page: 265
  year: 1998
– start-page: 205
  year: 1991
– volume: 47
  start-page: 141
  year: 2000
  publication-title: Discrete Math Theor Comput Sci
– volume: 5 236 18 256 10 5 5
  start-page: 637 844 315 1 645 877 78 317
  year: 1992 1994 1994 1996 1996 1997 1999 1999
  publication-title: Protein Eng J Mol Biol Int J Biol Macromol J Mol Biol Protein Eng J Mol Model J Mol Model
– volume: 98
  start-page: 2329
  year: 2001
  publication-title: Proc Natl Acad Sci USA
– start-page: 359
  year: 1998
– volume: 5
  start-page: 313
  year: 1992
  publication-title: Protein Eng
– volume: 4
  start-page: 1
  year: 1997
  publication-title: J Comput Biol
– volume: 7
  start-page: 230
  year: 1986
  publication-title: J Comp Chem
– volume: 18
  start-page: 1222
  year: 1997
  publication-title: J Comp Chem
– volume: 3
  start-page: 49
  year: 1993
  publication-title: J Global Opt
– start-page: 116
  year: 1989
– volume: 29
  start-page: 291
  year: 2000
  publication-title: Annu Rev Biophys Biomol Struct
– volume: 202
  start-page: 39
  year: 1999
  publication-title: Top Curr Chem
– start-page: 10
  year: 1989
– volume: 5
  start-page: 27
  year: 1998
  publication-title: J Comput Biol
– volume: 253
  start-page: 164
  year: 1991
  publication-title: Science
– volume: 11
  start-page: 1
  year: 1997
  publication-title: J Global Opt
– volume: 36
  start-page: 258
  year: 1996
  publication-title: J Chem Inf Comput Sci
– volume: 106
  start-page: 4270
  year: 1997
  publication-title: J Chem Phys
– volume: 15
  start-page: 170
  year: 1993
  publication-title: J Comput
– volume: 5
  start-page: 265
  year: 1991
  publication-title: Complex Sys
– year: 1991
– volume: 496
  start-page: 38
  year: 1991
– volume: 7
  start-page: 206
  year: 1997
  publication-title: Curr Opin Struct Biol
– start-page: 581
  year: 1993
– start-page: 57
  year: 1998
– volume: 41
  start-page: 403
  year: 2002
  publication-title: Ind Eng Chem Res
– year: 1999
– volume: 19
  start-page: 205
  year: 1997
  publication-title: Mol Sim
– volume-title: Numerical Recipes in C
  year: 1995
  ident: e_1_2_6_131_2
– ident: e_1_2_6_83_2
– start-page: 391
  volume-title: Parallel Problem Solving from Nature 2 (PPSN‐II)
  year: 1992
  ident: e_1_2_6_48_2
– ident: e_1_2_6_27_2
  doi: 10.1016/S0959-440X(99)80025-6
– ident: e_1_2_6_105_2
  doi: 10.1109/TSMC.1986.289288
– ident: e_1_2_6_61_2
  doi: 10.1002/bip.10226
– start-page: 99
  year: 2002
  ident: e_1_2_6_89_2
  doi: 10.1007/3-540-45712-7_10
– ident: e_1_2_6_56_2
  doi: 10.1002/(SICI)1096-987X(19970715)18:9<1222::AID-JCC10>3.0.CO;2-7
– ident: e_1_2_6_36_6
  doi: 10.1006/jmbi.1996.0115
– ident: e_1_2_6_20_2
  doi: 10.1093/protein/5.4.313
– ident: e_1_2_6_84_2
– volume-title: Handbook of Genetic Algorithms
  year: 1991
  ident: e_1_2_6_32_2
– ident: e_1_2_6_106_2
– ident: e_1_2_6_63_2
  doi: 10.1063/1.1592796
– start-page: 301
  volume-title: Foundations of Genetic Algorithms (FGA)
  year: 1991
  ident: e_1_2_6_128_2
– ident: e_1_2_6_70_2
– start-page: 19
  volume-title: Fundamentals of Genetic Algorithms 2 (FGA‐2)
  year: 1993
  ident: e_1_2_6_112_2
– volume: 5
  start-page: 265
  year: 1991
  ident: e_1_2_6_101_2
  publication-title: Complex Sys
– ident: e_1_2_6_6_2
  doi: 10.1016/j.sbi.2003.12.001
– ident: e_1_2_6_79_2
– ident: e_1_2_6_15_2
  doi: 10.1126/science.1853201
– ident: e_1_2_6_68_2
– ident: e_1_2_6_74_2
  doi: 10.1002/anie.200200539
– ident: e_1_2_6_121_2
– start-page: 205
  volume-title: Foundations of Genetic Algorithms (FGA)
  year: 1991
  ident: e_1_2_6_95_2
– ident: e_1_2_6_54_2
  doi: 10.1002/jcc.540161112
– ident: e_1_2_6_82_2
– ident: e_1_2_6_98_2
– ident: e_1_2_6_41_3
  doi: 10.1002/(SICI)1097-0134(1997)1 <179::AID-PROT23>3.0.CO;2-K
– start-page: 315
  volume-title: Protein Structure by Distance Analysis
  year: 1994
  ident: e_1_2_6_36_4
– ident: e_1_2_6_71_2
– ident: e_1_2_6_40_2
  doi: 10.1080/08927029408021995
– ident: e_1_2_6_58_2
  doi: 10.1073/pnas.96.5.2025
– ident: e_1_2_6_73_2
  doi: 10.1080/08927029708024151
– ident: e_1_2_6_9_2
  doi: 10.1021/ie010149z
– ident: e_1_2_6_36_5
  doi: 10.1016/0141-8130(95)01036-X
– ident: e_1_2_6_97_2
  doi: 10.1016/S0020-0255(03)00178-6
– ident: e_1_2_6_108_2
– ident: e_1_2_6_59_2
  doi: 10.1002/(SICI)1097-461X(2000)77:1<90::AID-QUA10>3.0.CO;2-L
– start-page: 69
  volume-title: Foundations of Genetic Algorithms (FGA)
  year: 1991
  ident: e_1_2_6_122_2
– ident: e_1_2_6_77_2
  doi: 10.1021/jp0001743
– ident: e_1_2_6_18_2
  doi: 10.1002/prot.10530
– ident: e_1_2_6_125_2
– start-page: 219
  volume-title: Fundamentals of Genetic Algorithms 5 (FGA‐5)
  year: 1999
  ident: e_1_2_6_115_2
– ident: e_1_2_6_7_2
  doi: 10.1016/S0014-5793(02)03290-8
– volume-title: Adaptation in Natural and Artificial Systems
  year: 1975
  ident: e_1_2_6_30_2
– ident: e_1_2_6_109_2
– ident: e_1_2_6_103_2
– ident: e_1_2_6_3_2
  doi: 10.1016/S1359-6446(02)02398-X
– ident: e_1_2_6_49_2
  doi: 10.1002/jcc.540040211
– ident: e_1_2_6_99_2
– ident: e_1_2_6_26_2
  doi: 10.1016/S0959-440X(99)80022-0
– ident: e_1_2_6_29_2
  doi: 10.1090/dimacs/047/07
– ident: e_1_2_6_39_2
  doi: 10.1073/pnas.91.10.4436
– ident: e_1_2_6_45_2
– volume: 3
  start-page: 493
  year: 1989
  ident: e_1_2_6_119_2
  publication-title: Complex Sys
– ident: e_1_2_6_10_2
  doi: 10.1016/0022-2836(69)90487-2
– ident: e_1_2_6_118_2
– start-page: 321
  year: 2003
  ident: e_1_2_6_72_2
  doi: 10.1007/3-540-44869-1_41
– ident: e_1_2_6_134_2
  doi: 10.1023/A:1008224308626
– ident: e_1_2_6_67_2
– ident: e_1_2_6_62_2
  doi: 10.1063/1.1387478
– volume-title: Genetic Algorithms + Data Structures = Evolution Programs
  year: 1999
  ident: e_1_2_6_34_2
– ident: e_1_2_6_36_9
  doi: 10.1007/PL00010719
– start-page: 259
  volume-title: Parallel Problem Solving from Nature 2 (PPSN‐II)
  year: 1992
  ident: e_1_2_6_87_2
– start-page: 959
  year: 1998
  ident: e_1_2_6_46_2
  doi: 10.1007/BFb0056937
– ident: e_1_2_6_41_4
  doi: 10.1006/jmbi.1997.1010
– ident: e_1_2_6_23_2
  doi: 10.1089/cmb.1997.4.1
– ident: e_1_2_6_133_2
  doi: 10.1002/(SICI)1096-987X(19970715)18:9<1222::AID-JCC10>3.0.CO;2-7
– ident: e_1_2_6_60_2
  doi: 10.1073/pnas.041609598
– ident: e_1_2_6_8_2
  doi: 10.1007/3-540-48990-8_2
– ident: e_1_2_6_16_2
  doi: 10.1038/358086a0
– ident: e_1_2_6_2_2
  doi: 10.1016/S0958-1669(97)80122-X
– start-page: 1283
  volume-title: Computer Aided Innovation of Materials II
  year: 1993
  ident: e_1_2_6_65_2
– ident: e_1_2_6_11_2
  doi: 10.3109/10409239409086797
– ident: e_1_2_6_50_2
  doi: 10.1007/BF01100239
– start-page: 57
  volume-title: Fundamentals of Genetic Algorithms 5 (FGA‐5)
  year: 1998
  ident: e_1_2_6_111_2
– start-page: 38
  year: 1991
  ident: e_1_2_6_107_2
  doi: 10.1007/BFb0029729
– ident: e_1_2_6_55_2
  doi: 10.1021/ja00299a024
– ident: e_1_2_6_129_2
– ident: e_1_2_6_12_2
  doi: 10.1016/S0959-440X(97)80027-9
– start-page: 119
  year: 1994
  ident: e_1_2_6_124_2
  doi: 10.1007/3-540-58484-6_256
– ident: e_1_2_6_51_2
  doi: 10.1002/jcc.540070216
– ident: e_1_2_6_130_2
– ident: e_1_2_6_5_2
  doi: 10.1016/S0039-6028(01)01809-X
– ident: e_1_2_6_36_7
  doi: 10.1093/protein/10.8.877
– ident: e_1_2_6_132_2
– ident: e_1_2_6_66_2
  doi: 10.1006/jmbi.1993.1258
– ident: e_1_2_6_19_2
  doi: 10.1016/S0959-440X(00)00067-1
– ident: e_1_2_6_25_2
  doi: 10.1016/j.polymer.2003.10.081
– ident: e_1_2_6_104_2
  doi: 10.1109/TEVC.2002.804323
– ident: e_1_2_6_52_2
  doi: 10.1002/(SICI)1096-987X(199910)20:13<1329::AID-JCC1>3.0.CO;2-H
– ident: e_1_2_6_37_4
  doi: 10.1093/protein/8.8.769
– ident: e_1_2_6_53_2
  doi: 10.1021/j100234a011
– ident: e_1_2_6_90_2
– ident: e_1_2_6_42_2
  doi: 10.1021/ci950106r
– start-page: 62
  volume-title: Handbook of Genetic Algorithms
  year: 1991
  ident: e_1_2_6_96_2
– ident: e_1_2_6_102_2
– ident: e_1_2_6_116_2
– ident: e_1_2_6_37_2
  doi: 10.1002/pro.5560020508
– ident: e_1_2_6_93_2
  doi: 10.1016/B978-0-934613-64-4.50021-9
– ident: e_1_2_6_24_2
  doi: 10.1089/cmb.1998.5.27
– ident: e_1_2_6_37_3
  doi: 10.1016/S0006-3495(95)79906-4
– volume: 15
  start-page: 170
  year: 1993
  ident: e_1_2_6_33_2
  publication-title: J Comput
– ident: e_1_2_6_57_2
  doi: 10.1002/(SICI)1097-0282(199808)46:2<103::AID-BIP5>3.0.CO;2-Q
– ident: e_1_2_6_127_2
– ident: e_1_2_6_4_2
  doi: 10.1016/S0167-7799(01)01666-3
– ident: e_1_2_6_47_2
– ident: e_1_2_6_44_2
  doi: 10.1002/(SICI)1097-0134(19980515)31:3<247::AID-PROT2>3.0.CO;2-G
– ident: e_1_2_6_117_2
– ident: e_1_2_6_36_2
  doi: 10.1093/protein/5.7.637
– ident: e_1_2_6_35_2
  doi: 10.1109/4235.850651
– ident: e_1_2_6_113_2
  doi: 10.1109/4235.797972
– ident: e_1_2_6_69_2
– ident: e_1_2_6_36_8
  doi: 10.1007/s008940050125
– ident: e_1_2_6_43_2
  doi: 10.1063/1.473514
– ident: e_1_2_6_17_2
  doi: 10.1007/BF02337560
– ident: e_1_2_6_36_3
  doi: 10.1006/jmbi.1994.1193
– ident: e_1_2_6_28_2
  doi: 10.1137/S0036144594278060
– ident: e_1_2_6_13_2
  doi: 10.1146/annurev.biophys.29.1.291
– ident: e_1_2_6_126_2
– ident: e_1_2_6_21_2
  doi: 10.1007/BF02460703
– ident: e_1_2_6_81_2
– ident: e_1_2_6_64_2
  doi: 10.1080/07391102.2003.10506906
– ident: e_1_2_6_76_2
  doi: 10.1002/bip.360270808
– start-page: 123
  year: 1998
  ident: e_1_2_6_88_2
  doi: 10.1007/BFb0026595
– start-page: 295
  volume-title: Fundamentals of Genetic Algorithms 6 (FGA‐6)
  year: 2001
  ident: e_1_2_6_92_2
– start-page: 265
  volume-title: Fundamentals of Genetic Algorithms 5 (FGA‐5)
  year: 1998
  ident: e_1_2_6_85_2
– volume-title: Numerical Optimization of Computer Models
  year: 1981
  ident: e_1_2_6_120_2
– ident: e_1_2_6_14_2
  doi: 10.1016/S0022-2836(05)80068-3
– start-page: 1624
  year: 2003
  ident: e_1_2_6_100_2
  doi: 10.1007/3-540-45110-2_56
– ident: e_1_2_6_114_2
  doi: 10.1109/20.952626
– volume-title: Genetic Algorithms
  year: 1989
  ident: e_1_2_6_31_2
– start-page: 201
  volume-title: Advances in Molecular Bioinformatics
  year: 1994
  ident: e_1_2_6_38_2
– ident: e_1_2_6_78_2
  doi: 10.1021/ja00124a002
– ident: e_1_2_6_86_2
  doi: 10.1080/09528139008953717
– ident: e_1_2_6_80_2
  doi: 10.1007/BF00203032
– ident: e_1_2_6_41_2
  doi: 10.1002/prot.340230319
– ident: e_1_2_6_123_2
– ident: e_1_2_6_75_2
  doi: 10.1002/(SICI)1097-0134(19981115)33:3<343::AID-PROT4>3.0.CO;2-B
– ident: e_1_2_6_22_2
  doi: 10.1016/S0092-8240(05)80170-3
– ident: e_1_2_6_91_2
– ident: e_1_2_6_94_2
– start-page: 94
  volume-title: Foundations of Genetic Algorithms (FGA)
  year: 1991
  ident: e_1_2_6_110_2
SSID ssj0003564
Score 1.9238287
Snippet True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for...
True ab initio prediction of protein 3D structure requires only the protein primary structure, a physicochemical free energy model, and a search method for...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1177
SubjectTerms Algorithms
biomaterials
biosensors
Chromosomes - genetics
Computer Simulation
Enkephalin, Methionine - chemistry
Enkephalin, Methionine - genetics
Enkephalin, Methionine - metabolism
Evolution, Molecular
genetic algorithm (GA)
Genetic algorithms
interfaces
met-enkephalin
Models, Molecular
Molecular structure
Mutation - genetics
Parameter optimization
Peptides - chemistry
Peptides - genetics
Peptides - metabolism
polyalanine
Probability
protein fold
Protein Folding
Protein Structure, Tertiary
protein tertiary structure
stochastic optimization
Studies
Title Ab initio protein fold prediction using evolutionary algorithms: Influence of design and control parameters on performance
URI https://api.istex.fr/ark:/67375/WNG-HG2B9R23-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.20440
https://www.ncbi.nlm.nih.gov/pubmed/16752367
https://www.proquest.com/docview/222285289
https://www.proquest.com/docview/68065237
Volume 27
WOSCitedRecordID wos000238586600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFom9jG8WBsNCCPESrUnsxIanUegGmio0Deib5fhjK3TJ1HQT4q_Hl69q0pCQeEuUS-L47pw7--ffAbxyNmUmYjb0scUIE5QszI1JQ6ucpdYJ7mpU5bejbDrls5n4sgHvur0wDT9EP-GGnlGP1-jgKq_21qShPzQyEFLq8_Vh7O2WDmD44Xjy9agfiBPWsEf5ICbkKYs6YqFRvNfffO13NMSe_XVTrHk9dK3_PZO7_9Xqe7DVhpxkv7GR-7BhiwdwZ9xVensIv_dzMkcQUUlq2oZ5QVy5MP4EV3FQcwTh8afEXrWG6t9P1OK0XM5XZ-fVW_KpK3VCSkdMDQohqjCkBcITJBg_R-BNRfzDLtabFR7ByeTjyfgwbGsyhBppY0KjhM54ZHmumUgUwq0jHXMzslo4lo10JHKV5yx2GdWUOiGoYalSNlJUc5s8hkFRFnYbiMgz54SOVKp8SmoFN5YmOUstTyOTJCyAN51mpG75yrFsxkI2TMux9H0p674M4GUvetGQdNwk9LpWby-hlj8R1ZYx-X16IA8P4vfiOE7kNICdTv-ydehKxjhTxnx2GsCL_qpXEy6vqMKWl5VMcY06TrIAnjRGs26Lz8qQKc9_Um0bf2-k_Dwe1wdP_110BzabeSFEJT6DwWp5aZ_DbX21mlfLXbiVzfhu6xp_AGMlEm4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NLdJ44ZsRBsxCCPESrUnsJEa8jELXQYnQVGBvluOPUeiSqekmxF-PL1_VpCEh8ZYoTnTx3dl39s-_A3hhTcx0wIzvYosRJiiJn2sd-0ZaQ43lqa1RlV9nSZalJyf88xa86c7CNPwQ_YIbekY9XqOD44L0_oY19IdCCkJKXcI-pM6M2ACG744nX2b9SByxhj7KRTF-GrOgYxYahfv9y1fmoyF27a_rgs2rsWs9-Uxu_5_Yd-BWG3SSg8ZK7sKWKe7B9rir9XYffh_kZIEwopLUxA2Lgthyqd0N7uOg7ggC5E-JuWxN1QlA5PK0XC3W38-q1-SoK3ZCSkt0DQshstCkhcITpBg_Q-hNRdzHzjfHFR7AfPJ-Pp76bVUGXyFxjK8lV0kamDRXjEcSAdeBClM9MopbloxUwHOZ5yy0CVWUWs6pZrGUJpBUpSZ6CIOiLMwjIDxPrOUqkLF0SanhqTY0ylls0jjQUcQ8eNWpRqiWsRwLZyxFw7UcCteXou5LD573Tc8bmo7rGr2s9du3kKufiGtLmPiWHYrpYfiWH4eRyDzY7QxAtC5diRDXypjLTz3Y6586NeEGiyxMeVGJGHepwyjxYKexmo0sLi9Drjz3S7Vx_F1I8WE8ri8e_3vTPdiezj_NxOwo-7gLN5tVIsQoPoHBenVhnsINdbleVKtnrYf8AUqkFXY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VXQRceD9CC7UQQlyibhI7iVEvZcu2hVVUVQV6sxw_ysI2WW22FeqvryevVaUiIXFLlEnkeGbsGfvzNwDvrImZDpjxXWwxxAQl8XOtY99Ia6ixPLU1qvL7JMmy9PSUH63BTncWpuGH6Bfc0DPq8Rod3My13V6xhv5SSEFIqUvYB5Tx2LnlYO94_G3Sj8QRa-ijXBTjpzELOmahYbjdv3xjPhpg1_65Ldi8GbvWk8_44f81-xE8aINOsttYyWNYM8UTuDfqar09havdnEwRRlSSmrhhWhBbzrS7wX0c1B1BgPwZMZetqboGEDk7KxfT5c_z6iM57IqdkNISXcNCiCw0aaHwBCnGzxF6UxH3sfnquMIzOBl_Phkd-G1VBl8hcYyvJVdJGpg0V4xHEgHXgQpTPTSKW5YMVcBzmecstAlVlFrOqWaxlCaQVKUmeg7rRVmYl0B4nljLVSBj6ZJSw1NtaJSz2KRxoKOIefChU41QLWM5Fs6YiYZrORSuL0Xdlx687UXnDU3HbULva_32EnLxG3FtCRM_sn1xsB9-4sdhJDIPNjoDEK1LVyLEtTLm8lMPtvqnTk24wSILU15UIsZd6jBKPHjRWM2qLS4vQ64890u1cfy9keLLaFRfvPp30S24e7Q3FpPD7OsG3G8WiRCiuAnry8WFeQ131OVyWi3etA5yDbfeFPE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ab+initio+protein+fold+prediction+using+evolutionary+algorithms%3A+influence+of+design+and+control+parameters+on+performance&rft.jtitle=Journal+of+computational+chemistry&rft.au=Djurdjevic%2C+Dusan+P&rft.au=Biggs%2C+Mark+J&rft.date=2006-08-01&rft.issn=0192-8651&rft.volume=27&rft.issue=11&rft.spage=1177&rft_id=info:doi/10.1002%2Fjcc.20440&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon