A deep learning algorithm proposal to automatic pharyngeal airway detection and segmentation on CBCT images

Objectives This study aims to evaluate an automatic segmentation algorithm for pharyngeal airway in cone‐beam computed tomography (CBCT) images using a deep learning artificial intelligence (AI) system. Setting and Sample Population Archives of the CBCT images were reviewed, and the data of 306 subj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Orthodontics & craniofacial research Jg. 24; H. S2; S. 117 - 123
Hauptverfasser: Sin, Çağla, Akkaya, Nurullah, Aksoy, Seçil, Orhan, Kaan, Öz, Ulaş
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Wiley Subscription Services, Inc 01.12.2021
Schlagworte:
ISSN:1601-6335, 1601-6343, 1601-6343
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Objectives This study aims to evaluate an automatic segmentation algorithm for pharyngeal airway in cone‐beam computed tomography (CBCT) images using a deep learning artificial intelligence (AI) system. Setting and Sample Population Archives of the CBCT images were reviewed, and the data of 306 subjects with the pharyngeal airway were included in this retrospective study. Material and Methods A machine learning algorithm, based on Convolutional Neural Network (CNN), did the segmentation of the pharyngeal airway on serial CBCT images. Semi‐automatic software (ITK‐SNAP) was used to manually generate the airway, and the results were compared with artificial intelligence. Dice similarity coefficient (DSC) and Intersection over Union (IoU) were used as the accuracy of segmentation in comparing the measurements of human measurements and artificial intelligence algorithms. Results The human observer found the average volume of the pharyngeal airway to be 18.08 cm3 and artificial intelligence to be 17.32 cm3. For pharyngeal airway segmentation, a dice ratio of 0.919 and a weighted IoU of 0.993 is achieved. Conclusions In this study, a successful AI algorithm that automatically segments the pharyngeal airway from CBCT images was created. It can be useful in the quick and easy calculation of pharyngeal airway volume from CBCT images for clinical application.
AbstractList ObjectivesThis study aims to evaluate an automatic segmentation algorithm for pharyngeal airway in cone‐beam computed tomography (CBCT) images using a deep learning artificial intelligence (AI) system.Setting and Sample PopulationArchives of the CBCT images were reviewed, and the data of 306 subjects with the pharyngeal airway were included in this retrospective study.Material and MethodsA machine learning algorithm, based on Convolutional Neural Network (CNN), did the segmentation of the pharyngeal airway on serial CBCT images. Semi‐automatic software (ITK‐SNAP) was used to manually generate the airway, and the results were compared with artificial intelligence. Dice similarity coefficient (DSC) and Intersection over Union (IoU) were used as the accuracy of segmentation in comparing the measurements of human measurements and artificial intelligence algorithms.ResultsThe human observer found the average volume of the pharyngeal airway to be 18.08 cm3 and artificial intelligence to be 17.32 cm3. For pharyngeal airway segmentation, a dice ratio of 0.919 and a weighted IoU of 0.993 is achieved.ConclusionsIn this study, a successful AI algorithm that automatically segments the pharyngeal airway from CBCT images was created. It can be useful in the quick and easy calculation of pharyngeal airway volume from CBCT images for clinical application.
This study aims to evaluate an automatic segmentation algorithm for pharyngeal airway in cone-beam computed tomography (CBCT) images using a deep learning artificial intelligence (AI) system.OBJECTIVESThis study aims to evaluate an automatic segmentation algorithm for pharyngeal airway in cone-beam computed tomography (CBCT) images using a deep learning artificial intelligence (AI) system.Archives of the CBCT images were reviewed, and the data of 306 subjects with the pharyngeal airway were included in this retrospective study.SETTING AND SAMPLE POPULATIONArchives of the CBCT images were reviewed, and the data of 306 subjects with the pharyngeal airway were included in this retrospective study.A machine learning algorithm, based on Convolutional Neural Network (CNN), did the segmentation of the pharyngeal airway on serial CBCT images. Semi-automatic software (ITK-SNAP) was used to manually generate the airway, and the results were compared with artificial intelligence. Dice similarity coefficient (DSC) and Intersection over Union (IoU) were used as the accuracy of segmentation in comparing the measurements of human measurements and artificial intelligence algorithms.MATERIAL AND METHODSA machine learning algorithm, based on Convolutional Neural Network (CNN), did the segmentation of the pharyngeal airway on serial CBCT images. Semi-automatic software (ITK-SNAP) was used to manually generate the airway, and the results were compared with artificial intelligence. Dice similarity coefficient (DSC) and Intersection over Union (IoU) were used as the accuracy of segmentation in comparing the measurements of human measurements and artificial intelligence algorithms.The human observer found the average volume of the pharyngeal airway to be 18.08 cm3 and artificial intelligence to be 17.32 cm3 . For pharyngeal airway segmentation, a dice ratio of 0.919 and a weighted IoU of 0.993 is achieved.RESULTSThe human observer found the average volume of the pharyngeal airway to be 18.08 cm3 and artificial intelligence to be 17.32 cm3 . For pharyngeal airway segmentation, a dice ratio of 0.919 and a weighted IoU of 0.993 is achieved.In this study, a successful AI algorithm that automatically segments the pharyngeal airway from CBCT images was created. It can be useful in the quick and easy calculation of pharyngeal airway volume from CBCT images for clinical application.CONCLUSIONSIn this study, a successful AI algorithm that automatically segments the pharyngeal airway from CBCT images was created. It can be useful in the quick and easy calculation of pharyngeal airway volume from CBCT images for clinical application.
Objectives This study aims to evaluate an automatic segmentation algorithm for pharyngeal airway in cone‐beam computed tomography (CBCT) images using a deep learning artificial intelligence (AI) system. Setting and Sample Population Archives of the CBCT images were reviewed, and the data of 306 subjects with the pharyngeal airway were included in this retrospective study. Material and Methods A machine learning algorithm, based on Convolutional Neural Network (CNN), did the segmentation of the pharyngeal airway on serial CBCT images. Semi‐automatic software (ITK‐SNAP) was used to manually generate the airway, and the results were compared with artificial intelligence. Dice similarity coefficient (DSC) and Intersection over Union (IoU) were used as the accuracy of segmentation in comparing the measurements of human measurements and artificial intelligence algorithms. Results The human observer found the average volume of the pharyngeal airway to be 18.08 cm3 and artificial intelligence to be 17.32 cm3. For pharyngeal airway segmentation, a dice ratio of 0.919 and a weighted IoU of 0.993 is achieved. Conclusions In this study, a successful AI algorithm that automatically segments the pharyngeal airway from CBCT images was created. It can be useful in the quick and easy calculation of pharyngeal airway volume from CBCT images for clinical application.
This study aims to evaluate an automatic segmentation algorithm for pharyngeal airway in cone-beam computed tomography (CBCT) images using a deep learning artificial intelligence (AI) system. Archives of the CBCT images were reviewed, and the data of 306 subjects with the pharyngeal airway were included in this retrospective study. A machine learning algorithm, based on Convolutional Neural Network (CNN), did the segmentation of the pharyngeal airway on serial CBCT images. Semi-automatic software (ITK-SNAP) was used to manually generate the airway, and the results were compared with artificial intelligence. Dice similarity coefficient (DSC) and Intersection over Union (IoU) were used as the accuracy of segmentation in comparing the measurements of human measurements and artificial intelligence algorithms. The human observer found the average volume of the pharyngeal airway to be 18.08 cm and artificial intelligence to be 17.32 cm . For pharyngeal airway segmentation, a dice ratio of 0.919 and a weighted IoU of 0.993 is achieved. In this study, a successful AI algorithm that automatically segments the pharyngeal airway from CBCT images was created. It can be useful in the quick and easy calculation of pharyngeal airway volume from CBCT images for clinical application.
Author Akkaya, Nurullah
Öz, Ulaş
Sin, Çağla
Aksoy, Seçil
Orhan, Kaan
Author_xml – sequence: 1
  givenname: Çağla
  orcidid: 0000-0002-5844-9404
  surname: Sin
  fullname: Sin, Çağla
  email: cagla.sin@neu.edu.tr
  organization: Near East University
– sequence: 2
  givenname: Nurullah
  surname: Akkaya
  fullname: Akkaya, Nurullah
  organization: Near East University
– sequence: 3
  givenname: Seçil
  surname: Aksoy
  fullname: Aksoy, Seçil
  organization: Near East University
– sequence: 4
  givenname: Kaan
  surname: Orhan
  fullname: Orhan, Kaan
  organization: Ankara University
– sequence: 5
  givenname: Ulaş
  orcidid: 0000-0002-5203-577X
  surname: Öz
  fullname: Öz, Ulaş
  organization: Near East University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33619828$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1L5TAUhsOgjB8zi_kDEnAzs7iajzZNl1ocRxAEcdYhTU9rtE1qkiL330_0Xl3IGAIJh-d9Oee8B2jHeQcI_aDkhOZz6k04oayQ5Avap4LQleAF33n_83IPHcT4QAgjjImvaI9zQWvJ5D56PMMdwIxH0MFZN2A9Dj7YdD_hOfjZRz3i5LFekp90sgbP9zqs3QC5rm141uusT2CS9Q5r1-EIwwQu6ddCvs15c4ftpAeI39Bur8cI37fvIfr7--Ku-bO6vrm8as6uV4ZLSVYSmKhFKxhjZV0BmJ50rO8rySqtu8qUlaxaQ7vCgOCUkbYuC6Ohq1pOW1P2_BD93PjmCZ4WiElNNhoYR-3AL1GxomZC0KIkGT3-gD74JbjcnWKCSsa44HWmjrbU0k7QqTnkgcJava0xA6cbwAQfY4BeGbtZQQrajooS9RKUykGp16Cy4tcHxZvp_9it-7MdYf05qG6a243iHyJXoh8
CitedBy_id crossref_primary_10_3390_diagnostics13010110
crossref_primary_10_1007_s00405_025_09451_4
crossref_primary_10_3390_diagnostics15141744
crossref_primary_10_1109_ACCESS_2024_3419908
crossref_primary_10_1016_j_ajodo_2022_01_011
crossref_primary_10_1097_SCS_0000000000010492
crossref_primary_10_1007_s11282_025_00831_4
crossref_primary_10_1038_s41598_024_70826_4
crossref_primary_10_1016_j_jdent_2023_104565
crossref_primary_10_1186_s12903_025_05482_9
crossref_primary_10_1007_s00784_023_05295_6
crossref_primary_10_1111_ocr_12615
crossref_primary_10_1002_ima_22973
crossref_primary_10_1016_j_jdent_2021_103705
crossref_primary_10_3390_life12111894
crossref_primary_10_1111_joor_13641
crossref_primary_10_1016_j_heliyon_2024_e27284
crossref_primary_10_3390_app14125028
crossref_primary_10_1016_j_compbiomed_2023_107123
crossref_primary_10_3390_diagnostics13122056
crossref_primary_10_1016_j_compbiomed_2024_109221
crossref_primary_10_3390_healthcare11202760
crossref_primary_10_1016_j_jdent_2023_104595
crossref_primary_10_1038_s41598_022_15920_1
crossref_primary_10_3390_app15052794
crossref_primary_10_1186_s12903_025_06187_9
crossref_primary_10_3390_diagnostics13081487
crossref_primary_10_1038_s41598_025_93250_8
crossref_primary_10_3390_bioengineering10080915
crossref_primary_10_3390_diagnostics11040591
crossref_primary_10_1016_j_compbiomed_2024_109568
crossref_primary_10_1016_j_jdent_2023_104637
crossref_primary_10_3390_diagnostics13223471
crossref_primary_10_1007_s10278_025_01595_3
crossref_primary_10_1177_09544119231173165
crossref_primary_10_1007_s11517_023_02842_x
crossref_primary_10_1016_j_jormas_2024_102048
crossref_primary_10_3390_diagnostics14171917
crossref_primary_10_3390_jcm13010197
crossref_primary_10_1007_s11282_021_00577_9
Cites_doi 10.1016/j.ijporl.2011.06.019
10.1259/dmfr.20160107
10.1007/978-3-030-33128-3_9
10.1007/s11548-019-02038-5
10.1007/978-3-319-24574-4_28
10.1186/s13550-017-0260-9
10.1038/s41598-019-44839-3
10.1093/ejo/5.1.47
10.1148/rg.2017160130
10.1111/iej.13265
10.1002/mp.13735
10.2319/011507-18.1
10.4258/hir.2018.24.3.236
10.1016/j.ajodo.2018.06.019
10.1016/j.neuroimage.2006.01.015
10.1016/j.ajodo.2011.04.020
10.1148/rg.2017170077
10.1145/3065386
10.1016/j.ajodo.2017.05.031
10.1016/j.ajodo.2012.07.015
10.1016/j.ajodo.2015.07.030
10.1093/ejo/cjz007
10.1016/j.ajodo.2007.04.043
10.2319/083117-587.1
10.1016/j.ajodo.2008.01.020
10.1016/j.ajodo.2013.01.015
10.1093/ejo/cjm076
10.1016/j.ijom.2011.09.008
10.1038/nature14539
10.1111/ocr.12279
10.1371/journal.pone.0195798
10.1259/dmfr.20190441
ContentType Journal Article
Copyright 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright © 2021 John Wiley & Sons A/S
Copyright_xml – notice: 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2021 John Wiley & Sons A/S
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
K9.
7X8
DOI 10.1111/ocr.12480
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1601-6343
EndPage 123
ExternalDocumentID 33619828
10_1111_ocr_12480
OCR12480
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
31~
33P
34H
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WBNRW
WIH
WIK
WOHZO
WPGGZ
WQJ
WRC
WXSBR
XG1
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QP
K9.
7X8
ID FETCH-LOGICAL-c3880-8e2696b6222597eecf0d2ff7827aad7c5787bc1d4ce63120b954caed7b31bc5f3
IEDL.DBID DRFUL
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626110200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1601-6335
1601-6343
IngestDate Sun Nov 09 10:30:39 EST 2025
Sat Nov 29 14:34:03 EST 2025
Thu Apr 03 07:07:56 EDT 2025
Sat Nov 29 03:39:29 EST 2025
Tue Nov 18 22:29:38 EST 2025
Wed Jan 22 16:27:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S2
Keywords cone-beam computed tomography
deep learning
pharyngeal airway
artificial intelligence
Language English
License 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3880-8e2696b6222597eecf0d2ff7827aad7c5787bc1d4ce63120b954caed7b31bc5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5844-9404
0000-0002-5203-577X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ocr.12480
PMID 33619828
PQID 2618223639
PQPubID 1096360
PageCount 7
ParticipantIDs proquest_miscellaneous_2492661450
proquest_journals_2618223639
pubmed_primary_33619828
crossref_citationtrail_10_1111_ocr_12480
crossref_primary_10_1111_ocr_12480
wiley_primary_10_1111_ocr_12480_OCR12480
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
2021-Dec
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Malden
PublicationTitle Orthodontics & craniofacial research
PublicationTitleAlternate Orthod Craniofac Res
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2019; 9
2012; 142
2006; 31
2017; 60
2015; 521
2017; 46
1983; 5
2019; 14
2011; 75
2008; 78
2009; 135
2016; 149
2013; 143
2008; 30
2018; 88
2009; 136
2020; 1213
2018; 24
2018; 153
2017; 37
2020; 53
2019; 41
2019; 22
2019; 46
2020; 49
2015
2013
2011; 140
2018; 10
2019; 155
2012; 41
2018; 13
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Shokri A (e_1_2_10_32_1) 2018; 10
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_31_1
e_1_2_10_30_1
Aksoy S (e_1_2_10_34_1) 2013
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 41
  start-page: 87
  issue: 1
  year: 2012
  end-page: 93
  article-title: Cone‐beam computed tomography evaluation of short‐ and long‐term airway change and stability after orthognathic surgery in patients with Class III skeletal deformities: bimaxillary surgery and mandibular setback surgery
  publication-title: Int J Oral Maxillofac Surg
– start-page: 234
  year: 2015
  end-page: 241
– volume: 1213
  start-page: 135
  year: 2020
  end-page: 147
  article-title: Automatic segmentation of multiple organs on 3D CT images by using deep learning approaches
  publication-title: Adv Exp Med Biol
– volume: 37
  start-page: 505
  issue: 2
  year: 2017
  end-page: 515
  article-title: Machine learning for medical imaging
  publication-title: Radiographics
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 136
  start-page: 805
  issue: 6
  year: 2009
  end-page: 814
  article-title: Pharyngeal airway volume and shape from cone‐beam computed tomography: relationship to facial morphology
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 13
  issue: 4
  year: 2018
  article-title: Automatic lesion detection and segmentation of 18F‐FET PET in gliomas: a full 3D U‐Net convolutional neural network study
  publication-title: PLoS One
– volume: 143
  start-page: 799
  issue: 6
  year: 2013
  end-page: 809
  article-title: Pharyngeal airway characterization in adolescents related to facial skeletal pattern: a preliminary study
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 10
  start-page: e1017
  issue: 10
  year: 2018
  end-page: e1028
  article-title: Comparison of pharyngeal airway volume in different skeletal facial patterns using cone beam computed tomography
  publication-title: J Clin Exp Dent
– volume: 46
  start-page: 20160107
  issue: 2
  year: 2017
  article-title: Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study
  publication-title: Dentomaxillofac Radiol
– volume: 30
  start-page: 61
  issue: 1
  year: 2008
  end-page: 66
  article-title: Effects on the sagittal pharyngeal dimensions of protraction and rapid palatal expansion in Class III malocclusion subjects
  publication-title: Eur J Orthod
– volume: 22
  start-page: 8
  issue: Suppl 1
  year: 2019
  end-page: 13
  article-title: Orthodontics in the era of big data analytics
  publication-title: Orthod Craniofac Res
– volume: 14
  start-page: 1923
  issue: 11
  year: 2019
  end-page: 1932
  article-title: Fully automated intracranial ventricle segmentation on CT with 2D regional convolutional neural network to estimate ventricular volume
  publication-title: Int J Comput Assist Radiol Surg
– volume: 153
  start-page: 46
  issue: 1
  year: 2018
  end-page: 53
  article-title: Pharyngeal airway evaluation after isolated mandibular setback surgery using cone‐beam computed tomography
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 155
  start-page: 791
  issue: 6
  year: 2019
  end-page: 800
  article-title: Three‐dimensional airway changes after adenotonsillectomy in children with obstructive apnea: Do expectations meet reality?
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 149
  start-page: 127
  issue: 1
  year: 2016
  end-page: 133
  article-title: New approach for the diagnosis of extractions with neural network machine learning
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 140
  start-page: e161
  issue: 4
  year: 2011
  end-page: e169
  article-title: Three‐dimensional analysis of pharyngeal airway volume in adults with anterior position of the mandible
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun ACM
– volume: 7
  start-page: 11
  issue: 1
  year: 2017
  article-title: Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non‐small cell lung cancer from F‐FDG PET/CT images
  publication-title: EJNMMI Res
– volume: 142
  start-page: 801
  issue: 6
  year: 2012
  end-page: 813
  article-title: Imaging software accuracy for 3‐dimensional analysis of the upper airway
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 53
  start-page: 680
  issue: 5
  year: 2020
  end-page: 689
  article-title: Evaluation of artificial intelligence for detecting periapical pathosis on cone‐beam computed tomography scans
  publication-title: Int Endod J
– volume: 78
  start-page: 77
  issue: 1
  year: 2008
  end-page: 82
  article-title: Oral breathing and head posture
  publication-title: Angle Orthod
– volume: 37
  start-page: 2113
  issue: 7
  year: 2017
  end-page: 2131
  article-title: Deep learning: a primer for radiologists
  publication-title: Radiographics
– volume: 88
  start-page: 552
  issue: 5
  year: 2018
  end-page: 559
  article-title: Three‐dimensional evaluation of changes in upper airway volume in growing skeletal Class II patients following mandibular advancement treatment with functional orthopedic appliances
  publication-title: Angle Orthod
– volume: 75
  start-page: 1195
  issue: 9
  year: 2011
  end-page: 1199
  article-title: Three‐dimensional assessment of pharyngeal airway in nasal‐ and mouth‐breathing children
  publication-title: Int J Pediatr Otorhinolaryngol
– volume: 46
  start-page: 4455
  issue: 10
  year: 2019
  end-page: 4469
  article-title: Automatic liver segmentation by integrating fully convolutional networks into active contour models
  publication-title: Med Phys
– volume: 24
  start-page: 236
  issue: 3
  year: 2018
  end-page: 241
  article-title: Application of convolutional neural network in the diagnosis of jaw tumors
  publication-title: Healthc Inform Res
– volume: 9
  start-page: 8495
  year: 2019
  article-title: Deep learning for the radiographic detection of periodontal bone loss
  publication-title: Sci Rep
– volume: 5
  start-page: 47
  issue: 1
  year: 1983
  end-page: 58
  article-title: A longitudinal study of the development of the posterior nasopharyngeal wall between 3 and 16 years of age
  publication-title: Eur J Orthod
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  end-page: 1128
  article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: NeuroImage
– volume: 41
  start-page: 428
  issue: 4
  year: 2019
  end-page: 433
  article-title: Facial attractiveness of cleft patients: a direct comparison between artificial‐intelligence‐based scoring and conventional rater groups
  publication-title: Eur J Orthod
– volume: 49
  issue: 5
  year: 2020
  article-title: Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models
  publication-title: Dentomaxillofac Radiol
– volume: 135
  start-page: 468
  issue: 4
  year: 2009
  end-page: 479
  article-title: Comparison of airway space with conventional lateral head films and 3‐dimensional reconstruction from cone‐beam computed tomography
  publication-title: Am J Orthod Dentofacial Orthop
– year: 2013
– ident: e_1_2_10_30_1
  doi: 10.1016/j.ijporl.2011.06.019
– volume: 10
  start-page: e1017
  issue: 10
  year: 2018
  ident: e_1_2_10_32_1
  article-title: Comparison of pharyngeal airway volume in different skeletal facial patterns using cone beam computed tomography
  publication-title: J Clin Exp Dent
– ident: e_1_2_10_9_1
  doi: 10.1259/dmfr.20160107
– ident: e_1_2_10_27_1
  doi: 10.1007/978-3-030-33128-3_9
– ident: e_1_2_10_26_1
  doi: 10.1007/s11548-019-02038-5
– ident: e_1_2_10_6_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_10_8_1
  doi: 10.1186/s13550-017-0260-9
– ident: e_1_2_10_12_1
  doi: 10.1038/s41598-019-44839-3
– ident: e_1_2_10_18_1
  doi: 10.1093/ejo/5.1.47
– ident: e_1_2_10_4_1
  doi: 10.1148/rg.2017160130
– ident: e_1_2_10_10_1
  doi: 10.1111/iej.13265
– ident: e_1_2_10_28_1
  doi: 10.1002/mp.13735
– ident: e_1_2_10_29_1
  doi: 10.2319/011507-18.1
– ident: e_1_2_10_11_1
  doi: 10.4258/hir.2018.24.3.236
– ident: e_1_2_10_31_1
  doi: 10.1016/j.ajodo.2018.06.019
– ident: e_1_2_10_24_1
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: e_1_2_10_25_1
  doi: 10.1016/j.ajodo.2011.04.020
– ident: e_1_2_10_2_1
  doi: 10.1148/rg.2017170077
– ident: e_1_2_10_5_1
  doi: 10.1145/3065386
– ident: e_1_2_10_21_1
  doi: 10.1016/j.ajodo.2017.05.031
– ident: e_1_2_10_23_1
  doi: 10.1016/j.ajodo.2012.07.015
– ident: e_1_2_10_13_1
  doi: 10.1016/j.ajodo.2015.07.030
– ident: e_1_2_10_14_1
  doi: 10.1093/ejo/cjz007
– ident: e_1_2_10_22_1
  doi: 10.1016/j.ajodo.2007.04.043
– volume-title: Three‐dimensional evaluation of paranasal sinuses and anatomic variations with upper airway anatomy using CBCT
  year: 2013
  ident: e_1_2_10_34_1
– ident: e_1_2_10_19_1
  doi: 10.2319/083117-587.1
– ident: e_1_2_10_16_1
  doi: 10.1016/j.ajodo.2008.01.020
– ident: e_1_2_10_17_1
  doi: 10.1016/j.ajodo.2013.01.015
– ident: e_1_2_10_20_1
  doi: 10.1093/ejo/cjm076
– ident: e_1_2_10_33_1
  doi: 10.1016/j.ijom.2011.09.008
– ident: e_1_2_10_3_1
  doi: 10.1038/nature14539
– ident: e_1_2_10_35_1
  doi: 10.1111/ocr.12279
– ident: e_1_2_10_7_1
  doi: 10.1371/journal.pone.0195798
– ident: e_1_2_10_15_1
  doi: 10.1259/dmfr.20190441
SSID ssj0020226
Score 2.4655378
Snippet Objectives This study aims to evaluate an automatic segmentation algorithm for pharyngeal airway in cone‐beam computed tomography (CBCT) images using a deep...
This study aims to evaluate an automatic segmentation algorithm for pharyngeal airway in cone-beam computed tomography (CBCT) images using a deep learning...
ObjectivesThis study aims to evaluate an automatic segmentation algorithm for pharyngeal airway in cone‐beam computed tomography (CBCT) images using a deep...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117
SubjectTerms Algorithms
Artificial Intelligence
Computed tomography
Cone-Beam Computed Tomography
Deep Learning
Humans
Image processing
Image Processing, Computer-Assisted
Itk protein
Learning algorithms
Machine learning
Neural networks
pharyngeal airway
Pharynx
Respiratory tract
Retrospective Studies
Segmentation
Spiral Cone-Beam Computed Tomography
Title A deep learning algorithm proposal to automatic pharyngeal airway detection and segmentation on CBCT images
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Focr.12480
https://www.ncbi.nlm.nih.gov/pubmed/33619828
https://www.proquest.com/docview/2618223639
https://www.proquest.com/docview/2492661450
Volume 24
WOSCitedRecordID wos000626110200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1601-6343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020226
  issn: 1601-6335
  databaseCode: DRFUL
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC58LOhF3Yc6vuhd9rCXLJPuTB540nEHD-KKKMwt9KMyDjrJkGQU_73VPZmguAsLCzkEUp1uuqu6vi-prgL4zjUmoeLWkGLpBSqIPIm0GZpMm8CE5MN85YpNRJeX8XCYXC3B8eIszDw_RPvBzVqG26-tgUtVvTLyQpc_yTnFxNdX7aEqYl6rZ9eD24uWb5F7coeLiHN4oRC9JrGQDeRpG791R-8w5lvI6nzOYPO_RrsFGw3UZCdz3fgIS5h_grUzGx5kK7x9hvsTZhCnrKkcMWLyYVSU4_puwqa2eEJFreuCyVlduMSubHpHA8hHhC2ZHJdP8pna1y6WK2cyN6zC0aQ5y5Qzuvqn_Rs2ntCWVX2B28Gvm_651xRf8LTND-PFyENaxdDywSRC1FnX8CwjQBFJaSJtLV1p3wQaQ-Hzrkp6gZZoIiV8pXuZ2IaVvMhxFxhXQTcTsmsUJrayR5wF0kfOMVaS4JDowI_FGqS6yUxuC2Q8pAuGQrOXutnrwLdWdDpPx_EnoYPFQqaNRVYpMUXCQoIAWQe-to_JluwPEpljMSMZmz2R8EqPXrEzV4C2FyGIahI9pcG6df579-nv_rW72ft30X1Y5zZYxsXJHMBKXc7wED7oR9KI8giWo2F81Kj3C8S__Qs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-hMom9AGMbK4PNQ3vYS6bGTvMh8QJlFRNdmVCReIv8cSnVaFKlKYj_fmc3jUBj0qRJeYiUc2LZd77fzznfAXzmGpNQcWtIsfQCFUSeRFoMTaZNYELyYb5yxSai4TC-vk5-rsHR6izMMj9Es-FmLcOt19bA7Yb0IysvdPmVvFNMhH09CEUUt2D99LJ_NWgIF_knd7qISIcXCtGtMwvZSJ6m8VN_9AfIfIpZndPpb_1fd7dhswab7HipHa9gDfMd2Di1AUK2xttr-HXMDOKM1bUjxkzejotyUt1M2cyWT5hT66pgclEVLrUrm91QD_IxoUsmJ-W9fKD2lYvmypnMDZvjeFqfZsoZXb2T3ohNprRozd_AVf_bqHfm1eUXPG0zxHgx8pDmMbSMMIkQddYxPMsIUkRSmkhbW1faN4HGUPi8o5JuoCWaSAlf6W4m3kIrL3J8B4yroJMJ2TEKE1vbI84C6SPnGCtJgEi04ctqElJd5ya3JTJu0xVHodFL3ei14bARnS0TcjwntL-aybS2yXlKXJHQkCBI1oZPzWOyJvuLROZYLEjG5k8kxNKlV-wuNaD5ihBENomgUmfdRP_98-lF79Ld7P276EfYOBv9GKSD78Pz9_CS29AZFzWzD62qXOABvNB3pB3lh1rLfwPwdwAi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KWra9rO0-03abNvawF49Y8if0pU0WNlqyUlrom9HHOQ1rbOM4G_vve1Ic09INBgM_GHyyhE6n-_3s0x3AR64xjRS3hpRIL1BB7EmkzdDk2gQmIh_mK1dsIp5Mkqur9GwDDtdnYVb5IboPbtYy3H5tDRwrk9-x8lLXn8k7JUTYN4MwDYMebI7Ox5enHeEi_-ROFxHp8CIhwjazkI3k6Rrf90cPQOZ9zOqcznj7_4a7A09bsMmOVqtjFzaweAaPRzZAyNZ4ew4_jphBrFhbO2LK5M20rGfN9ZxVtnzCglo3JZPLpnSpXVl1TSMopoQumZzVv-Rvat-4aK6CycKwBU7n7WmmgtE1PB5esNmcNq3FC7gcf7kYfvXa8guethlivAR5RHqMLCNMY0SdDwzPc4IUsZQm1tbWlfZNoDESPh8oUoGWaGIlfKXDXLyEXlEW-BoYV8EgF3JgFKa2tkeSB9JHzjFRkgCR6MOntRIy3eYmtyUybrI1R6HZy9zs9eFDJ1qtEnL8SehgrcmstclFRlyR0JAgSNaH991jsib7i0QWWC5JxuZPJMQS0iterVZA14sQRDaJoNJgnaL_3n32fXjubvb-XfQdPDobjbPTb5OTfXjCbeSMC5o5gF5TL_ENbOmftDjqt-0ivwV8CP-O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+algorithm+proposal+to+automatic+pharyngeal+airway+detection+and+segmentation+on+CBCT+images&rft.jtitle=Orthodontics+%26+craniofacial+research&rft.au=Sin%2C+%C3%87a%C4%9Fla&rft.au=Akkaya%2C+Nurullah&rft.au=Aksoy%2C+Se%C3%A7il&rft.au=Orhan%2C+Kaan&rft.date=2021-12-01&rft.issn=1601-6335&rft.eissn=1601-6343&rft.volume=24&rft.spage=117&rft.epage=123&rft_id=info:doi/10.1111%2Focr.12480&rft.externalDBID=10.1111%252Focr.12480&rft.externalDocID=OCR12480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1601-6335&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1601-6335&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1601-6335&client=summon