Voltage‐dependent conformational changes of Kv1.3 channels activate cell proliferation

The voltage‐dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, nonc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular physiology Vol. 236; no. 6; pp. 4330 - 4347
Main Authors: Cidad, Pilar, Alonso, Esperanza, Arévalo‐Martínez, Marycarmen, Calvo, Enrique, Fuente, Miguel A., Pérez‐García, M. Teresa, López‐López, José R.
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.06.2021
Subjects:
ISSN:0021-9541, 1097-4652, 1097-4652
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The voltage‐dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K+ efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule‐specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K+ fluxes. Likewise, some of the molecular determinants of Kv1.3‐induced proliferation have been located in the C‐terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3‐induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage‐dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3‐induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage‐dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3‐IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage‐dependent conformational changes of Kv1.3 are an essential element in Kv1.3‐induced proliferation. Ion channels have been involved in proliferation in many tissues, but the underlying mechanisms remain unclear. Here, the authors demonstrate a link between Kv1.3 conformational changes and proliferation, and conclude that voltage‐dependent transitions of the channel regulate cell cycle progression.
AbstractList The voltage-dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca influx, K  channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule-specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K fluxes. Likewise, some of the molecular determinants of Kv1.3-induced proliferation have been located in the C-terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3-induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage-dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3-induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage-dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3-IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage-dependent conformational changes of Kv1.3 are an essential element in Kv1.3-induced proliferation.
The voltage‐dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K+ efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule‐specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K+ fluxes. Likewise, some of the molecular determinants of Kv1.3‐induced proliferation have been located in the C‐terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3‐induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage‐dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3‐induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage‐dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3‐IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage‐dependent conformational changes of Kv1.3 are an essential element in Kv1.3‐induced proliferation. Ion channels have been involved in proliferation in many tissues, but the underlying mechanisms remain unclear. Here, the authors demonstrate a link between Kv1.3 conformational changes and proliferation, and conclude that voltage‐dependent transitions of the channel regulate cell cycle progression.
The voltage-dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K+ efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule-specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K+ fluxes. Likewise, some of the molecular determinants of Kv1.3-induced proliferation have been located in the C-terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3-induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage-dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3-induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage-dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3-IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage-dependent conformational changes of Kv1.3 are an essential element in Kv1.3-induced proliferation.The voltage-dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K+ efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule-specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K+ fluxes. Likewise, some of the molecular determinants of Kv1.3-induced proliferation have been located in the C-terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3-induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage-dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3-induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage-dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3-IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage-dependent conformational changes of Kv1.3 are an essential element in Kv1.3-induced proliferation.
The voltage‐dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca 2+ influx, K +  channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K + efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule‐specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K + fluxes. Likewise, some of the molecular determinants of Kv1.3‐induced proliferation have been located in the C‐terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3‐induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage‐dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3‐induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage‐dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3‐IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage‐dependent conformational changes of Kv1.3 are an essential element in Kv1.3‐induced proliferation.
The voltage‐dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K+ efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule‐specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K+ fluxes. Likewise, some of the molecular determinants of Kv1.3‐induced proliferation have been located in the C‐terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3‐induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage‐dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3‐induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage‐dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3‐IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage‐dependent conformational changes of Kv1.3 are an essential element in Kv1.3‐induced proliferation.
Author Alonso, Esperanza
Arévalo‐Martínez, Marycarmen
Fuente, Miguel A.
López‐López, José R.
Cidad, Pilar
Pérez‐García, M. Teresa
Calvo, Enrique
Author_xml – sequence: 1
  givenname: Pilar
  orcidid: 0000-0002-6338-7738
  surname: Cidad
  fullname: Cidad, Pilar
  organization: Universidad de Valladolid y CSIC
– sequence: 2
  givenname: Esperanza
  surname: Alonso
  fullname: Alonso, Esperanza
  organization: Universidad de Valladolid y CSIC
– sequence: 3
  givenname: Marycarmen
  orcidid: 0000-0002-3162-4807
  surname: Arévalo‐Martínez
  fullname: Arévalo‐Martínez, Marycarmen
  organization: Universidad de Valladolid y CSIC
– sequence: 4
  givenname: Enrique
  surname: Calvo
  fullname: Calvo, Enrique
  organization: CNIC
– sequence: 5
  givenname: Miguel A.
  orcidid: 0000-0003-4619-8756
  surname: Fuente
  fullname: Fuente, Miguel A.
  organization: Universidad de Valladolid
– sequence: 6
  givenname: M. Teresa
  orcidid: 0000-0001-8540-8117
  surname: Pérez‐García
  fullname: Pérez‐García, M. Teresa
  email: tperez@ibgm.uva.es
  organization: Universidad de Valladolid y CSIC
– sequence: 7
  givenname: José R.
  orcidid: 0000-0002-3870-421X
  surname: López‐López
  fullname: López‐López, José R.
  organization: Universidad de Valladolid y CSIC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33230847$$D View this record in MEDLINE/PubMed
BookMark eNp10c1OGzEQB3CrooJAOfQFqpV6KYcNY3s_7GMV8VmkcqBVb5bXO6YbOXZqb6i48Qg8I0-CScIFtSdL9u8_9nj2yY4PHgn5SGFKAdjx3CynHGgL78iEgmzLqqnZDpnkM1rKuqJ7ZD-lOQBIyfku2eOccRBVOyG_fgY36lt8enjscYm-Rz8WJngb4kKPQ_DaFea39reYimCLb3d0ytcbHl0qtBmHOz1iYdC5YhmDGyzGde4DeW-1S3i4XQ_Ij9OTm9l5efX97GL29ao0XAgo2050DGhvWS2YlV0lUIOVdW94LQ2Hprc19DYjYSU1EqywpmugZZWQbc_5AfmyqZtv_7PCNKrFkF6eoz2GVVKsaipaNQ1jmX5-Q-dhFXOHWdUgs2SszerTVq26BfZqGYeFjvfq9c8yON4AE0NKEa0yw7jueYx6cIqCepmKylNR66nkxNGbxGvRf9lt9b-Dw_v_Q3U5u94kngGb95to
CitedBy_id crossref_primary_10_1007_s44154_022_00055_0
crossref_primary_10_3389_fphys_2024_1487775
crossref_primary_10_1002_jcp_30984
crossref_primary_10_3390_coatings11020210
crossref_primary_10_3389_fphar_2021_652508
crossref_primary_10_3390_cells11142230
crossref_primary_10_1016_j_abb_2023_109719
crossref_primary_10_1161_JAHA_124_038358
crossref_primary_10_3390_toxins14120858
Cites_doi 10.1085/jgp.115.1.33
10.1111/bph.13283
10.1091/mbc.E13-12-0708
10.1016/S0896-6273(00)80571-1
10.1074/jbc.M115.678995
10.1073/pnas.0505909103
10.1038/nmeth.2089
10.1007/s00424-014-1607-y
10.1021/acs.molpharmaceut.5b00023
10.3389/fphar.2012.00049
10.1161/ATVBAHA.111.242727
10.1016/S0896-6273(00)80105-1
10.1152/ajpcell.00274.2010
10.1038/nature07620
10.15252/embr.201439834
10.1093/hmg/ddg049
10.1111/j.1751-1097.2008.00435.x
10.1111/j.1600-065X.2009.00816.x
10.1021/ac0341261
10.3389/fphys.2013.00220
10.1021/pr100377v
10.1038/nrn1988
10.1242/jcs.023564
10.1161/01.RES.0000194322.91255.13
10.1152/ajpcell.00136.2017
10.1073/pnas.0804236105
10.1007/s12015-009-9080-2
10.1021/ac025747h
10.1016/S0076-6879(07)28011-5
10.1002/cm.21237
10.1085/jgp.20028696
10.1098/rstb.2013.0094
10.1002/bies.201600190
10.1146/annurev-immunol-032414-112212
10.1016/j.pbiomolbio.2005.10.001
10.1007/s002329900135
10.1016/j.tcb.2014.12.005
10.1038/nrd2983
10.4161/cc.8.21.9888
10.1161/ATVBAHA.110.205187
10.1038/307465a0
10.1038/ncb1757
10.2337/db06-1275
10.1038/jid.2015.140
10.1124/mol.105.015669
10.1161/CIRCRESAHA.108.178186
10.1016/S0006-3495(95)79963-5
10.1126/science.56781
10.1113/jphysiol.2013.265751
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2020 Wiley Periodicals LLC.
2021 Wiley Periodicals LLC
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2020 Wiley Periodicals LLC.
– notice: 2021 Wiley Periodicals LLC
DBID AAYXX
CITATION
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.30170
DatabaseName CrossRef
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 4347
ExternalDocumentID 33230847
10_1002_jcp_30170
JCP30170
Genre article
Journal Article
GrantInformation_xml – fundername: Consejería de Educación, Junta de Castilla y León
  funderid: VA114P17
– fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación
  funderid: BFU2016‐75360‐R; SEV‐2015‐0505
– fundername: Consejería de Educación, Junta de Castilla y León
  grantid: VA114P17
– fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación
  grantid: SEV-2015-0505
– fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación
  grantid: BFU2016-75360-R
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
ABUFD
ADXHL
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
PKN
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3880-7b8b201df2582f9b48ea0f95dc359c306df50df8b28f91c90f8fcb60724897d33
IEDL.DBID DRFUL
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591558000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9541
1097-4652
IngestDate Fri Jul 11 09:16:31 EDT 2025
Sat Nov 29 14:31:44 EST 2025
Wed Feb 19 02:29:15 EST 2025
Sat Nov 29 05:28:42 EST 2025
Tue Nov 18 22:13:47 EST 2025
Wed Jan 22 16:31:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords cell proliferation
cell cycle
IQGAP3
Kv1.3 channels
Vascular smooth muscle cells
membrane potential
Language English
License 2020 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3880-7b8b201df2582f9b48ea0f95dc359c306df50df8b28f91c90f8fcb60724897d33
Notes María T. Pérez‐García and José R. López‐López are equal senior authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4619-8756
0000-0002-3162-4807
0000-0001-8540-8117
0000-0002-6338-7738
0000-0002-3870-421X
OpenAccessLink https://uvadoc.uva.es/handle/10324/65348
PMID 33230847
PQID 2509246227
PQPubID 1006363
PageCount 18
ParticipantIDs proquest_miscellaneous_2464146622
proquest_journals_2509246227
pubmed_primary_33230847
crossref_citationtrail_10_1002_jcp_30170
crossref_primary_10_1002_jcp_30170
wiley_primary_10_1002_jcp_30170_JCP30170
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
2021-Jun
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 85
2013; 4
2015; 467
2015; 72
2015; 33
2009; 231
2014; 25
2008; 105
2008; 103
2007; 428
2005; 68
2003; 12
2014; 369
2015; 172
2015; 135
1995; 69
2009; 122
2013; 591
2010; 30
2010; 9
2006; 92
2015; 12
2015; 16
2002; 74
2012
2000; 115
2006; 7
1984; 307
2008; 10
1976; 192
1998; 21
1996; 16
2007; 56
2012; 32
2003; 75
2011; 300
2015; 25
2012; 3
2002; 120
2018; 314
2017; 1600190
2005; 97
2009; 8
2008; 456
1996; 154
2009; 5
2016; 291
2016; 8
2006; 103
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
Xu W. (e_1_2_9_51_1) 2016; 8
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 16
  start-page: 853
  issue: 4
  year: 1996
  end-page: 858
  article-title: Conversion of a delayed rectifier K  channel to a voltage‐gated inward rectifier K+ channel by three amino acid substitutions
  publication-title: Neuron
– volume: 467
  start-page: 1711
  issue: 8
  year: 2015
  end-page: 1722
  article-title: Kv1.3 channels modulate human vascular smooth muscle cells proliferation independently of mTOR signaling pathway
  publication-title: Pflugers Archiv European Journal of Physiology
– volume: 591
  start-page: 6175
  issue: Pt 24
  year: 2013
  end-page: 6191
  article-title: Down‐regulation of Cav1.2 channels during hypertension: How fewer Cav1.2 channels allow more Ca into hypertensive arterial smooth muscle
  publication-title: The Journal of Physiology
– volume: 25
  start-page: 171
  issue: 3
  year: 2015
  end-page: 184
  article-title: IQGAPs choreograph cellular signaling from the membrane to the nucleus
  publication-title: Trends in Cell Biology
– volume: 12
  start-page: 551
  issue: 5
  year: 2003
  end-page: 559
  article-title: The voltage‐gated potassium channel Kv1.3 regulates energy homeostasis and body weight
  publication-title: Human Molecular Genetics
– volume: 5
  start-page: 231
  issue: 3
  year: 2009
  end-page: 246
  article-title: Role of membrane potential in the regulation of cell proliferation and differentiation
  publication-title: Stem Cell Reviews and Reports
– volume: 103
  start-page: 1458
  issue: 12
  year: 2008
  end-page: 1465
  article-title: Differential structure of atrial and ventricular K
  publication-title: Circulation Research
– volume: 12
  start-page: 1299
  issue: 4
  year: 2015
  end-page: 1307
  article-title: In silico identification of PAP‐1 binding sites in the Kv1.2 potassium channel
  publication-title: Molecular Pharmaceutics
– volume: 7
  start-page: 761
  issue: 10
  year: 2006
  end-page: 771
  article-title: Non‐conducting functions of voltage‐gated ion channels
  publication-title: Nature Reviews Neuroscience
– volume: 9
  start-page: 4649
  issue: 9
  year: 2010
  end-page: 4660
  article-title: Proteomic analysis of annexin A2 phosphorylation induced by microtubule interfering agents and kinesin spindle protein inhibitors
  publication-title: Journal of Proteome Research
– volume: 85
  start-page: 287
  issue: 1
  year: 2009
  end-page: 297
  article-title: Quantitative FRET analysis with the EGFP‐mCherry fluorescent protein pair
  publication-title: Photochemistry and Photobiology
– volume: 3
  start-page: 1
  year: 2012
  end-page: 15
  article-title: Cytoplasmic domains and voltage‐dependent potassium channel gating
  publication-title: Frontiers in Pharmacology
– volume: 135
  start-page: 2258
  issue: 9
  year: 2015
  end-page: 2265
  article-title: IQGAP1 and IQGAP3 serve individually essential roles in normal epidermal homeostasis and tumor progression
  publication-title: The Journal of Investigative Dermatology
– volume: 16
  start-page: 427
  issue: 4
  year: 2015
  end-page: 446
  article-title: The biology of IQGAP proteins: Beyond the cytoskeleton
  publication-title: EMBO Reports
– volume: 68
  start-page: 1254
  issue: 5
  year: 2005
  end-page: 1270
  article-title: Design of PAP‐1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases
  publication-title: Molecular Pharmacology
– volume: 33
  start-page: 291
  year: 2015
  end-page: 353
  article-title: Ion channels in innate and adaptive immunity
  publication-title: Annual Review of Immunology
– volume: 105
  start-page: 14861
  issue: 39
  year: 2008
  end-page: 14866
  article-title: Mitochondrial potassium channel Kv1.3 mediates Bax‐induced apoptosis in lymphocytes
  publication-title: Proceedings of the National Academy of Sciences
– volume: 300
  start-page: C792
  issue: 4
  year: 2011
  end-page: C802
  article-title: Calcium‐activated K  channels increase cell proliferation independent of K  conductance
  publication-title: AJP: Cell Physiology
– volume: 231
  start-page: 59
  issue: 1
  year: 2009
  end-page: 87
  article-title: The functional network of ion channels in T lymphocytes
  publication-title: Immunological Reviews
– volume: 30
  start-page: 1203
  issue: 6
  year: 2010
  end-page: 1211
  article-title: Characterization of ion channels involved in the proliferative response of femoral artery smooth muscle cells
  publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology
– volume: 154
  start-page: 91
  issue: 2
  year: 1996
  end-page: 107
  article-title: Potassium channels, proliferation and G1 progression
  publication-title: The Journal of Membrane Biology
– year: 2012
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nature Methods
– volume: 25
  start-page: 3835
  issue: 24
  year: 2014
  end-page: 3850
  article-title: Molecular bioelectricity: How endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo
  publication-title: Molecular Biology of the Cell
– volume: 56
  start-page: 328
  issue: 2
  year: 2007
  end-page: 336
  article-title: An ATP‐binding mutation (G334D) in KCNJ11 is associated with a sulfonylurea‐insensitive form of developmental delay, epilepsy, and neonatal diabetes
  publication-title: Diabetes
– volume: 8
  start-page: 3527
  issue: 21
  year: 2009
  end-page: 3536
  article-title: Bioelectric controls of cell proliferation: Ion channels, membrane voltage and the cell cycle
  publication-title: Cell Cycle
– volume: 172
  start-page: 5161
  issue: 21
  year: 2015
  end-page: 5173
  article-title: State‐dependent blocking mechanism of Kv1.3 channels by the antimycobacterial drug clofazimine
  publication-title: British Journal of Pharmacology
– volume: 456
  start-page: 891
  issue: 7224
  year: 2008
  end-page: 897
  article-title: Sensing voltage across lipid membranes
  publication-title: Nature
– volume: 74
  start-page: 5383
  issue: 20
  year: 2002
  end-page: 5392
  article-title: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search
  publication-title: Analytical Chemistry
– volume: 8
  start-page: 982
  issue: 12
  year: 2009
  end-page: 1001
  article-title: Voltage‐gated potassium channels as therapeutic targets
  publication-title: Nature Reviews Drug Discovery
– volume: 72
  start-page: 422
  issue: 8
  year: 2015
  end-page: 433
  article-title: IQGAP3 is essential for cell proliferation and motility during zebrafish embryonic development
  publication-title: Cytoskeleton
– volume: 10
  start-page: 971
  issue: 8
  year: 2008
  end-page: 978
  article-title: IQGAP3 regulates cell proliferation through the Ras/ERK signalling cascade
  publication-title: Nature Cell Biology
– volume: 32
  start-page: 1299
  issue: 5
  year: 2012
  end-page: 1307
  article-title: Kv1.3 channels can modulate cell proliferation during phenotypic switch by an ion‐flux independent mechanism
  publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology
– volume: 115
  start-page: 33
  issue: 1
  year: 2000
  end-page: 50
  article-title: alpha‐helical structural elements within the voltage‐sensing domains of a K  channel
  publication-title: The Journal of General Physiology
– volume: 192
  start-page: 155
  issue: 4235
  year: 1976
  end-page: 158
  article-title: Induction of mitosis in mature neurons in central nervous system by sustained depolarization
  publication-title: Science
– volume: 428
  start-page: 209
  issue: 07
  year: 2007
  end-page: 225
  article-title: Cell volume regulatory ion channels in cell proliferation and cell death
  publication-title: Methods in Enzymology
– volume: 4
  start-page: 1
  year: 2013
  end-page: 8
  article-title: K  channels and cell cycle progression in tumor cells
  publication-title: Frontiers in Physiology
– volume: 8
  start-page: 5421
  issue: 12
  year: 2016
  end-page: 5432
  article-title: Overexpression and biological function of IQGAP3 in human pancreatic cancer
  publication-title: American Journal of Translational Research
– volume: 92
  start-page: 185
  issue: 2
  year: 2006
  end-page: 208
  article-title: A structural interpretation of voltage‐gated potassium channel inactivation
  publication-title: Progress in Biophysics and Molecular Biology
– volume: 291
  start-page: 3569
  issue: 7
  year: 2016
  end-page: 3580
  article-title: Molecular determinants of Kv1.3 potassium channels‐induced proliferation
  publication-title: Journal of Biological Chemistry
– volume: 103
  start-page: 2886
  issue: 8
  year: 2006
  end-page: 2891
  article-title: A voltage‐driven switch for ion‐independent signaling by ether‐à‐go‐go K  channels
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 75
  start-page: 4646
  issue: 17
  year: 2003
  end-page: 4658
  article-title: A statistical model for identifying proteins by tandem mass spectrometry
  publication-title: Analytical Chemistry
– volume: 122
  start-page: 4267
  issue: Pt 23
  year: 2009
  end-page: 4276
  article-title: Electrical dimensions in cell science
  publication-title: Journal of Cell Science
– volume: 307
  start-page: 465
  issue: 5950
  year: 1984
  end-page: 468
  article-title: Voltage‐gated K  channels in human T lymphocytes: A role in mitogenesis?
  publication-title: Nature
– volume: 97
  start-page: 1280
  issue: 12
  year: 2005
  end-page: 1287
  article-title: Contribution of Kv channels to phenotypic remodeling of human uterine artery smooth muscle cells
  publication-title: Circulation Research
– volume: 1600190
  year: 2017
  article-title: The electric fence to cell‐cycle progression: Do local changes in membrane potential facilitate disassembly of the primary cilium?
  publication-title: BioEssays
– volume: 369
  issue: 1638
  year: 2014
  article-title: Potassium channels in cell cycle and cell proliferation
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
– volume: 21
  start-page: 617
  issue: 3
  year: 1998
  end-page: 621
  article-title: The activation gate of a voltage‐gated K  channel can be trapped in the open state by an intersubunit metal bridge
  publication-title: Neuron
– volume: 120
  start-page: 663
  issue: 5
  year: 2002
  end-page: 676
  article-title: Coupling between voltage sensors and activation gate in voltage‐gated K  channels
  publication-title: The Journal of General Physiology
– volume: 314
  issue: 1
  year: 2018
  article-title: The secret life of ion channels: Kv1.3 potassium channels and proliferation
  publication-title: American Journal of Physiology ‐ Cell Physiology
– volume: 69
  start-page: 896
  issue: 3
  year: 1995
  end-page: 903
  article-title: C‐type inactivation of a voltage‐gated K  channel occurs by a cooperative mechanism
  publication-title: Biophysical Journal
– ident: e_1_2_9_26_1
  doi: 10.1085/jgp.115.1.33
– ident: e_1_2_9_12_1
  doi: 10.1111/bph.13283
– ident: e_1_2_9_25_1
  doi: 10.1091/mbc.E13-12-0708
– ident: e_1_2_9_18_1
  doi: 10.1016/S0896-6273(00)80571-1
– ident: e_1_2_9_19_1
  doi: 10.1074/jbc.M115.678995
– ident: e_1_2_9_17_1
  doi: 10.1073/pnas.0505909103
– ident: e_1_2_9_40_1
  doi: 10.1038/nmeth.2089
– ident: e_1_2_9_7_1
  doi: 10.1007/s00424-014-1607-y
– ident: e_1_2_9_20_1
  doi: 10.1021/acs.molpharmaceut.5b00023
– ident: e_1_2_9_3_1
  doi: 10.3389/fphar.2012.00049
– ident: e_1_2_9_6_1
  doi: 10.1161/ATVBAHA.111.242727
– volume: 8
  start-page: 5421
  issue: 12
  year: 2016
  ident: e_1_2_9_51_1
  article-title: Overexpression and biological function of IQGAP3 in human pancreatic cancer
  publication-title: American Journal of Translational Research
– ident: e_1_2_9_31_1
  doi: 10.1016/S0896-6273(00)80105-1
– ident: e_1_2_9_32_1
  doi: 10.1152/ajpcell.00274.2010
– ident: e_1_2_9_43_1
  doi: 10.1038/nature07620
– ident: e_1_2_9_16_1
  doi: 10.15252/embr.201439834
– ident: e_1_2_9_50_1
  doi: 10.1093/hmg/ddg049
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1751-1097.2008.00435.x
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1600-065X.2009.00816.x
– ident: e_1_2_9_34_1
  doi: 10.1021/ac0341261
– ident: e_1_2_9_36_1
  doi: 10.3389/fphys.2013.00220
– ident: e_1_2_9_13_1
  doi: 10.1021/pr100377v
– ident: e_1_2_9_21_1
  doi: 10.1038/nrn1988
– ident: e_1_2_9_29_1
  doi: 10.1242/jcs.023564
– ident: e_1_2_9_30_1
  doi: 10.1161/01.RES.0000194322.91255.13
– ident: e_1_2_9_38_1
  doi: 10.1152/ajpcell.00136.2017
– ident: e_1_2_9_44_1
  doi: 10.1073/pnas.0804236105
– ident: e_1_2_9_42_1
  doi: 10.1007/s12015-009-9080-2
– ident: e_1_2_9_22_1
  doi: 10.1021/ac025747h
– ident: e_1_2_9_24_1
  doi: 10.1016/S0076-6879(07)28011-5
– ident: e_1_2_9_11_1
  doi: 10.1002/cm.21237
– ident: e_1_2_9_27_1
  doi: 10.1085/jgp.20028696
– ident: e_1_2_9_47_1
  doi: 10.1098/rstb.2013.0094
– ident: e_1_2_9_46_1
  doi: 10.1002/bies.201600190
– ident: e_1_2_9_14_1
  doi: 10.1146/annurev-immunol-032414-112212
– ident: e_1_2_9_23_1
  doi: 10.1016/j.pbiomolbio.2005.10.001
– ident: e_1_2_9_48_1
  doi: 10.1007/s002329900135
– ident: e_1_2_9_41_1
  doi: 10.1016/j.tcb.2014.12.005
– ident: e_1_2_9_49_1
  doi: 10.1038/nrd2983
– ident: e_1_2_9_4_1
  doi: 10.4161/cc.8.21.9888
– ident: e_1_2_9_8_1
  doi: 10.1161/ATVBAHA.110.205187
– ident: e_1_2_9_10_1
  doi: 10.1038/307465a0
– ident: e_1_2_9_35_1
  doi: 10.1038/ncb1757
– ident: e_1_2_9_28_1
  doi: 10.2337/db06-1275
– ident: e_1_2_9_33_1
  doi: 10.1038/jid.2015.140
– ident: e_1_2_9_39_1
  doi: 10.1124/mol.105.015669
– ident: e_1_2_9_15_1
  doi: 10.1161/CIRCRESAHA.108.178186
– ident: e_1_2_9_37_1
  doi: 10.1016/S0006-3495(95)79963-5
– ident: e_1_2_9_9_1
  doi: 10.1126/science.56781
– ident: e_1_2_9_45_1
  doi: 10.1113/jphysiol.2013.265751
SSID ssj0009933
Score 2.4156752
Snippet The voltage‐dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited...
The voltage-dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4330
SubjectTerms Calcium channels
Calcium influx
Calcium ions
Cell cycle
Cell growth
Cell proliferation
Cell size
Channel gating
Channels
Depolarization
Efflux
Electric potential
Fluxes
IQGAP3
Kv1.3 channels
Membrane potential
Membranes
Molecular dynamics
Muscles
Mutation
Phosphorylation
Potassium
Potassium channels (voltage-gated)
Smooth muscle
Vascular smooth muscle cells
Voltage
Title Voltage‐dependent conformational changes of Kv1.3 channels activate cell proliferation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.30170
https://www.ncbi.nlm.nih.gov/pubmed/33230847
https://www.proquest.com/docview/2509246227
https://www.proquest.com/docview/2464146622
Volume 236
WOSCitedRecordID wos000591558000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-4652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009933
  issn: 0021-9541
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50VfDi-7G6LlFEvBS7SdskeJLVRVRERGVvpU0bULQrdhW8-RP8jf4SJ-ljERUEb6WdNiGZycyXZr4B2PaTKEZPo5xOoBCgIIZwpKdMSUDEYjSNZWCP_N-c8fNz0e_LizHYr3JhCn6IesPNWIZdr42BR3G-NyINvVMI2A37yzhMUNRbrwETh5e967MR525ZSd6eQvC9TkUs5NK9-uWv7uhbjPk1ZLU-pzf7r97OwUwZapKDQjfmYSzNFmDxIEOY_fBKdog9_Gl31RdgqqhJ-boI_ZvB_RAXmY-396pA7pAgaK6zHPGTRbZwTgaanCL8ZfYG9jAnJk3iBcNXYn4IkEdTEkinhZItwXXv6Kp77JTlFxxlGGIcHosYw4NEU19QLWNPpJGrpZ8o5kuFUCPRvptoFBJadpR0tdAqDlxOPSF5wtgyNLJBlq4CkYKxKOJUCzf2IvwYVzRxA9QelnJX8SbsVrMQqpKb3JTIuA8LVmUa4viFdvyasFWLPhaEHD8JtaqpDEubzEMM9hBsBpRic5v1Y7QmMyJRlg6eUcYLPNRSFGrCSqECdSuMIVxDZ46dtTP9e_PhSffCXqz9XXQdpqlRVLvB04LG8Ok53YBJ9TK8zZ_aMM77ol0q-Cfe7_wX
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB7WVdEX72M9o4j4UuwmPRLwZVEXj3URUdm30qYNKNpddlfBN3-Cv9Ff4iQ9RFQQfCvttAnJTDLfNPMNwI4bhxHuNNKqexIBCmIISzhSlwRELEaTSHjmyP9ty2-3eacjLitwUOTCZPwQZcBNW4ZZr7WB64D0_idr6L1ExK7pX0Zg1EE1cqswenTVvGl9ku7mpeTNMQTXqRfMQjbdL1_-uh99czK_-qxm02lO_6-7MzCVO5ukkWnHLFSSdA7mGykC7ccXskvM8U8TV5-D8awq5cs8dG67D0NcZt5f34oSuUOCsLnMc8RPZvnCA9JV5BwBMDM3sIsDohMlntGBJfqXAOnpokAqydRsAW6ax9eHJ1ZegMGSmiPG8iMeoYMQK-pyqkTk8CS0lXBjyVwhEWzEyrVjhUJciboUtuJKRp7tU4cLP2ZsEappN02WgQjOWBj6VHE7ckL8mC9pbHuoPyzxbenXYK-YhkDm7OS6SMZDkPEq0wDHLzDjV4PtUrSXUXL8JLRWzGWQW-UgQHcP4aZHKTa3VT5Ge9IjEqZJ9wllHM9BPUWhGixlOlC2whgCNtzOsbNmqn9vPjg7vDQXK38X3YSJk-uLVtA6bZ-vwiTVWmvCPWtQHfafknUYk8_Du0F_I9fzDwUD_x8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB688cX7WM8oIr4Uu0mPBHwRdfFYlkVU9q20aQKKdhd3FXzzJ_gb_SVO0kNEBcG30k6bkMxk5ksz3wDs-GmcoKeRTj2QCFAQQzjCk6YkIGIxqhIR2CP_N82w1eKdjmgPwUGZC5PzQ1QbbsYy7HptDFz1Ur3_yRp6JxGxG_qXYRj1fBGgWY4eXzaum5-ku0UpeXsMwffqJbOQS_erl7_6o29B5teY1TqdxvT_ujsDU0WwSQ5z7ZiFIZXNwfxhhkD74YXsEnv80-6rz8F4XpXyZR46N937AS4z769vZYncAUHYXOU54ifzfOE-6WpygQCY2RvYxT4xiRLPGMAS80uA9ExRIK1yNVuA68bJ1dGpUxRgcKThiHHChCcYIKSa-pxqkXhcxa4WfiqZLySCjVT7bqpRiGtRl8LVXMskcEPqcRGmjC3CSNbN1DIQwRmL45Bq7iZejB8LJU3dAPWHqdCVYQ32ymmIZMFObopk3Ec5rzKNcPwiO3412K5Eezklx09Ca-VcRoVV9iMM9xBuBpRic1vVY7QnMyJxprpPKOMFHuopCtVgKdeBqhXGELChO8fO2qn-vfno_KhtL1b-LroJE-3jRtQ8a12swiQ1Smt3e9ZgZPD4pNZhTD4PbvuPG4WafwCRKv6a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voltage%E2%80%90dependent+conformational+changes+of+Kv1.3+channels+activate+cell+proliferation&rft.jtitle=Journal+of+cellular+physiology&rft.au=Cidad%2C+Pilar&rft.au=Alonso%2C+Esperanza&rft.au=Ar%C3%A9valo%E2%80%90Mart%C3%ADnez%2C+Marycarmen&rft.au=Calvo%2C+Enrique&rft.date=2021-06-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=236&rft.issue=6&rft.spage=4330&rft.epage=4347&rft_id=info:doi/10.1002%2Fjcp.30170&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_30170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon