Voltage‐dependent conformational changes of Kv1.3 channels activate cell proliferation
The voltage‐dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, nonc...
Saved in:
| Published in: | Journal of cellular physiology Vol. 236; no. 6; pp. 4330 - 4347 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.06.2021
|
| Subjects: | |
| ISSN: | 0021-9541, 1097-4652, 1097-4652 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The voltage‐dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K+ efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule‐specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K+ fluxes. Likewise, some of the molecular determinants of Kv1.3‐induced proliferation have been located in the C‐terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3‐induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage‐dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3‐induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage‐dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3‐IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage‐dependent conformational changes of Kv1.3 are an essential element in Kv1.3‐induced proliferation.
Ion channels have been involved in proliferation in many tissues, but the underlying mechanisms remain unclear. Here, the authors demonstrate a link between Kv1.3 conformational changes and proliferation, and conclude that voltage‐dependent transitions of the channel regulate cell cycle progression. |
|---|---|
| AbstractList | The voltage-dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca
influx, K
channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K
efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule-specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K
fluxes. Likewise, some of the molecular determinants of Kv1.3-induced proliferation have been located in the C-terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3-induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage-dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3-induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage-dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3-IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage-dependent conformational changes of Kv1.3 are an essential element in Kv1.3-induced proliferation. The voltage‐dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K+ efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule‐specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K+ fluxes. Likewise, some of the molecular determinants of Kv1.3‐induced proliferation have been located in the C‐terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3‐induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage‐dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3‐induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage‐dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3‐IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage‐dependent conformational changes of Kv1.3 are an essential element in Kv1.3‐induced proliferation. Ion channels have been involved in proliferation in many tissues, but the underlying mechanisms remain unclear. Here, the authors demonstrate a link between Kv1.3 conformational changes and proliferation, and conclude that voltage‐dependent transitions of the channel regulate cell cycle progression. The voltage-dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K+ efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule-specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K+ fluxes. Likewise, some of the molecular determinants of Kv1.3-induced proliferation have been located in the C-terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3-induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage-dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3-induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage-dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3-IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage-dependent conformational changes of Kv1.3 are an essential element in Kv1.3-induced proliferation.The voltage-dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K+ efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule-specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K+ fluxes. Likewise, some of the molecular determinants of Kv1.3-induced proliferation have been located in the C-terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3-induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage-dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3-induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage-dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3-IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage-dependent conformational changes of Kv1.3 are an essential element in Kv1.3-induced proliferation. The voltage‐dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca 2+ influx, K + channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K + efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule‐specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K + fluxes. Likewise, some of the molecular determinants of Kv1.3‐induced proliferation have been located in the C‐terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3‐induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage‐dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3‐induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage‐dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3‐IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage‐dependent conformational changes of Kv1.3 are an essential element in Kv1.3‐induced proliferation. The voltage‐dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K+ efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule‐specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K+ fluxes. Likewise, some of the molecular determinants of Kv1.3‐induced proliferation have been located in the C‐terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3‐induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage‐dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3‐induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage‐dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3‐IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage‐dependent conformational changes of Kv1.3 are an essential element in Kv1.3‐induced proliferation. |
| Author | Alonso, Esperanza Arévalo‐Martínez, Marycarmen Fuente, Miguel A. López‐López, José R. Cidad, Pilar Pérez‐García, M. Teresa Calvo, Enrique |
| Author_xml | – sequence: 1 givenname: Pilar orcidid: 0000-0002-6338-7738 surname: Cidad fullname: Cidad, Pilar organization: Universidad de Valladolid y CSIC – sequence: 2 givenname: Esperanza surname: Alonso fullname: Alonso, Esperanza organization: Universidad de Valladolid y CSIC – sequence: 3 givenname: Marycarmen orcidid: 0000-0002-3162-4807 surname: Arévalo‐Martínez fullname: Arévalo‐Martínez, Marycarmen organization: Universidad de Valladolid y CSIC – sequence: 4 givenname: Enrique surname: Calvo fullname: Calvo, Enrique organization: CNIC – sequence: 5 givenname: Miguel A. orcidid: 0000-0003-4619-8756 surname: Fuente fullname: Fuente, Miguel A. organization: Universidad de Valladolid – sequence: 6 givenname: M. Teresa orcidid: 0000-0001-8540-8117 surname: Pérez‐García fullname: Pérez‐García, M. Teresa email: tperez@ibgm.uva.es organization: Universidad de Valladolid y CSIC – sequence: 7 givenname: José R. orcidid: 0000-0002-3870-421X surname: López‐López fullname: López‐López, José R. organization: Universidad de Valladolid y CSIC |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33230847$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10c1OGzEQB3CrooJAOfQFqpV6KYcNY3s_7GMV8VmkcqBVb5bXO6YbOXZqb6i48Qg8I0-CScIFtSdL9u8_9nj2yY4PHgn5SGFKAdjx3CynHGgL78iEgmzLqqnZDpnkM1rKuqJ7ZD-lOQBIyfku2eOccRBVOyG_fgY36lt8enjscYm-Rz8WJngb4kKPQ_DaFea39reYimCLb3d0ytcbHl0qtBmHOz1iYdC5YhmDGyzGde4DeW-1S3i4XQ_Ij9OTm9l5efX97GL29ao0XAgo2050DGhvWS2YlV0lUIOVdW94LQ2Hprc19DYjYSU1EqywpmugZZWQbc_5AfmyqZtv_7PCNKrFkF6eoz2GVVKsaipaNQ1jmX5-Q-dhFXOHWdUgs2SszerTVq26BfZqGYeFjvfq9c8yON4AE0NKEa0yw7jueYx6cIqCepmKylNR66nkxNGbxGvRf9lt9b-Dw_v_Q3U5u94kngGb95to |
| CitedBy_id | crossref_primary_10_1007_s44154_022_00055_0 crossref_primary_10_3389_fphys_2024_1487775 crossref_primary_10_1002_jcp_30984 crossref_primary_10_3390_coatings11020210 crossref_primary_10_3389_fphar_2021_652508 crossref_primary_10_3390_cells11142230 crossref_primary_10_1016_j_abb_2023_109719 crossref_primary_10_1161_JAHA_124_038358 crossref_primary_10_3390_toxins14120858 |
| Cites_doi | 10.1085/jgp.115.1.33 10.1111/bph.13283 10.1091/mbc.E13-12-0708 10.1016/S0896-6273(00)80571-1 10.1074/jbc.M115.678995 10.1073/pnas.0505909103 10.1038/nmeth.2089 10.1007/s00424-014-1607-y 10.1021/acs.molpharmaceut.5b00023 10.3389/fphar.2012.00049 10.1161/ATVBAHA.111.242727 10.1016/S0896-6273(00)80105-1 10.1152/ajpcell.00274.2010 10.1038/nature07620 10.15252/embr.201439834 10.1093/hmg/ddg049 10.1111/j.1751-1097.2008.00435.x 10.1111/j.1600-065X.2009.00816.x 10.1021/ac0341261 10.3389/fphys.2013.00220 10.1021/pr100377v 10.1038/nrn1988 10.1242/jcs.023564 10.1161/01.RES.0000194322.91255.13 10.1152/ajpcell.00136.2017 10.1073/pnas.0804236105 10.1007/s12015-009-9080-2 10.1021/ac025747h 10.1016/S0076-6879(07)28011-5 10.1002/cm.21237 10.1085/jgp.20028696 10.1098/rstb.2013.0094 10.1002/bies.201600190 10.1146/annurev-immunol-032414-112212 10.1016/j.pbiomolbio.2005.10.001 10.1007/s002329900135 10.1016/j.tcb.2014.12.005 10.1038/nrd2983 10.4161/cc.8.21.9888 10.1161/ATVBAHA.110.205187 10.1038/307465a0 10.1038/ncb1757 10.2337/db06-1275 10.1038/jid.2015.140 10.1124/mol.105.015669 10.1161/CIRCRESAHA.108.178186 10.1016/S0006-3495(95)79963-5 10.1126/science.56781 10.1113/jphysiol.2013.265751 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley Periodicals LLC 2020 Wiley Periodicals LLC. 2021 Wiley Periodicals LLC |
| Copyright_xml | – notice: 2020 Wiley Periodicals LLC – notice: 2020 Wiley Periodicals LLC. – notice: 2021 Wiley Periodicals LLC |
| DBID | AAYXX CITATION NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
| DOI | 10.1002/jcp.30170 |
| DatabaseName | CrossRef PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1097-4652 |
| EndPage | 4347 |
| ExternalDocumentID | 33230847 10_1002_jcp_30170 JCP30170 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Consejería de Educación, Junta de Castilla y León funderid: VA114P17 – fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación funderid: BFU2016‐75360‐R; SEV‐2015‐0505 – fundername: Consejería de Educación, Junta de Castilla y León grantid: VA114P17 – fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación grantid: SEV-2015-0505 – fundername: Secretaría de Estado de Investigación, Desarrollo e Innovación grantid: BFU2016-75360-R |
| GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX ABUFD ADXHL AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X NPM PKN 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c3880-7b8b201df2582f9b48ea0f95dc359c306df50df8b28f91c90f8fcb60724897d33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591558000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9541 1097-4652 |
| IngestDate | Fri Jul 11 09:16:31 EDT 2025 Sat Nov 29 14:31:44 EST 2025 Wed Feb 19 02:29:15 EST 2025 Sat Nov 29 05:28:42 EST 2025 Tue Nov 18 22:13:47 EST 2025 Wed Jan 22 16:31:23 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | cell proliferation cell cycle IQGAP3 Kv1.3 channels Vascular smooth muscle cells membrane potential |
| Language | English |
| License | 2020 Wiley Periodicals LLC. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3880-7b8b201df2582f9b48ea0f95dc359c306df50df8b28f91c90f8fcb60724897d33 |
| Notes | María T. Pérez‐García and José R. López‐López are equal senior authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4619-8756 0000-0002-3162-4807 0000-0001-8540-8117 0000-0002-6338-7738 0000-0002-3870-421X |
| OpenAccessLink | https://uvadoc.uva.es/handle/10324/65348 |
| PMID | 33230847 |
| PQID | 2509246227 |
| PQPubID | 1006363 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2464146622 proquest_journals_2509246227 pubmed_primary_33230847 crossref_citationtrail_10_1002_jcp_30170 crossref_primary_10_1002_jcp_30170 wiley_primary_10_1002_jcp_30170_JCP30170 |
| PublicationCentury | 2000 |
| PublicationDate | June 2021 2021-06-00 2021-Jun 20210601 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Journal of cellular physiology |
| PublicationTitleAlternate | J Cell Physiol |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2009; 85 2013; 4 2015; 467 2015; 72 2015; 33 2009; 231 2014; 25 2008; 105 2008; 103 2007; 428 2005; 68 2003; 12 2014; 369 2015; 172 2015; 135 1995; 69 2009; 122 2013; 591 2010; 30 2010; 9 2006; 92 2015; 12 2015; 16 2002; 74 2012 2000; 115 2006; 7 1984; 307 2008; 10 1976; 192 1998; 21 1996; 16 2007; 56 2012; 32 2003; 75 2011; 300 2015; 25 2012; 3 2002; 120 2018; 314 2017; 1600190 2005; 97 2009; 8 2008; 456 1996; 154 2009; 5 2016; 291 2016; 8 2006; 103 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 Xu W. (e_1_2_9_51_1) 2016; 8 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 16 start-page: 853 issue: 4 year: 1996 end-page: 858 article-title: Conversion of a delayed rectifier K channel to a voltage‐gated inward rectifier K+ channel by three amino acid substitutions publication-title: Neuron – volume: 467 start-page: 1711 issue: 8 year: 2015 end-page: 1722 article-title: Kv1.3 channels modulate human vascular smooth muscle cells proliferation independently of mTOR signaling pathway publication-title: Pflugers Archiv European Journal of Physiology – volume: 591 start-page: 6175 issue: Pt 24 year: 2013 end-page: 6191 article-title: Down‐regulation of Cav1.2 channels during hypertension: How fewer Cav1.2 channels allow more Ca into hypertensive arterial smooth muscle publication-title: The Journal of Physiology – volume: 25 start-page: 171 issue: 3 year: 2015 end-page: 184 article-title: IQGAPs choreograph cellular signaling from the membrane to the nucleus publication-title: Trends in Cell Biology – volume: 12 start-page: 551 issue: 5 year: 2003 end-page: 559 article-title: The voltage‐gated potassium channel Kv1.3 regulates energy homeostasis and body weight publication-title: Human Molecular Genetics – volume: 5 start-page: 231 issue: 3 year: 2009 end-page: 246 article-title: Role of membrane potential in the regulation of cell proliferation and differentiation publication-title: Stem Cell Reviews and Reports – volume: 103 start-page: 1458 issue: 12 year: 2008 end-page: 1465 article-title: Differential structure of atrial and ventricular K publication-title: Circulation Research – volume: 12 start-page: 1299 issue: 4 year: 2015 end-page: 1307 article-title: In silico identification of PAP‐1 binding sites in the Kv1.2 potassium channel publication-title: Molecular Pharmaceutics – volume: 7 start-page: 761 issue: 10 year: 2006 end-page: 771 article-title: Non‐conducting functions of voltage‐gated ion channels publication-title: Nature Reviews Neuroscience – volume: 9 start-page: 4649 issue: 9 year: 2010 end-page: 4660 article-title: Proteomic analysis of annexin A2 phosphorylation induced by microtubule interfering agents and kinesin spindle protein inhibitors publication-title: Journal of Proteome Research – volume: 85 start-page: 287 issue: 1 year: 2009 end-page: 297 article-title: Quantitative FRET analysis with the EGFP‐mCherry fluorescent protein pair publication-title: Photochemistry and Photobiology – volume: 3 start-page: 1 year: 2012 end-page: 15 article-title: Cytoplasmic domains and voltage‐dependent potassium channel gating publication-title: Frontiers in Pharmacology – volume: 135 start-page: 2258 issue: 9 year: 2015 end-page: 2265 article-title: IQGAP1 and IQGAP3 serve individually essential roles in normal epidermal homeostasis and tumor progression publication-title: The Journal of Investigative Dermatology – volume: 16 start-page: 427 issue: 4 year: 2015 end-page: 446 article-title: The biology of IQGAP proteins: Beyond the cytoskeleton publication-title: EMBO Reports – volume: 68 start-page: 1254 issue: 5 year: 2005 end-page: 1270 article-title: Design of PAP‐1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases publication-title: Molecular Pharmacology – volume: 33 start-page: 291 year: 2015 end-page: 353 article-title: Ion channels in innate and adaptive immunity publication-title: Annual Review of Immunology – volume: 105 start-page: 14861 issue: 39 year: 2008 end-page: 14866 article-title: Mitochondrial potassium channel Kv1.3 mediates Bax‐induced apoptosis in lymphocytes publication-title: Proceedings of the National Academy of Sciences – volume: 300 start-page: C792 issue: 4 year: 2011 end-page: C802 article-title: Calcium‐activated K channels increase cell proliferation independent of K conductance publication-title: AJP: Cell Physiology – volume: 231 start-page: 59 issue: 1 year: 2009 end-page: 87 article-title: The functional network of ion channels in T lymphocytes publication-title: Immunological Reviews – volume: 30 start-page: 1203 issue: 6 year: 2010 end-page: 1211 article-title: Characterization of ion channels involved in the proliferative response of femoral artery smooth muscle cells publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 154 start-page: 91 issue: 2 year: 1996 end-page: 107 article-title: Potassium channels, proliferation and G1 progression publication-title: The Journal of Membrane Biology – year: 2012 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nature Methods – volume: 25 start-page: 3835 issue: 24 year: 2014 end-page: 3850 article-title: Molecular bioelectricity: How endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo publication-title: Molecular Biology of the Cell – volume: 56 start-page: 328 issue: 2 year: 2007 end-page: 336 article-title: An ATP‐binding mutation (G334D) in KCNJ11 is associated with a sulfonylurea‐insensitive form of developmental delay, epilepsy, and neonatal diabetes publication-title: Diabetes – volume: 8 start-page: 3527 issue: 21 year: 2009 end-page: 3536 article-title: Bioelectric controls of cell proliferation: Ion channels, membrane voltage and the cell cycle publication-title: Cell Cycle – volume: 172 start-page: 5161 issue: 21 year: 2015 end-page: 5173 article-title: State‐dependent blocking mechanism of Kv1.3 channels by the antimycobacterial drug clofazimine publication-title: British Journal of Pharmacology – volume: 456 start-page: 891 issue: 7224 year: 2008 end-page: 897 article-title: Sensing voltage across lipid membranes publication-title: Nature – volume: 74 start-page: 5383 issue: 20 year: 2002 end-page: 5392 article-title: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search publication-title: Analytical Chemistry – volume: 8 start-page: 982 issue: 12 year: 2009 end-page: 1001 article-title: Voltage‐gated potassium channels as therapeutic targets publication-title: Nature Reviews Drug Discovery – volume: 72 start-page: 422 issue: 8 year: 2015 end-page: 433 article-title: IQGAP3 is essential for cell proliferation and motility during zebrafish embryonic development publication-title: Cytoskeleton – volume: 10 start-page: 971 issue: 8 year: 2008 end-page: 978 article-title: IQGAP3 regulates cell proliferation through the Ras/ERK signalling cascade publication-title: Nature Cell Biology – volume: 32 start-page: 1299 issue: 5 year: 2012 end-page: 1307 article-title: Kv1.3 channels can modulate cell proliferation during phenotypic switch by an ion‐flux independent mechanism publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 115 start-page: 33 issue: 1 year: 2000 end-page: 50 article-title: alpha‐helical structural elements within the voltage‐sensing domains of a K channel publication-title: The Journal of General Physiology – volume: 192 start-page: 155 issue: 4235 year: 1976 end-page: 158 article-title: Induction of mitosis in mature neurons in central nervous system by sustained depolarization publication-title: Science – volume: 428 start-page: 209 issue: 07 year: 2007 end-page: 225 article-title: Cell volume regulatory ion channels in cell proliferation and cell death publication-title: Methods in Enzymology – volume: 4 start-page: 1 year: 2013 end-page: 8 article-title: K channels and cell cycle progression in tumor cells publication-title: Frontiers in Physiology – volume: 8 start-page: 5421 issue: 12 year: 2016 end-page: 5432 article-title: Overexpression and biological function of IQGAP3 in human pancreatic cancer publication-title: American Journal of Translational Research – volume: 92 start-page: 185 issue: 2 year: 2006 end-page: 208 article-title: A structural interpretation of voltage‐gated potassium channel inactivation publication-title: Progress in Biophysics and Molecular Biology – volume: 291 start-page: 3569 issue: 7 year: 2016 end-page: 3580 article-title: Molecular determinants of Kv1.3 potassium channels‐induced proliferation publication-title: Journal of Biological Chemistry – volume: 103 start-page: 2886 issue: 8 year: 2006 end-page: 2891 article-title: A voltage‐driven switch for ion‐independent signaling by ether‐à‐go‐go K channels publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 75 start-page: 4646 issue: 17 year: 2003 end-page: 4658 article-title: A statistical model for identifying proteins by tandem mass spectrometry publication-title: Analytical Chemistry – volume: 122 start-page: 4267 issue: Pt 23 year: 2009 end-page: 4276 article-title: Electrical dimensions in cell science publication-title: Journal of Cell Science – volume: 307 start-page: 465 issue: 5950 year: 1984 end-page: 468 article-title: Voltage‐gated K channels in human T lymphocytes: A role in mitogenesis? publication-title: Nature – volume: 97 start-page: 1280 issue: 12 year: 2005 end-page: 1287 article-title: Contribution of Kv channels to phenotypic remodeling of human uterine artery smooth muscle cells publication-title: Circulation Research – volume: 1600190 year: 2017 article-title: The electric fence to cell‐cycle progression: Do local changes in membrane potential facilitate disassembly of the primary cilium? publication-title: BioEssays – volume: 369 issue: 1638 year: 2014 article-title: Potassium channels in cell cycle and cell proliferation publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences – volume: 21 start-page: 617 issue: 3 year: 1998 end-page: 621 article-title: The activation gate of a voltage‐gated K channel can be trapped in the open state by an intersubunit metal bridge publication-title: Neuron – volume: 120 start-page: 663 issue: 5 year: 2002 end-page: 676 article-title: Coupling between voltage sensors and activation gate in voltage‐gated K channels publication-title: The Journal of General Physiology – volume: 314 issue: 1 year: 2018 article-title: The secret life of ion channels: Kv1.3 potassium channels and proliferation publication-title: American Journal of Physiology ‐ Cell Physiology – volume: 69 start-page: 896 issue: 3 year: 1995 end-page: 903 article-title: C‐type inactivation of a voltage‐gated K channel occurs by a cooperative mechanism publication-title: Biophysical Journal – ident: e_1_2_9_26_1 doi: 10.1085/jgp.115.1.33 – ident: e_1_2_9_12_1 doi: 10.1111/bph.13283 – ident: e_1_2_9_25_1 doi: 10.1091/mbc.E13-12-0708 – ident: e_1_2_9_18_1 doi: 10.1016/S0896-6273(00)80571-1 – ident: e_1_2_9_19_1 doi: 10.1074/jbc.M115.678995 – ident: e_1_2_9_17_1 doi: 10.1073/pnas.0505909103 – ident: e_1_2_9_40_1 doi: 10.1038/nmeth.2089 – ident: e_1_2_9_7_1 doi: 10.1007/s00424-014-1607-y – ident: e_1_2_9_20_1 doi: 10.1021/acs.molpharmaceut.5b00023 – ident: e_1_2_9_3_1 doi: 10.3389/fphar.2012.00049 – ident: e_1_2_9_6_1 doi: 10.1161/ATVBAHA.111.242727 – volume: 8 start-page: 5421 issue: 12 year: 2016 ident: e_1_2_9_51_1 article-title: Overexpression and biological function of IQGAP3 in human pancreatic cancer publication-title: American Journal of Translational Research – ident: e_1_2_9_31_1 doi: 10.1016/S0896-6273(00)80105-1 – ident: e_1_2_9_32_1 doi: 10.1152/ajpcell.00274.2010 – ident: e_1_2_9_43_1 doi: 10.1038/nature07620 – ident: e_1_2_9_16_1 doi: 10.15252/embr.201439834 – ident: e_1_2_9_50_1 doi: 10.1093/hmg/ddg049 – ident: e_1_2_9_2_1 doi: 10.1111/j.1751-1097.2008.00435.x – ident: e_1_2_9_5_1 doi: 10.1111/j.1600-065X.2009.00816.x – ident: e_1_2_9_34_1 doi: 10.1021/ac0341261 – ident: e_1_2_9_36_1 doi: 10.3389/fphys.2013.00220 – ident: e_1_2_9_13_1 doi: 10.1021/pr100377v – ident: e_1_2_9_21_1 doi: 10.1038/nrn1988 – ident: e_1_2_9_29_1 doi: 10.1242/jcs.023564 – ident: e_1_2_9_30_1 doi: 10.1161/01.RES.0000194322.91255.13 – ident: e_1_2_9_38_1 doi: 10.1152/ajpcell.00136.2017 – ident: e_1_2_9_44_1 doi: 10.1073/pnas.0804236105 – ident: e_1_2_9_42_1 doi: 10.1007/s12015-009-9080-2 – ident: e_1_2_9_22_1 doi: 10.1021/ac025747h – ident: e_1_2_9_24_1 doi: 10.1016/S0076-6879(07)28011-5 – ident: e_1_2_9_11_1 doi: 10.1002/cm.21237 – ident: e_1_2_9_27_1 doi: 10.1085/jgp.20028696 – ident: e_1_2_9_47_1 doi: 10.1098/rstb.2013.0094 – ident: e_1_2_9_46_1 doi: 10.1002/bies.201600190 – ident: e_1_2_9_14_1 doi: 10.1146/annurev-immunol-032414-112212 – ident: e_1_2_9_23_1 doi: 10.1016/j.pbiomolbio.2005.10.001 – ident: e_1_2_9_48_1 doi: 10.1007/s002329900135 – ident: e_1_2_9_41_1 doi: 10.1016/j.tcb.2014.12.005 – ident: e_1_2_9_49_1 doi: 10.1038/nrd2983 – ident: e_1_2_9_4_1 doi: 10.4161/cc.8.21.9888 – ident: e_1_2_9_8_1 doi: 10.1161/ATVBAHA.110.205187 – ident: e_1_2_9_10_1 doi: 10.1038/307465a0 – ident: e_1_2_9_35_1 doi: 10.1038/ncb1757 – ident: e_1_2_9_28_1 doi: 10.2337/db06-1275 – ident: e_1_2_9_33_1 doi: 10.1038/jid.2015.140 – ident: e_1_2_9_39_1 doi: 10.1124/mol.105.015669 – ident: e_1_2_9_15_1 doi: 10.1161/CIRCRESAHA.108.178186 – ident: e_1_2_9_37_1 doi: 10.1016/S0006-3495(95)79963-5 – ident: e_1_2_9_9_1 doi: 10.1126/science.56781 – ident: e_1_2_9_45_1 doi: 10.1113/jphysiol.2013.265751 |
| SSID | ssj0009933 |
| Score | 2.4156752 |
| Snippet | The voltage‐dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited... The voltage-dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4330 |
| SubjectTerms | Calcium channels Calcium influx Calcium ions Cell cycle Cell growth Cell proliferation Cell size Channel gating Channels Depolarization Efflux Electric potential Fluxes IQGAP3 Kv1.3 channels Membrane potential Membranes Molecular dynamics Muscles Mutation Phosphorylation Potassium Potassium channels (voltage-gated) Smooth muscle Vascular smooth muscle cells Voltage |
| Title | Voltage‐dependent conformational changes of Kv1.3 channels activate cell proliferation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.30170 https://www.ncbi.nlm.nih.gov/pubmed/33230847 https://www.proquest.com/docview/2509246227 https://www.proquest.com/docview/2464146622 |
| Volume | 236 |
| WOSCitedRecordID | wos000591558000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-4652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009933 issn: 0021-9541 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50VfDi-7G6LlFEvBS7SdskeJLVRVRERGVvpU0bULQrdhW8-RP8jf4SJ-ljERUEb6WdNiGZycyXZr4B2PaTKEZPo5xOoBCgIIZwpKdMSUDEYjSNZWCP_N-c8fNz0e_LizHYr3JhCn6IesPNWIZdr42BR3G-NyINvVMI2A37yzhMUNRbrwETh5e967MR525ZSd6eQvC9TkUs5NK9-uWv7uhbjPk1ZLU-pzf7r97OwUwZapKDQjfmYSzNFmDxIEOY_fBKdog9_Gl31RdgqqhJ-boI_ZvB_RAXmY-396pA7pAgaK6zHPGTRbZwTgaanCL8ZfYG9jAnJk3iBcNXYn4IkEdTEkinhZItwXXv6Kp77JTlFxxlGGIcHosYw4NEU19QLWNPpJGrpZ8o5kuFUCPRvptoFBJadpR0tdAqDlxOPSF5wtgyNLJBlq4CkYKxKOJUCzf2IvwYVzRxA9QelnJX8SbsVrMQqpKb3JTIuA8LVmUa4viFdvyasFWLPhaEHD8JtaqpDEubzEMM9hBsBpRic5v1Y7QmMyJRlg6eUcYLPNRSFGrCSqECdSuMIVxDZ46dtTP9e_PhSffCXqz9XXQdpqlRVLvB04LG8Ok53YBJ9TK8zZ_aMM77ol0q-Cfe7_wX |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB7WVdEX72M9o4j4UuwmPRLwZVEXj3URUdm30qYNKNpddlfBN3-Cv9Ff4iQ9RFQQfCvttAnJTDLfNPMNwI4bhxHuNNKqexIBCmIISzhSlwRELEaTSHjmyP9ty2-3eacjLitwUOTCZPwQZcBNW4ZZr7WB64D0_idr6L1ExK7pX0Zg1EE1cqswenTVvGl9ku7mpeTNMQTXqRfMQjbdL1_-uh99czK_-qxm02lO_6-7MzCVO5ukkWnHLFSSdA7mGykC7ccXskvM8U8TV5-D8awq5cs8dG67D0NcZt5f34oSuUOCsLnMc8RPZvnCA9JV5BwBMDM3sIsDohMlntGBJfqXAOnpokAqydRsAW6ax9eHJ1ZegMGSmiPG8iMeoYMQK-pyqkTk8CS0lXBjyVwhEWzEyrVjhUJciboUtuJKRp7tU4cLP2ZsEappN02WgQjOWBj6VHE7ckL8mC9pbHuoPyzxbenXYK-YhkDm7OS6SMZDkPEq0wDHLzDjV4PtUrSXUXL8JLRWzGWQW-UgQHcP4aZHKTa3VT5Ge9IjEqZJ9wllHM9BPUWhGixlOlC2whgCNtzOsbNmqn9vPjg7vDQXK38X3YSJk-uLVtA6bZ-vwiTVWmvCPWtQHfafknUYk8_Du0F_I9fzDwUD_x8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB688cX7WM8oIr4Uu0mPBHwRdfFYlkVU9q20aQKKdhd3FXzzJ_gb_SVO0kNEBcG30k6bkMxk5ksz3wDs-GmcoKeRTj2QCFAQQzjCk6YkIGIxqhIR2CP_N82w1eKdjmgPwUGZC5PzQ1QbbsYy7HptDFz1Ur3_yRp6JxGxG_qXYRj1fBGgWY4eXzaum5-ku0UpeXsMwffqJbOQS_erl7_6o29B5teY1TqdxvT_ujsDU0WwSQ5z7ZiFIZXNwfxhhkD74YXsEnv80-6rz8F4XpXyZR46N937AS4z769vZYncAUHYXOU54ifzfOE-6WpygQCY2RvYxT4xiRLPGMAS80uA9ExRIK1yNVuA68bJ1dGpUxRgcKThiHHChCcYIKSa-pxqkXhcxa4WfiqZLySCjVT7bqpRiGtRl8LVXMskcEPqcRGmjC3CSNbN1DIQwRmL45Bq7iZejB8LJU3dAPWHqdCVYQ32ymmIZMFObopk3Ec5rzKNcPwiO3412K5Eezklx09Ca-VcRoVV9iMM9xBuBpRic1vVY7QnMyJxprpPKOMFHuopCtVgKdeBqhXGELChO8fO2qn-vfno_KhtL1b-LroJE-3jRtQ8a12swiQ1Smt3e9ZgZPD4pNZhTD4PbvuPG4WafwCRKv6a |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voltage%E2%80%90dependent+conformational+changes+of+Kv1.3+channels+activate+cell+proliferation&rft.jtitle=Journal+of+cellular+physiology&rft.au=Cidad%2C+Pilar&rft.au=Alonso%2C+Esperanza&rft.au=Ar%C3%A9valo%E2%80%90Mart%C3%ADnez%2C+Marycarmen&rft.au=Calvo%2C+Enrique&rft.date=2021-06-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=236&rft.issue=6&rft.spage=4330&rft.epage=4347&rft_id=info:doi/10.1002%2Fjcp.30170&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_30170 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |