Visual Parameter Selection for Spatial Blind Source Separation

Analysis of spatial multivariate data, i.e., measurements at irregularly‐spaced locations, is a challenging topic in visualization and statistics alike. Such data are inteGral to many domains, e.g., indicators of valuable minerals are measured for mine prospecting. Popular analysis methods, like PCA...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 41; no. 3; pp. 157 - 168
Main Authors: Piccolotto, N., Bögl, M., Muehlmann, C., Nordhausen, K., Filzmoser, P., Miksch, S.
Format: Journal Article
Language:English
Published: England Blackwell Publishing Ltd 01.06.2022
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Analysis of spatial multivariate data, i.e., measurements at irregularly‐spaced locations, is a challenging topic in visualization and statistics alike. Such data are inteGral to many domains, e.g., indicators of valuable minerals are measured for mine prospecting. Popular analysis methods, like PCA, often by design do not account for the spatial nature of the data. Thus they, together with their spatial variants, must be employed very carefully. Clearly, it is preferable to use methods that were specifically designed for such data, like spatial blind source separation (SBSS). However, SBSS requires two tuning parameters, which are themselves complex spatial objects. Setting these parameters involves navigating two large and interdependent parameter spaces, while also taking into account prior knowledge of the physical reality represented by the data. To support analysts in this process, we developed a visual analytics prototype. We evaluated it with experts in visualization, SBSS, and geochemistry. Our evaluations show that our interactive prototype allows to define complex and realistic parameter settings efficiently, which was so far impractical. Settings identified by a non‐expert led to remarkable and surprising insights for a domain expert. Therefore, this paper presents important first steps to enable the use of a promising analysis method for spatial multivariate data.
AbstractList Analysis of spatial multivariate data, i.e., measurements at irregularly‐spaced locations, is a challenging topic in visualization and statistics alike. Such data are inteGral to many domains, e.g., indicators of valuable minerals are measured for mine prospecting. Popular analysis methods, like PCA, often by design do not account for the spatial nature of the data. Thus they, together with their spatial variants, must be employed very carefully. Clearly, it is preferable to use methods that were specifically designed for such data, like spatial blind source separation (SBSS). However, SBSS requires two tuning parameters, which are themselves complex spatial objects. Setting these parameters involves navigating two large and interdependent parameter spaces, while also taking into account prior knowledge of the physical reality represented by the data. To support analysts in this process, we developed a visual analytics prototype. We evaluated it with experts in visualization, SBSS, and geochemistry. Our evaluations show that our interactive prototype allows to define complex and realistic parameter settings efficiently, which was so far impractical. Settings identified by a non‐expert led to remarkable and surprising insights for a domain expert. Therefore, this paper presents important first steps to enable the use of a promising analysis method for spatial multivariate data.
Analysis of spatial multivariate data, i.e., measurements at irregularly-spaced locations, is a challenging topic in visualization and statistics alike. Such data are inteGral to many domains, e.g., indicators of valuable minerals are measured for mine prospecting. Popular analysis methods, like PCA, often by design do not account for the spatial nature of the data. Thus they, together with their spatial variants, must be employed very carefully. Clearly, it is preferable to use methods that were specifically designed for such data, like spatial blind source separation (SBSS). However, SBSS requires two tuning parameters, which are themselves complex spatial objects. Setting these parameters involves navigating two large and interdependent parameter spaces, while also taking into account prior knowledge of the physical reality represented by the data. To support analysts in this process, we developed a visual analytics prototype. We evaluated it with experts in visualization, SBSS, and geochemistry. Our evaluations show that our interactive prototype allows to define complex and realistic parameter settings efficiently, which was so far impractical. Settings identified by a non-expert led to remarkable and surprising insights for a domain expert. Therefore, this paper presents important first steps to enable the use of a promising analysis method for spatial multivariate data.Analysis of spatial multivariate data, i.e., measurements at irregularly-spaced locations, is a challenging topic in visualization and statistics alike. Such data are inteGral to many domains, e.g., indicators of valuable minerals are measured for mine prospecting. Popular analysis methods, like PCA, often by design do not account for the spatial nature of the data. Thus they, together with their spatial variants, must be employed very carefully. Clearly, it is preferable to use methods that were specifically designed for such data, like spatial blind source separation (SBSS). However, SBSS requires two tuning parameters, which are themselves complex spatial objects. Setting these parameters involves navigating two large and interdependent parameter spaces, while also taking into account prior knowledge of the physical reality represented by the data. To support analysts in this process, we developed a visual analytics prototype. We evaluated it with experts in visualization, SBSS, and geochemistry. Our evaluations show that our interactive prototype allows to define complex and realistic parameter settings efficiently, which was so far impractical. Settings identified by a non-expert led to remarkable and surprising insights for a domain expert. Therefore, this paper presents important first steps to enable the use of a promising analysis method for spatial multivariate data.
Author Nordhausen, K.
Miksch, S.
Muehlmann, C.
Bögl, M.
Piccolotto, N.
Filzmoser, P.
Author_xml – sequence: 1
  givenname: N.
  orcidid: 0000-0001-6876-6502
  surname: Piccolotto
  fullname: Piccolotto, N.
  organization: Institute of Visual Computing and Human‐Centered Technology
– sequence: 2
  givenname: M.
  orcidid: 0000-0002-8337-4774
  surname: Bögl
  fullname: Bögl, M.
  organization: Institute of Visual Computing and Human‐Centered Technology
– sequence: 3
  givenname: C.
  orcidid: 0000-0001-7330-8434
  surname: Muehlmann
  fullname: Muehlmann, C.
  organization: Institute of Statistics and Mathematical Methods in Economics
– sequence: 4
  givenname: K.
  orcidid: 0000-0002-3758-8501
  surname: Nordhausen
  fullname: Nordhausen, K.
  organization: University of Jyväskylä
– sequence: 5
  givenname: P.
  orcidid: 0000-0002-8014-4682
  surname: Filzmoser
  fullname: Filzmoser, P.
  organization: Institute of Statistics and Mathematical Methods in Economics
– sequence: 6
  givenname: S.
  orcidid: 0000-0003-4427-5703
  surname: Miksch
  fullname: Miksch, S.
  organization: Institute of Visual Computing and Human‐Centered Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36248193$$D View this record in MEDLINE/PubMed
BookMark eNp90E1LwzAYB_AgE_eiB7-ADLzooVvSJmlzEXS4KQwUpl5LmjyRjK6dSYvs25u96EHQHPL6ex7Cv486VV0BQucEj0gYY_VuRoSyBB-hHqE8jTLORAf1MAn7FDPWRX3vlxhjmnJ2groJj2lGRNJDN2_Wt7IcPksnV9CAGy6gBNXYuhqaOpzWsrHh_a60lR4u6tYpCGQd-NacomMjSw9nh3WAXqf3L5OHaP40e5zcziOVZBmOuKApUF3ERWo014oLzXiRJkKIrKBFJgQHLYXG2mDJDCeggJg4XBQ8S0yaDNDVvu_a1R8t-CZfWa-gLGUFdevzOI0ZpYRwFujlL7oMv67C74LCWAgapqAuDqotVqDztbMr6Tb5dzIBXO-BcrX3DswPITjfpp6H1PNd6sGOf1llm10-jZO2_K_i05aw-bt1PplN9xVf-Y2Q7w
CitedBy_id crossref_primary_10_1016_j_spasta_2023_100803
crossref_primary_10_1109_TVCG_2024_3456314
crossref_primary_10_22630_MIBE_2022_23_3_8
crossref_primary_10_1007_s10182_025_00529_2
crossref_primary_10_1007_s00477_022_02348_2
crossref_primary_10_1109_TVCG_2023_3327203
Cites_doi 10.1002/9781119115151
10.1109/IMMERSIVE.2016.7932377
10.1080/00031305.1991.10475810
10.1016/j.heliyon.2019.e02236
10.1179/000870408x311378
10.1109/tvcg.2019.2934591
10.1109/tvcg.2013.66
10.1109/tvcg.2010.223
10.1111/j.2517-6161.1982.tb01195.x
10.1109/tvcg.2007.70558
10.1109/tvcg.2015.2466992
10.1109/tvcg.2014.2346321
10.1007/978-3-540-70956-5_7
10.1080/15230406.2020.1733438
10.1109/2945.841121
10.1080/15230406.2016.1160797
10.1016/B978-0-12-814022-2.00005-8
10.32614/CRAN.package.SpatialBSS
10.1109/VISUAL.2000.885678
10.1007/978-3-662-05294-5
10.1080/13658810701674970
10.1007/s11004-011-9360-7
10.1080/00045608.2012.689236
10.1111/gean.12048
10.1109/tvcg.2016.2598468
10.1145/3334480.3383101
10.1109/tvcg.2018.2865146
10.1080/15230406.2016.1174623
10.1038/hdy.2008.34
10.1016/j.cag.2013.11.002
10.1016/s0198-9715(01)00046-1
10.1109/tvcg.2018.2865051
10.1214/14-sts487
10.1109/tvcg.2014.2346265
10.1080/23729333.2017.1301346
10.1177/1473871617693041
10.1109/tvcg.2016.2598830
10.1016/c2009-0-19334-0
10.1016/j.spasta.2021.100574
10.1093/biomet/asz079
10.3390/info10100302
10.1007/978-1-4757-1904-8
10.1145/2601097.2601129
10.1007/s11004-014-9559-5
10.1109/tvcg.2015.2467199
10.1109/tvcg.2015.2500225
10.1109/LGRS.2020.3011549
10.1109/tvcg.2019.2945960
ContentType Journal Article
Copyright 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1111/cgf.14530
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 168
ExternalDocumentID 36248193
10_1111_cgf_14530
CGF14530
Genre article
Journal Article
GrantInformation_xml – fundername: Austrian Science Fund
  funderid: P31881‐N32
– fundername: Austrian Science Fund FWF
  grantid: P 31881
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
24P
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c3880-6947e4db2b7fd6dc69d56b739998b4b8996eda9d0df0a5f61ece1f29d0b683f73
IEDL.DBID 24P
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000842261500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Thu Sep 04 14:57:00 EDT 2025
Sun Sep 07 03:44:16 EDT 2025
Mon Jul 21 06:08:03 EDT 2025
Sat Nov 29 03:41:21 EST 2025
Tue Nov 18 22:40:39 EST 2025
Wed Jan 22 16:25:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords GeoGraphic visualization
CCS Concepts
Human‐centered computing → Visualization techniques
Language English
License Attribution
2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3880-6947e4db2b7fd6dc69d56b739998b4b8996eda9d0df0a5f61ece1f29d0b683f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3758-8501
0000-0001-6876-6502
0000-0002-8014-4682
0000-0001-7330-8434
0000-0003-4427-5703
0000-0002-8337-4774
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.14530
PMID 36248193
PQID 2700994009
PQPubID 30877
PageCount 12
ParticipantIDs proquest_miscellaneous_2725441165
proquest_journals_2700994009
pubmed_primary_36248193
crossref_primary_10_1111_cgf_14530
crossref_citationtrail_10_1111_cgf_14530
wiley_primary_10_1111_cgf_14530_CGF14530
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
2022-Jun
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Comput Graph Forum
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1991; 45.3
2012
2015; 47.7
2010
2021; 27.3
2019; 5.8
2009
1998
2008
1996
2020; 26.1
2015; 47.2
2005
1993
2020; 47.4
2003
2007; 13.6
2002
2008; 45.3
2008; 22.7
2014; 33.4
2019; 10.10
2019; 25.1
2014; 20.12
1982; 44.2
2020; 107.3
2017; 23.1
2000
2022
2002; 26.4
2021
2013; 103.1
2020
2016; 22.9
2000; 6.1
2015; 30.2
1986
2018
2016
2016; 22.1
2013; 19.9
2017; 44.5
2014
2010; 16.6
2017; 3.1
2018; 17.2
e_1_2_9_52_2
Matejka J. (e_1_2_9_39_2) 2018
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_54_2
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_16_2
e_1_2_9_35_2
Reimann C. (e_1_2_9_50_2) 2014
e_1_2_9_58_2
e_1_2_9_18_2
e_1_2_9_41_2
e_1_2_9_62_2
e_1_2_9_60_2
e_1_2_9_20_2
e_1_2_9_45_2
e_1_2_9_22_2
e_1_2_9_43_2
e_1_2_9_64_2
Aitchison J. (e_1_2_9_2_2) 1982; 44
e_1_2_9_6_2
e_1_2_9_4_2
e_1_2_9_8_2
e_1_2_9_24_2
e_1_2_9_26_2
e_1_2_9_47_2
e_1_2_9_51_2
e_1_2_9_30_2
e_1_2_9_34_2
e_1_2_9_55_2
e_1_2_9_11_2
e_1_2_9_32_2
e_1_2_9_53_2
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_59_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_57_2
e_1_2_9_17_2
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_63_2
e_1_2_9_61_2
e_1_2_9_21_2
e_1_2_9_44_2
Hrnčiarová T. (e_1_2_9_28_2) 2009
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_7_2
e_1_2_9_5_2
e_1_2_9_3_2
Reimann C. (e_1_2_9_49_2) 1998
e_1_2_9_9_2
e_1_2_9_48_2
Haslett J. (e_1_2_9_25_2) 1991; 45
e_1_2_9_27_2
e_1_2_9_46_2
e_1_2_9_29_2
References_xml – volume: 26.1
  start-page: 34
  year: 2020
  end-page: 44
  article-title: NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 2009
– year: 2005
– start-page: 1
  year: 2020
  end-page: 9
  article-title: Interactive Parallel Coordinates for Parametric Design Space Exploration
– year: 2021
– volume: 17.2
  start-page: 108
  year: 2018
  end-page: 127
  article-title: Augmenting the Usability of Parallel Coordinate Plot: The Polyline Glyphs
  publication-title: Information Visualization
– volume: 23.1
  start-page: 111
  year: 2017
  end-page: 120
  article-title: Characterizing Guidance in Visual Analytics
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 44.5
  start-page: 390
  year: 2017
  end-page: 409
  article-title: BinSq: Visualizing GeoGraphic Dot Density Patterns with Gridded Maps
  publication-title: CartoGraphy and GeoGraphic Information Science
– volume: 22.1
  start-page: 599
  year: 2016
  end-page: 608
  article-title: Visualizing Multiple Variables Across Scale and GeoGraphy
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 2018
– year: 2014
– volume: 107.3
  start-page: 627
  year: 2020
  end-page: 646
  article-title: Spatial Blind Source Separation
  publication-title: Biometrika
– year: 1998
– volume: 25.1
  start-page: 491
  year: 2019
  end-page: 500
  article-title: A Heuristic Approach to Value-Driven Evaluation of Visualizations
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 286
  year: 2014
  end-page: 290
– start-page: 100574
  year: 2022
– year: 1986
– volume: 47.7
  start-page: 753
  year: 2015
  end-page: 770
  article-title: Blind Source Separation for Spatial Compositional Data
  publication-title: Mathematical Geosciences
– volume: 25.1
  start-page: 256
  year: 2019
  end-page: 266
  article-title: Drag and Track: A Direct Manipulation Interface for Contextualizing Data Instances within a Continuous Parameter Space
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 16.6
  start-page: 1458
  year: 2010
  end-page: 1467
  article-title: World Lines
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 2008
– volume: 47.4
  start-page: 305
  year: 2020
  end-page: 320
  article-title: Micro DiaGrams: Visualization of Categorical Point Data from Location-Based Social Media
  publication-title: CartoGraphy and GeoGraphic Information Science
– start-page: 1
  year: 2018
  end-page: 12
  article-title: Dream Lens: Exploration and Visualization of Large-Scale Generative Design Datasets
– volume: 44.2
  start-page: 139
  year: 1982
  end-page: 177
  article-title: The Statistical Analysis of Compositional Data
  publication-title: Journal of the Royal Statistical Society
– start-page: 154
  year: 2008
  end-page: 175
  article-title: Visual Analytics: Definition, Process, and Challenges
– year: 1993
– volume: 3.1
  start-page: 45
  year: 2017
  end-page: 60
  article-title: Multivariate Label-Based Thematic Maps
  publication-title: International Journal of CartoGraphy
– volume: 23.1
  start-page: 81
  year: 2017
  end-page: 90
  article-title: Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 45.3
  start-page: 182
  year: 2008
  end-page: 192
  article-title: Combining Geovisual Analytics with Spatial Statistics: The Example of GeoGraphically Weighted Regression
  publication-title: The CartoGraphic Journal
– volume: 19.9
  start-page: 1438
  year: 2013
  end-page: 1454
  article-title: Bristle Maps: A Multivariate Abstraction Technique for Geovisualization
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 92
  year: 2008
  end-page: 103
– year: 2003
– volume: 26.4
  start-page: 267
  year: 2002
  end-page: 292
  article-title: Introducing GeoVISTA Studio: An Integrated Suite of Visualization and Computational Methods for Exploration and Knowledge Construction in Geography
  publication-title: Computers, Environment and Urban Systems
– year: 1996
– year: 2000
– volume: 10.10
  start-page: 302
  year: 2019
  article-title: Multivariate Maps—A Glyph-Placement Algorithm to Support Multivariate Geospatial Visualization
  publication-title: Information
– volume: 22.7
  year: 2008
  article-title: Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (REDCAP)
  publication-title: International Journal of Geographical Information Science
– start-page: 1931
  year: 2021
  end-page: 1935
– volume: 22.9
  start-page: 2200
  year: 2016
  end-page: 2213
  article-title: Visual Encoding of Dissimilarity Data via Topology-Preserving Map Deformation
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 30.2
  start-page: 147
  year: 2015
  end-page: 163
  article-title: Cross-Covariance Functions for Multivariate Geostatistics
  publication-title: Statistical Science
– year: 2016
– volume: 20.12
  start-page: 2161
  year: 2014
  end-page: 2170
  article-title: Visual Parameter Space Analysis: A Conceptual Framework
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 2010
– volume: 6.1
  start-page: 59
  year: 2000
  end-page: 78
  article-title: Designing Pixel-Oriented Visualization Techniques: Theory and Applications
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 85
  year: 2018
  end-page: 101
– volume: 103.1
  start-page: 106
  year: 2013
  end-page: 128
  article-title: Principal Component Analysis on Spatial Data: An Overview
  publication-title: Annals of the Association of American GeoGraphers
– volume: 45.3
  year: 1991
  article-title: Dynamic Graphics for Exploring Spatial Data with Application to Locating Global and Local Anomalies
  publication-title: The American Statistician
– volume: 20.12
  start-page: 2033
  year: 2014
  end-page: 2042
  article-title: Attribute Signatures: Dynamic Visual Summaries for Analyzing Multivariate Geographical Data
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 33.4
  start-page: 1
  year: 2014
  end-page: 10
  article-title: Pteromys: Interactive Design and Optimization of Free-Formed Free-Flight Model Airplanes
  publication-title: ACM Transactions on Graphics
– volume: 5.8
  year: 2019
  article-title: A Meta-Analysis of Selected near-Road Air Pollutants Based on Concentration Decay Rates
  publication-title: Heliyon
– year: 2002
– start-page: 381
  year: 2012
  end-page: 393
– year: 2020
– volume: 22.1
  start-page: 579
  year: 2016
  end-page: 588
  article-title: Evaluation of Parallel Coordinates: Overview, Categorization and Guidelines for Future Research
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 47.2
  start-page: 146
  year: 2015
  end-page: 172
  article-title: Enhancements to a Geographically Weighted Principal Component Analysis in the Context of an Application to an Environmental Data Set
  publication-title: Geographical Analysis
– volume: 44.5
  start-page: 374
  year: 2017
  end-page: 389
  article-title: Point Grid Map: A New Type of Thematic Map for Statistical Data Associated with Geographic Points
  publication-title: Cartography and Geographic Information Science
– volume: 27.3
  start-page: 2000
  year: 2021
  end-page: 2014
  article-title: Phoenixmap: An Abstract Approach to Visualize 2D Spatial Distributions
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 13.6
  start-page: 1161
  year: 2007
  end-page: 1168
  article-title: GeoGraphically Weighted Visualization: Interactive Graphics for Scale-Varying Exploratory Analysis
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– ident: e_1_2_9_12_2
  doi: 10.1002/9781119115151
– ident: e_1_2_9_4_2
  doi: 10.1109/IMMERSIVE.2016.7932377
– volume: 45
  year: 1991
  ident: e_1_2_9_25_2
  article-title: Dynamic Graphics for Exploring Spatial Data with Application to Locating Global and Local Anomalies
  publication-title: The American Statistician
  doi: 10.1080/00031305.1991.10475810
– ident: e_1_2_9_36_2
  doi: 10.1016/j.heliyon.2019.e02236
– ident: e_1_2_9_15_2
  doi: 10.1179/000870408x311378
– ident: e_1_2_9_27_2
  doi: 10.1109/tvcg.2019.2934591
– ident: e_1_2_9_35_2
  doi: 10.1109/tvcg.2013.66
– ident: e_1_2_9_60_2
  doi: 10.1109/tvcg.2010.223
– volume: 44
  start-page: 139
  year: 1982
  ident: e_1_2_9_2_2
  article-title: The Statistical Analysis of Compositional Data
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1982.tb01195.x
– ident: e_1_2_9_13_2
  doi: 10.1109/tvcg.2007.70558
– ident: e_1_2_9_30_2
  doi: 10.1109/tvcg.2015.2466992
– ident: e_1_2_9_53_2
  doi: 10.1109/tvcg.2014.2346321
– ident: e_1_2_9_33_2
  doi: 10.1007/978-3-540-70956-5_7
– ident: e_1_2_9_18_2
  doi: 10.1080/15230406.2020.1733438
– ident: e_1_2_9_34_2
  doi: 10.1109/2945.841121
– ident: e_1_2_9_48_2
– ident: e_1_2_9_64_2
  doi: 10.1080/15230406.2016.1160797
– ident: e_1_2_9_24_2
  doi: 10.1016/B978-0-12-814022-2.00005-8
– ident: e_1_2_9_42_2
  doi: 10.32614/CRAN.package.SpatialBSS
– ident: e_1_2_9_31_2
  doi: 10.1109/VISUAL.2000.885678
– ident: e_1_2_9_58_2
  doi: 10.1007/978-3-662-05294-5
– ident: e_1_2_9_23_2
  doi: 10.1080/13658810701674970
– ident: e_1_2_9_54_2
– ident: e_1_2_9_8_2
  doi: 10.1007/s11004-011-9360-7
– ident: e_1_2_9_51_2
– volume-title: Chemistry of Europe's Agricultural Soils. Part A: Methodology and Interpretation of the GEMAS Data Set
  year: 2014
  ident: e_1_2_9_50_2
– ident: e_1_2_9_40_2
– ident: e_1_2_9_16_2
  doi: 10.1080/00045608.2012.689236
– ident: e_1_2_9_21_2
– ident: e_1_2_9_26_2
  doi: 10.1111/gean.12048
– ident: e_1_2_9_9_2
  doi: 10.1109/tvcg.2016.2598468
– ident: e_1_2_9_44_2
  doi: 10.1145/3334480.3383101
– ident: e_1_2_9_52_2
– ident: e_1_2_9_59_2
  doi: 10.1109/tvcg.2018.2865146
– ident: e_1_2_9_11_2
  doi: 10.1080/15230406.2016.1174623
– ident: e_1_2_9_29_2
  doi: 10.1038/hdy.2008.34
– volume-title: Atlas Krajiny České Republiky
  year: 2009
  ident: e_1_2_9_28_2
– ident: e_1_2_9_37_2
  doi: 10.1016/j.cag.2013.11.002
– ident: e_1_2_9_22_2
  doi: 10.1016/s0198-9715(01)00046-1
– ident: e_1_2_9_46_2
  doi: 10.1109/tvcg.2018.2865051
– ident: e_1_2_9_20_2
  doi: 10.1214/14-sts487
– ident: e_1_2_9_56_2
  doi: 10.1109/tvcg.2014.2346265
– volume-title: Environmental Geochemical Atlas of the Central Barents Region
  year: 1998
  ident: e_1_2_9_49_2
– ident: e_1_2_9_61_2
– ident: e_1_2_9_3_2
  doi: 10.1080/23729333.2017.1301346
– ident: e_1_2_9_47_2
  doi: 10.1177/1473871617693041
– ident: e_1_2_9_17_2
– ident: e_1_2_9_62_2
  doi: 10.1109/tvcg.2016.2598830
– ident: e_1_2_9_10_2
  doi: 10.1016/c2009-0-19334-0
– ident: e_1_2_9_14_2
– ident: e_1_2_9_6_2
– ident: e_1_2_9_38_2
  doi: 10.1016/j.spasta.2021.100574
– ident: e_1_2_9_7_2
  doi: 10.1093/biomet/asz079
– ident: e_1_2_9_41_2
  doi: 10.3390/info10100302
– start-page: 1
  volume-title: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
  year: 2018
  ident: e_1_2_9_39_2
– ident: e_1_2_9_32_2
  doi: 10.1007/978-1-4757-1904-8
– ident: e_1_2_9_57_2
  doi: 10.1145/2601097.2601129
– ident: e_1_2_9_45_2
  doi: 10.1007/s11004-014-9559-5
– ident: e_1_2_9_55_2
– ident: e_1_2_9_19_2
  doi: 10.1109/tvcg.2015.2467199
– ident: e_1_2_9_5_2
  doi: 10.1109/tvcg.2015.2500225
– ident: e_1_2_9_43_2
  doi: 10.1109/LGRS.2020.3011549
– ident: e_1_2_9_63_2
  doi: 10.1109/tvcg.2019.2945960
SSID ssj0004765
Score 2.385
Snippet Analysis of spatial multivariate data, i.e., measurements at irregularly‐spaced locations, is a challenging topic in visualization and statistics alike. Such...
Analysis of spatial multivariate data, i.e., measurements at irregularly-spaced locations, is a challenging topic in visualization and statistics alike. Such...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 157
SubjectTerms CCS Concepts
Domains
Evaluation
Geochemistry
GeoGraphic visualization
Human‐centered computing → Visualization techniques
Multivariate analysis
Parameter identification
Prototypes
Separation
Signal processing
Spatial data
Visualization
Title Visual Parameter Selection for Spatial Blind Source Separation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.14530
https://www.ncbi.nlm.nih.gov/pubmed/36248193
https://www.proquest.com/docview/2700994009
https://www.proquest.com/docview/2725441165
Volume 41
WOSCitedRecordID wos000842261500015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB4W1wd98D5WV6nigy-FHmnSIAi6uvogy-LFvpWkSWVBurKHv99JeuiiguBLCe2Uhpn5mpkc3wCc-AF6hibKVSSQLpECIcW8zBU6omnIidCesMUmWK8XDwa834Cz6ixMwQ9RT7gZZNj_tQG4kJMvIE9fMoR5FGK-3vT9kBmXDkj_81Ako1FF7G0oY0paIbONp351fjD6FmHOB6x2xOmu_quva7BSBprOReEZ69DQ-QYsf6Ef3ITz5-FkhjJ9YXZooYKdB1sVB03lYCzrmHLF6J7OJXZAOQ92mh9FCrbwUb4FT93rx86tW9ZTcFND-eJSThiaRQaSZYqqlHIVUckwROGxJBIzL6qV4MpTmSeijPo61X4W4A1J4zBj4TYs5KNc74ITpZRIL-CEZxwbNBY0xkxGBJggiYjHLTitFJukJdm4qXnxmlRJB6oksSppwXEt-lYwbPwk1K6sk5QgmyRmzZybwu68BUf1Y4SHWfMQuR7NjIzhYDMcQy3YKaxafwXHboIBUYidtcb7_fNJ56ZrG3t_F92HpcAclbAzNm1YmI5n-gAW0_fpcDI-tL6KVzaID6F5dd99uvsAS8rrPg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS8MwED_GFNQPvh_zWcUPfil0bZo2IIJOp-Icw22ybyVpUhlIJ87593tJHzpUEPwW2isJ92juLrnfARzXXdQMRaQtiStsIjiaVOAkNlc-jT1GuHK4aTYRtNvhYMA6FTgtamEyfIgy4aYtw_yvtYHrhPQXK4-fErRz38OAfYagGvlVmLl8aPZbn3WRAfULbG-NGpMjC-mbPOXH0_vRNydz2mc1m05z6X_LXYbF3Nm0zjPtWIGKSldh4QsE4RqcPQ7HE6TpcH1LC5lsdU1nHBSXhf6spVsWo4paF7gCaXVNqh9JMsTwUboO_eZVr3Fj5z0V7FjDvtiUkQBFI1wRJJLKmDLpUxGgm8JCQQRGX1RJzqQjE4f7Ca2rWNUTFx8IGnpJ4G1ANR2lagssP6ZEOC4jLGE4oCGnIUYz3MUgifssrMFJwdkozgHHdd-L56gIPJAlkWFJDY5K0pcMZeMnot1CPFFuaONIn5sz3dyd1eCwfI0mos89eKpGE02jcdg0zlANNjOxlrPg_k3QKfJwsUZ6v08fNa6bZrD9d9IDmLvp3bei1m37bgfmXV06YTI4u1B9e52oPZiN39-G49f9XHU_ALnx7jM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_GFNEHvz-mU6v44Euha9O0ARF0OhVlDKayt5I0iQykG87593tJP1RUEHwr7ZWEu_sld_n4HcBRy0fPUES6kvjCJYIjpCJPu1yFNA0Y4crjtthE1O3GgwHr1eCkvAuT80NUC24GGXa8NgBXY6k_oTx90ojzMMCEfYaEOMYaXmfS-7gVGdGwZPY2nDEFr5A5x1P9-nU2-hZifo1Y7ZTTWfpfZ5dhsQg1nbPcN1agprJVWPhEQLgGp4_DyRRletyc0UIVO31bFweN5WA065iCxeigzjn2QDp9u9CPIjlf-Chbh4fO5X372i0qKripIX1xKSMRGkb4ItKSypQyGVIRYZDCYkEE5l5USc6kJ7XHQ01bKlUt7eMLQeNAR8EG1LNRprbACVNKhOczwjTDBxpzGmMuw31MkXjI4gYcl5pN0oJu3FS9eE7KtANVkliVNOCwEh3nHBs_CTVL8yQFzCaJ2TVnprQ7a8BB9RkBYnY9eKZGUyNjWNgMy1ADNnOzVq3g7E0wJAqws9Z6vzeftK869mH776L7MNe76CR3N93bHZj3zb0Ju3zThPrry1Ttwmz69jqcvOxZv30HGXDsHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Parameter+Selection+for+Spatial+Blind+Source+Separation&rft.jtitle=Computer+graphics+forum&rft.au=Piccolotto%2C+N&rft.au=B%C3%B6gl%2C+M&rft.au=Muehlmann%2C+C&rft.au=Nordhausen%2C+K&rft.date=2022-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=41&rft.issue=3&rft.spage=157&rft.epage=168&rft_id=info:doi/10.1111%2Fcgf.14530&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon