Dual-stream pyramid registration network
•We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D medical image registration.•We design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes.•We propose sequential pyramid registra...
Gespeichert in:
| Veröffentlicht in: | Medical image analysis Jg. 78; S. 102379 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier B.V
01.05.2022
Elsevier BV |
| Schlagworte: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D medical image registration.•We design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes.•We propose sequential pyramid registration where a sequence of pyramid registration (RP) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids.•The PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++.•Our Dual-PRNet++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations.
[Display omitted]
We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which computes a registration field from a pair of 3D volumes using a single-stream network, we design a two-stream architecture able to estimate multi-level registration fields sequentially from a pair of feature pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids. The registration fields are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++ able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, where Dual-PRNet++ outperforms the state-of-the-art approaches by a large margin, i.e., improving recent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, by leveraging limited annotations. |
|---|---|
| AbstractList | •We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D medical image registration.•We design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes.•We propose sequential pyramid registration where a sequence of pyramid registration (RP) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids.•The PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++.•Our Dual-PRNet++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations.
[Display omitted]
We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which computes a registration field from a pair of 3D volumes using a single-stream network, we design a two-stream architecture able to estimate multi-level registration fields sequentially from a pair of feature pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids. The registration fields are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++ able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, where Dual-PRNet++ outperforms the state-of-the-art approaches by a large margin, i.e., improving recent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, by leveraging limited annotations. We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which computes a registration field from a pair of 3D volumes using a single-stream network, we design a two-stream architecture able to estimate multi-level registration fields sequentially from a pair of feature pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids. The registration fields are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++ able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet ++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, where Dual-PRNet ++ outperforms the state-of-the-art approaches by a large margin, i.e., improving recent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, by leveraging limited annotations. We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which computes a registration field from a pair of 3D volumes using a single-stream network, we design a two-stream architecture able to estimate multi-level registration fields sequentially from a pair of feature pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids. The registration fields are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++ able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, where Dual-PRNet++ outperforms the state-of-the-art approaches by a large margin, i.e., improving recent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, by leveraging limited annotations.We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which computes a registration field from a pair of 3D volumes using a single-stream network, we design a two-stream architecture able to estimate multi-level registration fields sequentially from a pair of feature pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids. The registration fields are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++ able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, where Dual-PRNet++ outperforms the state-of-the-art approaches by a large margin, i.e., improving recent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, by leveraging limited annotations. We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which computes a registration field from a pair of 3D volumes using a single-stream network, we design a two-stream architecture able to estimate multi-level registration fields sequentially from a pair of feature pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids. The registration fields are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, where Dual-PRNet outperforms the state-of-the-art approaches by a large margin, i.e., improving recent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, by leveraging limited annotations. |
| ArticleNumber | 102379 |
| Author | Scott, Matthew R. Hu, Xiaojun Reyes, Mauricio Huang, Weilin Kang, Miao |
| Author_xml | – sequence: 1 givenname: Miao surname: Kang fullname: Kang, Miao organization: Malong LLC, Wilmington, USA – sequence: 2 givenname: Xiaojun surname: Hu fullname: Hu, Xiaojun organization: Malong LLC, Wilmington, USA – sequence: 3 givenname: Weilin orcidid: 0000-0002-1520-4140 surname: Huang fullname: Huang, Weilin email: whuang@malongtech.com, whuang@robots.ox.ac.uk organization: Malong LLC, Wilmington, USA – sequence: 4 givenname: Matthew R. surname: Scott fullname: Scott, Matthew R. organization: Malong LLC, Wilmington, USA – sequence: 5 givenname: Mauricio orcidid: 0000-0002-2434-9990 surname: Reyes fullname: Reyes, Mauricio organization: ARTORG Center for Biomedical Engineering Research, Univ. of Bern, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35349836$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kLtOwzAUQC1URB_wBUioEkuXFL8SOwMDKk-pEgvMluPcIJc8ip2A-ve4TWHo0MnW1TlX9hmjQd3UgNAlwXOCSXKzmleQWz2nmNIwoUykJ2hEWEIiySkb_N9JPERj71cYY8E5PkNDFjOeSpaM0Oy-02XkWwe6mq43Tlc2nzr4sGGkW9vU0xran8Z9nqPTQpceLvbnBL0_PrwtnqPl69PL4m4ZGSZFG-U5iFgKWTDMcJFxoRlOZVYUXBgCmAJPpBZU0EJKkUmTYwCa4CzjhDCaGjZBs37v2jVfHfhWVdYbKEtdQ9N5RRMec4EZ5QG9PkBXTefq8LpApYlMcZpsqas91WUhmFo7W2m3UX8NApD2gHGN9w4KZWy7-3tIYEtFsNr2Viu16622vVXfO7jswP1bf9y67S0IIb8tOOWNhdoE0IFpVd7Yo_4vetyXeQ |
| CitedBy_id | crossref_primary_10_1109_JBHI_2023_3344646 crossref_primary_10_1016_j_compbiomed_2024_109356 crossref_primary_10_1002_mp_17565 crossref_primary_10_3390_rs17132238 crossref_primary_10_1016_j_compbiomed_2024_108948 crossref_primary_10_1016_j_bspc_2024_106725 crossref_primary_10_1016_j_bspc_2024_106926 crossref_primary_10_1088_1361_6560_ad9e69 crossref_primary_10_1016_j_knosys_2025_113291 crossref_primary_10_1016_j_compbiomed_2022_105780 crossref_primary_10_1016_j_media_2022_102692 crossref_primary_10_1007_s10489_022_04109_8 crossref_primary_10_1007_s11517_023_02834_x crossref_primary_10_1007_s11760_025_04646_y crossref_primary_10_1038_s41598_025_00403_w crossref_primary_10_1016_j_media_2024_103385 crossref_primary_10_32604_cmc_2024_048706 crossref_primary_10_1088_1361_6501_ad1d2d crossref_primary_10_1109_JBHI_2025_3556676 crossref_primary_10_1007_s11227_024_06470_6 crossref_primary_10_1109_TNNLS_2024_3454076 crossref_primary_10_1016_j_compmedimag_2023_102322 crossref_primary_10_1016_j_compbiomed_2024_109205 crossref_primary_10_1016_j_sigpro_2025_109924 crossref_primary_10_1109_TMI_2024_3437295 crossref_primary_10_1002_mp_17512 crossref_primary_10_1016_j_media_2025_103637 crossref_primary_10_1109_ACCESS_2025_3539890 crossref_primary_10_1016_j_bspc_2025_107897 crossref_primary_10_1109_TMI_2024_3362968 crossref_primary_10_1002_mp_17827 crossref_primary_10_1016_j_bspc_2022_104437 crossref_primary_10_1088_1361_6560_ad3723 crossref_primary_10_1109_JBHI_2022_3189696 crossref_primary_10_1109_JBHI_2024_3376334 crossref_primary_10_1016_j_mri_2025_110386 crossref_primary_10_1088_1361_6560_ac72ef crossref_primary_10_1109_TMI_2025_3562056 crossref_primary_10_1007_s10278_024_01324_2 crossref_primary_10_1016_j_media_2023_103038 crossref_primary_10_1007_s00371_025_04183_2 crossref_primary_10_1002_mp_17390 crossref_primary_10_1016_j_media_2024_103212 crossref_primary_10_1109_JBHI_2024_3524361 crossref_primary_10_1007_s11517_023_02887_y crossref_primary_10_1088_1361_6560_ad2717 crossref_primary_10_1016_j_inffus_2025_103509 crossref_primary_10_1117_1_JMI_11_6_064001 crossref_primary_10_1016_j_compbiomed_2024_107990 crossref_primary_10_1016_j_patcog_2025_111761 crossref_primary_10_1109_TMI_2024_3505853 crossref_primary_10_1049_ipr2_70117 crossref_primary_10_1016_j_bspc_2025_108493 crossref_primary_10_1016_j_imavis_2024_105209 crossref_primary_10_1111_exsy_70077 crossref_primary_10_3389_fnins_2024_1364409 crossref_primary_10_1016_j_bspc_2024_106476 crossref_primary_10_1049_ipr2_70154 crossref_primary_10_1109_TMI_2023_3244333 crossref_primary_10_1016_j_compbiomed_2023_106612 crossref_primary_10_1016_j_media_2024_103283 crossref_primary_10_32604_cmc_2024_047754 crossref_primary_10_1016_j_eswa_2025_129335 crossref_primary_10_1109_TIP_2024_3407657 crossref_primary_10_1016_j_bspc_2025_108089 crossref_primary_10_3233_XST_240159 crossref_primary_10_1109_TMI_2024_3400603 crossref_primary_10_1016_j_compbiomed_2024_109103 crossref_primary_10_1186_s42492_024_00173_8 crossref_primary_10_1002_mp_17696 crossref_primary_10_1007_s11227_025_07060_w crossref_primary_10_1007_s13246_025_01635_w crossref_primary_10_1016_j_compbiomed_2023_107434 crossref_primary_10_1016_j_compbiomed_2023_107598 crossref_primary_10_1016_j_compmedimag_2025_102589 crossref_primary_10_1016_j_media_2024_103351 |
| Cites_doi | 10.1117/12.2549531 10.1007/s11548-019-02068-z 10.3389/fnins.2012.00171 10.1007/s00138-020-01060-x 10.1007/s11263-008-0141-9 10.1016/j.neuroimage.2017.07.008 10.1109/TMI.2016.2521800 10.1016/j.neuroimage.2010.09.025 10.1088/1361-6560/ab5da0 10.1016/j.neuroimage.2007.07.007 10.1109/JBHI.2019.2951024 10.1007/978-3-030-32692-0_74 10.1002/mp.12007 10.1016/j.media.2021.102036 10.1007/978-3-030-32245-8_47 10.1088/1361-6560/ab79c4 10.1109/TMI.2019.2897112 10.1109/TMI.2019.2897538 10.1016/j.media.2018.11.010 10.1088/1361-6560/ab843e 10.1016/j.neuroimage.2007.09.031 10.1016/j.compeleceng.2020.106767 10.1016/j.media.2007.06.004 10.1016/j.neuroimage.2008.10.040 10.1109/TMI.2019.2953788 |
| ContentType | Journal Article |
| Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. Copyright Elsevier BV May 2022 |
| Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. – notice: Copyright Elsevier BV May 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
| DOI | 10.1016/j.media.2022.102379 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| ExternalDocumentID | 35349836 10_1016_j_media_2022_102379 S1361841522000317 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c387t-dde75878f3030fb47a3098bff47c1e02e468a7272f887b8cd0ee260bb411329c3 |
| ISICitedReferencesCount | 108 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001266853700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Thu Oct 02 06:12:11 EDT 2025 Tue Oct 07 07:03:15 EDT 2025 Wed Feb 19 02:26:16 EST 2025 Tue Nov 18 21:57:03 EST 2025 Sat Nov 29 07:05:32 EST 2025 Fri Feb 23 02:38:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 3D segmentation Brain MRI Encoder-decoder network Deformable registration Medical image registration |
| Language | English |
| License | Copyright © 2022. Published by Elsevier B.V. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c387t-dde75878f3030fb47a3098bff47c1e02e468a7272f887b8cd0ee260bb411329c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2434-9990 0000-0002-1520-4140 |
| PMID | 35349836 |
| PQID | 2696890964 |
| PQPubID | 2045428 |
| ParticipantIDs | proquest_miscellaneous_2645470324 proquest_journals_2696890964 pubmed_primary_35349836 crossref_citationtrail_10_1016_j_media_2022_102379 crossref_primary_10_1016_j_media_2022_102379 elsevier_sciencedirect_doi_10_1016_j_media_2022_102379 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Klein, Tourville (bib0025) 2012; 6 Xu, Z., Niethammer, M., 2019. DeepAtlas: joint semi-supervised learning of image registration and segmentation. arXiv Ronneberger, Fischer, Brox (bib0038) 2015 Shattuck, Mirza, Adisetiyo, Hojatkashani, Salamon, Narr, Poldrack, Bilder, Toga (bib0039) 2008; 39 Dosovitskiy, Fischer, Ilg, Hausser, Hazirbas, Golkov, Van Der Smagt, Cremers, Brox (bib0008) 2015 Boveiri, Khayami, Javidan, Mehdizadeh (bib0006) 2020; 87 Eppenhof, Lafarge, Veta, Pluim (bib0009) 2019; 39 Hui, Tang, Change Loy (bib0020) 2018 Zhu, Cao, Qin, Rao, Ni, Wang (bib0051) 2020 Jiang, Yin, Ge, Ren (bib0023) 2020; 65 Zhao, Lau, Luo, Chang, Xu (bib0050) 2020; 24 Avants, Tustison, Song, Cook, Klein, Gee (bib0003) 2011; 54 Hu, Gibson, Barratt, Emberton, Noble, Vercauteren (bib0018) 2019 Lei, Fu, Wang, Liu, Patel, Curran, Liu, Yang (bib0029) 2020; 65 Kuang, D., Schmah, T., 2018. FAIM-a convnet method for unsupervised 3D medical image registration. arXiv Wang, Cao, Wei, Wang, Ma, Wang, Meng, Zheng (bib0045) 2020 Avants, Epstein, Grossman, Gee (bib0002) 2008; 12 Hering, van Ginneken, Heldmann (bib0014) 2019 Ranjan, Black (bib0036) 2017 Vercauteren, Pennec, Perchant, Ayache (bib0042) 2009; 45 Hu, Wei, Gao, Guo, Wu, Shen (bib0016) 2017; 44 . Kuckertz, S., Papenberg, N., Honegger, J., Morgas, T., Haas, B., Heldmann, S., 2020. Deep-learning-based CT-CBCT image registration for adaptive radio therapy 11313, 113130Q. Mok, Chung (bib0034) 2020 Miao, Wang, Liao (bib0033) 2016; 35 Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0005) 2019; 38 Zhao, Dong, Chang, Xu (bib0049) 2019 Hu, Kang, Huang, Scott, Wiest, Reyes (bib0017) 2019 Hering, Kuckertz, Heldmann, Heinrich (bib0015) 2019; 14 Glaunès, Qiu, Miller, Younes (bib0012) 2008; 80 Yang, Kwitt, Styner, Niethammer (bib0047) 2017; 158 Jaderberg, Simonyan, Zisserman (bib0022) 2015 de Vos, Berendsen, Viergever, Staring, Išgum (bib0044) 2017 Ashburner (bib0001) 2007; 38 Sokooti, De Vos, Berendsen, Lelieveldt, Išgum, Staring (bib0040) 2017 Liu, Hu, Zhu, Heng (bib0032) 2019 Liu, L., Aviles-Rivero, A. I., Schönlieb, C.-B., 2020. Contrastive registration for unsupervised medical image segmentation. arXiv Estienne, Vakalopoulou, Christodoulidis, Battistela, Lerousseau, Carre, Klausner, Sun, Robert, Mougiakakou (bib0010) 2019 Huang, Yang, Liu, Li, Zhang, Wang, Zheng, Wang (bib0019) 2021 Haskins, Kruger, Yan (bib0013) 2020; 31 Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0004) 2018 Nielsen, Darkner, Feragen (bib0035) 2019 Sun, Yang, Liu, Kautz (bib0041) 2018 Zhao, Balakrishnan, Durand, Guttag, Dalca (bib0048) 2019 Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib0007) 2016 Isola, Zhu, Zhou, Efros (bib0021) 2017 Krebs, Delingette, Mailhé, Ayache, Mansi (bib0026) 2019; 38 Risheng, L., Zi, L., Xin, F., Chenying, Z., Hao, H., Zhongxuan, L., 2021. Learning deformable image registration from optimization: perspective, modules, bilevel training and beyond. arXiv Kim, Kim, Park, Kim, Lee, Ye (bib0024) 2021 Fu, Lei, Wang, Curran, Liu, Yang (bib0011) 2020; 65 Lewis, K. M., Balakrishnan, G., Rost, N. S., Guttag, J., Dalca, A. V., 2018. Fast learning-based registration of sparse clinical images. arXiv de Vos, Berendsen, Viergever, Sokooti, Staring, Išgum (bib0043) 2019; 52 10.1016/j.media.2022.102379_bib0027 10.1016/j.media.2022.102379_bib0028 Haskins (10.1016/j.media.2022.102379_bib0013) 2020; 31 Miao (10.1016/j.media.2022.102379_bib0033) 2016; 35 Mok (10.1016/j.media.2022.102379_bib0034) 2020 Hui (10.1016/j.media.2022.102379_bib0020) 2018 Lei (10.1016/j.media.2022.102379_bib0029) 2020; 65 Zhao (10.1016/j.media.2022.102379_bib0048) 2019 Isola (10.1016/j.media.2022.102379_bib0021) 2017 Yang (10.1016/j.media.2022.102379_bib0047) 2017; 158 Zhao (10.1016/j.media.2022.102379_bib0050) 2020; 24 Glaunès (10.1016/j.media.2022.102379_bib0012) 2008; 80 10.1016/j.media.2022.102379_bib0037 de Vos (10.1016/j.media.2022.102379_bib0043) 2019; 52 Jaderberg (10.1016/j.media.2022.102379_bib0022) 2015 Nielsen (10.1016/j.media.2022.102379_bib0035) 2019 Jiang (10.1016/j.media.2022.102379_bib0023) 2020; 65 10.1016/j.media.2022.102379_bib0030 Klein (10.1016/j.media.2022.102379_bib0025) 2012; 6 10.1016/j.media.2022.102379_bib0031 Çiçek (10.1016/j.media.2022.102379_bib0007) 2016 Kim (10.1016/j.media.2022.102379_bib0024) 2021 Huang (10.1016/j.media.2022.102379_bib0019) 2021 Shattuck (10.1016/j.media.2022.102379_bib0039) 2008; 39 Wang (10.1016/j.media.2022.102379_bib0045) 2020 Hu (10.1016/j.media.2022.102379_bib0017) 2019 Ranjan (10.1016/j.media.2022.102379_bib0036) 2017 Dosovitskiy (10.1016/j.media.2022.102379_bib0008) 2015 Hering (10.1016/j.media.2022.102379_bib0015) 2019; 14 Sun (10.1016/j.media.2022.102379_bib0041) 2018 Fu (10.1016/j.media.2022.102379_bib0011) 2020; 65 Liu (10.1016/j.media.2022.102379_bib0032) 2019 Zhu (10.1016/j.media.2022.102379_bib0051) 2020 Zhao (10.1016/j.media.2022.102379_bib0049) 2019 Hu (10.1016/j.media.2022.102379_bib0016) 2017; 44 10.1016/j.media.2022.102379_bib0046 Ronneberger (10.1016/j.media.2022.102379_bib0038) 2015 Balakrishnan (10.1016/j.media.2022.102379_bib0005) 2019; 38 Balakrishnan (10.1016/j.media.2022.102379_bib0004) 2018 Hering (10.1016/j.media.2022.102379_bib0014) 2019 Sokooti (10.1016/j.media.2022.102379_bib0040) 2017 Hu (10.1016/j.media.2022.102379_bib0018) 2019 Krebs (10.1016/j.media.2022.102379_bib0026) 2019; 38 Ashburner (10.1016/j.media.2022.102379_bib0001) 2007; 38 Eppenhof (10.1016/j.media.2022.102379_bib0009) 2019; 39 de Vos (10.1016/j.media.2022.102379_bib0044) 2017 Avants (10.1016/j.media.2022.102379_bib0002) 2008; 12 Boveiri (10.1016/j.media.2022.102379_bib0006) 2020; 87 Avants (10.1016/j.media.2022.102379_bib0003) 2011; 54 Estienne (10.1016/j.media.2022.102379_bib0010) 2019 Vercauteren (10.1016/j.media.2022.102379_bib0042) 2009; 45 |
| References_xml | – volume: 14 start-page: 1901 year: 2019 end-page: 1912 ident: bib0015 article-title: Memory-efficient 2.5D convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart CT and MRI scans publication-title: Int. J. Comput. Assist.Radiol. Surg. – start-page: 211 year: 2020 end-page: 221 ident: bib0034 article-title: Large deformation diffeomorphic image registration with Laplacian pyramid networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 401 year: 2019 end-page: 409 ident: bib0018 article-title: Conditional segmentation in lieu of image registration publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 35 start-page: 1352 year: 2016 end-page: 1363 ident: bib0033 article-title: A CNN regression approach for real-time 2D/3D registration publication-title: IEEE Trans. Med. Imaging – start-page: 364 year: 2019 end-page: 372 ident: bib0035 article-title: TopAwaRe: topology-aware registration publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 10600 year: 2019 end-page: 10610 ident: bib0049 article-title: Recursive cascaded networks for unsupervised medical image registration publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 44 start-page: 158 year: 2017 end-page: 170 ident: bib0016 article-title: Learning-based deformable image registration for infant MR images in the first year of life publication-title: Med. Phys. – volume: 54 start-page: 2033 year: 2011 end-page: 2044 ident: bib0003 article-title: A reproducible evaluation of ants similarity metric performance in brain image registration publication-title: Neuroimage – start-page: 346 year: 2019 end-page: 354 ident: bib0032 article-title: Probabilistic multilayer regularization network for unsupervised 3D brain image registration publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 31 year: 2020 ident: bib0013 article-title: Deep learning in medical image registration: a survey publication-title: Mach. Vis. Appl. – volume: 87 start-page: 106767 year: 2020 ident: bib0006 article-title: Medical image registration using deep neural networks: a comprehensive review publication-title: Comput. Electr. Eng. – start-page: 424 year: 2016 end-page: 432 ident: bib0007 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 45 start-page: 61 year: 2009 end-page: 72 ident: bib0042 article-title: Diffeomorphic demons: efficient non-parametric image registration publication-title: NeuroImage – volume: 38 start-page: 1788 year: 2019 end-page: 1800 ident: bib0005 article-title: VoxelMorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging – volume: 65 start-page: 085003 year: 2020 ident: bib0029 article-title: 4D-CT deformable image registration using multiscale unsupervised deep learning publication-title: Phys. Med. Biol. – start-page: 232 year: 2017 end-page: 239 ident: bib0040 article-title: Nonrigid image registration using multi-scale 3D convolutional neural networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 2758 year: 2015 end-page: 2766 ident: bib0008 article-title: FlowNet: learning optical flow with convolutional networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 310 year: 2019 end-page: 319 ident: bib0010 article-title: U-ReSNet: ultimate coupling of registration and segmentation with deep nets publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 38 start-page: 2165 year: 2019 end-page: 2176 ident: bib0026 article-title: Learning a probabilistic model for diffeomorphic registration publication-title: IEEE Trans. Med. Imaging – start-page: 1355 year: 2020 end-page: 1359 ident: bib0051 article-title: Unsupervised 3D end-to-end deformable network for brain MRI registration publication-title: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) – start-page: 2017 year: 2015 end-page: 2025 ident: bib0022 article-title: Spatial transformer networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 4161 year: 2017 end-page: 4170 ident: bib0036 article-title: Optical flow estimation using a spatial pyramid network publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 65 start-page: 015011 year: 2020 ident: bib0023 article-title: A multi-scale framework with unsupervised joint training of convolutional neural networks for pulmonary deformable image registration publication-title: Phys. Med. Biol. – reference: Kuang, D., Schmah, T., 2018. FAIM-a convnet method for unsupervised 3D medical image registration. arXiv: – reference: Kuckertz, S., Papenberg, N., Honegger, J., Morgas, T., Haas, B., Heldmann, S., 2020. Deep-learning-based CT-CBCT image registration for adaptive radio therapy 11313, 113130Q. – volume: 39 start-page: 1064 year: 2008 end-page: 1080 ident: bib0039 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: Neuroimage – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: bib0002 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. – start-page: 8934 year: 2018 end-page: 8943 ident: bib0041 article-title: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 234 year: 2015 end-page: 241 ident: bib0038 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 9162 year: 2020 end-page: 9171 ident: bib0045 article-title: LT-Net: label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 39 start-page: 1594 year: 2019 end-page: 1604 ident: bib0009 article-title: Progressively trained convolutional neural networks for deformable image registration publication-title: IEEE Trans. Med. Imaging – reference: Risheng, L., Zi, L., Xin, F., Chenying, Z., Hao, H., Zhongxuan, L., 2021. Learning deformable image registration from optimization: perspective, modules, bilevel training and beyond. arXiv: – volume: 24 start-page: 1394 year: 2020 end-page: 1404 ident: bib0050 article-title: Unsupervised 3D end-to-end medical image registration with volume tweening network publication-title: IEEE J. Biomed. Health Inf. – volume: 6 start-page: 171 year: 2012 ident: bib0025 article-title: 101 Labeled brain images and a consistent human cortical labeling protocol publication-title: Front. Neurosci. – start-page: 257 year: 2019 end-page: 265 ident: bib0014 article-title: mlVIRNET: multilevel variational image registration network publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 38 start-page: 95 year: 2007 end-page: 113 ident: bib0001 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage – year: 2021 ident: bib0024 article-title: CycleMorph: cycle consistent unsupervised deformable image registration publication-title: Med. Image Anal. – volume: 80 start-page: 317 year: 2008 ident: bib0012 article-title: Large deformation diffeomorphic metric curve mapping publication-title: Int. J. Comput. Vis. – volume: 65 start-page: 20TR01 year: 2020 ident: bib0011 article-title: Deep learning in medical image registration: a review publication-title: Phys. Med. Biol. – start-page: 8543 year: 2019 end-page: 8553 ident: bib0048 article-title: Data augmentation using learned transformations for one-shot medical image segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: Liu, L., Aviles-Rivero, A. I., Schönlieb, C.-B., 2020. Contrastive registration for unsupervised medical image segmentation. arXiv: – reference: Lewis, K. M., Balakrishnan, G., Rost, N. S., Guttag, J., Dalca, A. V., 2018. Fast learning-based registration of sparse clinical images. arXiv: – start-page: 204 year: 2017 end-page: 212 ident: bib0044 article-title: End-to-end unsupervised deformable image registration with a convolutional neural network publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 158 start-page: 378 year: 2017 ident: bib0047 article-title: Quicksilver: fast predictive image registration - a deep learning approach publication-title: Neuroimage – reference: Xu, Z., Niethammer, M., 2019. DeepAtlas: joint semi-supervised learning of image registration and segmentation. arXiv: – reference: . – year: 2021 ident: bib0019 article-title: A coarse-to-fine deformable transformation framework for unsupervised multi-contrast mr image registration with dual consistency constraint publication-title: IEEE Trans. Med. Imaging – start-page: 8981 year: 2018 end-page: 8989 ident: bib0020 article-title: LiteFlowNet: a lightweight convolutional neural network for optical flow estimation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 382 year: 2019 end-page: 390 ident: bib0017 article-title: Dual-stream pyramid registration network publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 52 start-page: 128 year: 2019 end-page: 143 ident: bib0043 article-title: A deep learning framework for unsupervised affine and deformable image registration publication-title: Med. Image Anal. – year: 2017 ident: bib0021 article-title: Image-to-image translation with conditional adversarial networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 9252 year: 2018 end-page: 9260 ident: bib0004 article-title: An unsupervised learning model for deformable medical image registration publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1355 year: 2020 ident: 10.1016/j.media.2022.102379_bib0051 article-title: Unsupervised 3D end-to-end deformable network for brain MRI registration – start-page: 257 year: 2019 ident: 10.1016/j.media.2022.102379_bib0014 article-title: mlVIRNET: multilevel variational image registration network – ident: 10.1016/j.media.2022.102379_bib0030 – ident: 10.1016/j.media.2022.102379_bib0028 doi: 10.1117/12.2549531 – start-page: 8981 year: 2018 ident: 10.1016/j.media.2022.102379_bib0020 article-title: LiteFlowNet: a lightweight convolutional neural network for optical flow estimation – volume: 14 start-page: 1901 year: 2019 ident: 10.1016/j.media.2022.102379_bib0015 article-title: Memory-efficient 2.5D convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart CT and MRI scans publication-title: Int. J. Comput. Assist.Radiol. Surg. doi: 10.1007/s11548-019-02068-z – start-page: 310 year: 2019 ident: 10.1016/j.media.2022.102379_bib0010 article-title: U-ReSNet: ultimate coupling of registration and segmentation with deep nets – volume: 6 start-page: 171 year: 2012 ident: 10.1016/j.media.2022.102379_bib0025 article-title: 101 Labeled brain images and a consistent human cortical labeling protocol publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00171 – volume: 31 issue: 1-2 year: 2020 ident: 10.1016/j.media.2022.102379_bib0013 article-title: Deep learning in medical image registration: a survey publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-020-01060-x – volume: 80 start-page: 317 year: 2008 ident: 10.1016/j.media.2022.102379_bib0012 article-title: Large deformation diffeomorphic metric curve mapping publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-008-0141-9 – volume: 158 start-page: 378 year: 2017 ident: 10.1016/j.media.2022.102379_bib0047 article-title: Quicksilver: fast predictive image registration - a deep learning approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.008 – volume: 35 start-page: 1352 issue: 5 year: 2016 ident: 10.1016/j.media.2022.102379_bib0033 article-title: A CNN regression approach for real-time 2D/3D registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2521800 – start-page: 204 year: 2017 ident: 10.1016/j.media.2022.102379_bib0044 article-title: End-to-end unsupervised deformable image registration with a convolutional neural network – start-page: 232 year: 2017 ident: 10.1016/j.media.2022.102379_bib0040 article-title: Nonrigid image registration using multi-scale 3D convolutional neural networks – start-page: 424 year: 2016 ident: 10.1016/j.media.2022.102379_bib0007 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation – start-page: 2017 year: 2015 ident: 10.1016/j.media.2022.102379_bib0022 article-title: Spatial transformer networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 346 year: 2019 ident: 10.1016/j.media.2022.102379_bib0032 article-title: Probabilistic multilayer regularization network for unsupervised 3D brain image registration – volume: 54 start-page: 2033 year: 2011 ident: 10.1016/j.media.2022.102379_bib0003 article-title: A reproducible evaluation of ants similarity metric performance in brain image registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.025 – volume: 65 start-page: 015011 issue: 1 year: 2020 ident: 10.1016/j.media.2022.102379_bib0023 article-title: A multi-scale framework with unsupervised joint training of convolutional neural networks for pulmonary deformable image registration publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab5da0 – volume: 38 start-page: 95 issue: 1 year: 2007 ident: 10.1016/j.media.2022.102379_bib0001 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.007 – ident: 10.1016/j.media.2022.102379_bib0031 – volume: 24 start-page: 1394 issue: 5 year: 2020 ident: 10.1016/j.media.2022.102379_bib0050 article-title: Unsupervised 3D end-to-end medical image registration with volume tweening network publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2019.2951024 – ident: 10.1016/j.media.2022.102379_bib0027 doi: 10.1007/978-3-030-32692-0_74 – volume: 44 start-page: 158 issue: 1 year: 2017 ident: 10.1016/j.media.2022.102379_bib0016 article-title: Learning-based deformable image registration for infant MR images in the first year of life publication-title: Med. Phys. doi: 10.1002/mp.12007 – year: 2021 ident: 10.1016/j.media.2022.102379_bib0024 article-title: CycleMorph: cycle consistent unsupervised deformable image registration publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102036 – start-page: 4161 year: 2017 ident: 10.1016/j.media.2022.102379_bib0036 article-title: Optical flow estimation using a spatial pyramid network – ident: 10.1016/j.media.2022.102379_bib0046 doi: 10.1007/978-3-030-32245-8_47 – volume: 65 start-page: 085003 issue: 8 year: 2020 ident: 10.1016/j.media.2022.102379_bib0029 article-title: 4D-CT deformable image registration using multiscale unsupervised deep learning publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab79c4 – volume: 38 start-page: 2165 issue: 9 year: 2019 ident: 10.1016/j.media.2022.102379_bib0026 article-title: Learning a probabilistic model for diffeomorphic registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2897112 – volume: 38 start-page: 1788 issue: 8 year: 2019 ident: 10.1016/j.media.2022.102379_bib0005 article-title: VoxelMorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2897538 – volume: 52 start-page: 128 year: 2019 ident: 10.1016/j.media.2022.102379_bib0043 article-title: A deep learning framework for unsupervised affine and deformable image registration publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.11.010 – year: 2017 ident: 10.1016/j.media.2022.102379_bib0021 article-title: Image-to-image translation with conditional adversarial networks – year: 2021 ident: 10.1016/j.media.2022.102379_bib0019 article-title: A coarse-to-fine deformable transformation framework for unsupervised multi-contrast mr image registration with dual consistency constraint publication-title: IEEE Trans. Med. Imaging – start-page: 211 year: 2020 ident: 10.1016/j.media.2022.102379_bib0034 article-title: Large deformation diffeomorphic image registration with Laplacian pyramid networks – volume: 65 start-page: 20TR01 issue: 20 year: 2020 ident: 10.1016/j.media.2022.102379_bib0011 article-title: Deep learning in medical image registration: a review publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab843e – volume: 39 start-page: 1064 year: 2008 ident: 10.1016/j.media.2022.102379_bib0039 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.031 – start-page: 364 year: 2019 ident: 10.1016/j.media.2022.102379_bib0035 article-title: TopAwaRe: topology-aware registration – start-page: 401 year: 2019 ident: 10.1016/j.media.2022.102379_bib0018 article-title: Conditional segmentation in lieu of image registration – start-page: 10600 year: 2019 ident: 10.1016/j.media.2022.102379_bib0049 article-title: Recursive cascaded networks for unsupervised medical image registration – volume: 87 start-page: 106767 year: 2020 ident: 10.1016/j.media.2022.102379_bib0006 article-title: Medical image registration using deep neural networks: a comprehensive review publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2020.106767 – start-page: 8543 year: 2019 ident: 10.1016/j.media.2022.102379_bib0048 article-title: Data augmentation using learned transformations for one-shot medical image segmentation – volume: 12 start-page: 26 year: 2008 ident: 10.1016/j.media.2022.102379_bib0002 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – start-page: 234 year: 2015 ident: 10.1016/j.media.2022.102379_bib0038 article-title: U-Net: convolutional networks for biomedical image segmentation – start-page: 9252 year: 2018 ident: 10.1016/j.media.2022.102379_bib0004 article-title: An unsupervised learning model for deformable medical image registration – start-page: 9162 year: 2020 ident: 10.1016/j.media.2022.102379_bib0045 article-title: LT-Net: label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation – volume: 45 start-page: 61 year: 2009 ident: 10.1016/j.media.2022.102379_bib0042 article-title: Diffeomorphic demons: efficient non-parametric image registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.040 – ident: 10.1016/j.media.2022.102379_bib0037 – volume: 39 start-page: 1594 issue: 5 year: 2019 ident: 10.1016/j.media.2022.102379_bib0009 article-title: Progressively trained convolutional neural networks for deformable image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2953788 – start-page: 2758 year: 2015 ident: 10.1016/j.media.2022.102379_bib0008 article-title: FlowNet: learning optical flow with convolutional networks – start-page: 382 year: 2019 ident: 10.1016/j.media.2022.102379_bib0017 article-title: Dual-stream pyramid registration network – start-page: 8934 year: 2018 ident: 10.1016/j.media.2022.102379_bib0041 article-title: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume |
| SSID | ssj0007440 |
| Score | 2.624148 |
| Snippet | •We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D medical image registration.•We design a two-stream 3D... We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 102379 |
| SubjectTerms | 3D segmentation Annotations Benchmarks Brain Brain MRI Coders Decoding Deformable registration Encoder-decoder network Encoders-Decoders Humans Image Processing, Computer-Assisted Image registration Image segmentation Imaging, Three-Dimensional Magnetic Resonance Imaging Medical image registration Modules Neural Networks, Computer Neuroimaging Pyramids Registration Tomography, X-Ray Computed Warping |
| Title | Dual-stream pyramid registration network |
| URI | https://dx.doi.org/10.1016/j.media.2022.102379 https://www.ncbi.nlm.nih.gov/pubmed/35349836 https://www.proquest.com/docview/2696890964 https://www.proquest.com/docview/2645470324 |
| Volume | 78 |
| WOSCitedRecordID | wos001266853700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-xDSH2MMH4WNmYgsQDUkmVxG7sPE7bECA2ITZE3iI7cVCqNq36gcZ_zzl23IhqEyDxEkUXJ7Z8l_Odffc7gNdorxFSyNLnhSx8ylXkS6WkT3JSKslZNMwbyPxP7PKSp2ny2Ra6XDTlBFhd85ubZPZfWY00ZLZOnf0LdruPIgHvkel4Rbbj9Y8Yf7YSY1-ngIhJf_ZzLiaVTlD57gBy-7WJ_O6ape1xTTXRITzCApU4ZWz3lC8qMV2LgaakSBmt6jXRtvymqnHlyFd5GxViiov3vwy6mw3op7rQPrMDtpEF0yhNEoc-pyYtc6C6NJNL3GpaU6xnQ2mb_YPRoMmVGehuG0AJU2TmNzTsK_1h3Vekc4zQ-NmCnYgNE1RoOycfztOPbhnWyIcm6c4MroWcaoL7Nrq6zSy5ze1ozI_rR7Bn_QbvxPD7MdxT9T7sdtAk9-HBhY2TeAJvOkLgWSHwukLgWSF4Cl_fnV-fvvdtTQw_J5wtfVyN0MNjvETTIyglZYIECZdlSVkeqiBSNOZCH66XuHpInheBUuiySknDkERJTp7Bdj2t1QF4aEtzKplMQlrSooiSQAwp2odxKQtJiOxB1E5JllvAeF23ZJy1kYGjrJnHTM9jZuaxB2_dSzODl3J387id68yafMaUy1A47n7xqOVMZn--RRZppKcEnXLag1fuMepLfQgmajVd6TYawi5AP6IHzw1H3UDJkNCEk_jFv47qEB6u_5oj2F7OV-ol3M9_LKvF_Bi2WMqPrZz-AnFdlw4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-stream+pyramid+registration+network&rft.jtitle=Medical+image+analysis&rft.au=Kang%2C+Miao&rft.au=Hu%2C+Xiaojun&rft.au=Huang%2C+Weilin&rft.au=Scott%2C+Matthew+R.&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=78&rft_id=info:doi/10.1016%2Fj.media.2022.102379&rft.externalDocID=S1361841522000317 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |