Dual-stream pyramid registration network

•We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D medical image registration.•We design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes.•We propose sequential pyramid registra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis Jg. 78; S. 102379
Hauptverfasser: Kang, Miao, Hu, Xiaojun, Huang, Weilin, Scott, Matthew R., Reyes, Mauricio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.05.2022
Elsevier BV
Schlagworte:
ISSN:1361-8415, 1361-8423, 1361-8423
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D medical image registration.•We design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes.•We propose sequential pyramid registration where a sequence of pyramid registration (RP) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids.•The PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++.•Our Dual-PRNet++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. [Display omitted] We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which computes a registration field from a pair of 3D volumes using a single-stream network, we design a two-stream architecture able to estimate multi-level registration fields sequentially from a pair of feature pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids. The registration fields are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++ able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, where Dual-PRNet++ outperforms the state-of-the-art approaches by a large margin, i.e., improving recent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, by leveraging limited annotations.
AbstractList •We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D medical image registration.•We design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes.•We propose sequential pyramid registration where a sequence of pyramid registration (RP) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids.•The PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++.•Our Dual-PRNet++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. [Display omitted] We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which computes a registration field from a pair of 3D volumes using a single-stream network, we design a two-stream architecture able to estimate multi-level registration fields sequentially from a pair of feature pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids. The registration fields are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++ able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, where Dual-PRNet++ outperforms the state-of-the-art approaches by a large margin, i.e., improving recent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, by leveraging limited annotations.
We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which computes a registration field from a pair of 3D volumes using a single-stream network, we design a two-stream architecture able to estimate multi-level registration fields sequentially from a pair of feature pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids. The registration fields are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++ able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet ++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, where Dual-PRNet ++ outperforms the state-of-the-art approaches by a large margin, i.e., improving recent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, by leveraging limited annotations.
We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which computes a registration field from a pair of 3D volumes using a single-stream network, we design a two-stream architecture able to estimate multi-level registration fields sequentially from a pair of feature pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids. The registration fields are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++ able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, where Dual-PRNet++ outperforms the state-of-the-art approaches by a large margin, i.e., improving recent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, by leveraging limited annotations.We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which computes a registration field from a pair of 3D volumes using a single-stream network, we design a two-stream architecture able to estimate multi-level registration fields sequentially from a pair of feature pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids. The registration fields are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet++ able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet++ can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, where Dual-PRNet++ outperforms the state-of-the-art approaches by a large margin, i.e., improving recent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, by leveraging limited annotations.
We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based registration approaches, such as VoxelMorph, which computes a registration field from a pair of 3D volumes using a single-stream network, we design a two-stream architecture able to estimate multi-level registration fields sequentially from a pair of feature pyramids. Our main contributions are: (i) we design a two-stream 3D encoder-decoder network that computes two convolutional feature pyramids separately from two input volumes; (ii) we propose sequential pyramid registration where a sequence of pyramid registration (PR) modules is designed to predict multi-level registration fields directly from the decoding feature pyramids. The registration fields are refined gradually in a coarse-to-fine manner via sequential warping, which equips the model with a strong capability for handling large deformations; (iii) the PR modules can be further enhanced by computing local 3D correlations between the feature pyramids, resulting in the improved Dual-PRNet able to aggregate rich detailed anatomical structure of the brain; (iv) our Dual-PRNet can be integrated into a 3D segmentation framework for joint registration and segmentation, by precisely warping voxel-level annotations. Our methods are evaluated on two standard benchmarks for brain MRI registration, where Dual-PRNet outperforms the state-of-the-art approaches by a large margin, i.e., improving recent VoxelMorph from 0.511 to 0.748 (Dice score) on the Mindboggle101 dataset. In addition, we further demonstrate that our methods can greatly facilitate the segmentation task in a joint learning framework, by leveraging limited annotations.
ArticleNumber 102379
Author Scott, Matthew R.
Hu, Xiaojun
Reyes, Mauricio
Huang, Weilin
Kang, Miao
Author_xml – sequence: 1
  givenname: Miao
  surname: Kang
  fullname: Kang, Miao
  organization: Malong LLC, Wilmington, USA
– sequence: 2
  givenname: Xiaojun
  surname: Hu
  fullname: Hu, Xiaojun
  organization: Malong LLC, Wilmington, USA
– sequence: 3
  givenname: Weilin
  orcidid: 0000-0002-1520-4140
  surname: Huang
  fullname: Huang, Weilin
  email: whuang@malongtech.com, whuang@robots.ox.ac.uk
  organization: Malong LLC, Wilmington, USA
– sequence: 4
  givenname: Matthew R.
  surname: Scott
  fullname: Scott, Matthew R.
  organization: Malong LLC, Wilmington, USA
– sequence: 5
  givenname: Mauricio
  orcidid: 0000-0002-2434-9990
  surname: Reyes
  fullname: Reyes, Mauricio
  organization: ARTORG Center for Biomedical Engineering Research, Univ. of Bern, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35349836$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtOwzAUQC1URB_wBUioEkuXFL8SOwMDKk-pEgvMluPcIJc8ip2A-ve4TWHo0MnW1TlX9hmjQd3UgNAlwXOCSXKzmleQWz2nmNIwoUykJ2hEWEIiySkb_N9JPERj71cYY8E5PkNDFjOeSpaM0Oy-02XkWwe6mq43Tlc2nzr4sGGkW9vU0xran8Z9nqPTQpceLvbnBL0_PrwtnqPl69PL4m4ZGSZFG-U5iFgKWTDMcJFxoRlOZVYUXBgCmAJPpBZU0EJKkUmTYwCa4CzjhDCaGjZBs37v2jVfHfhWVdYbKEtdQ9N5RRMec4EZ5QG9PkBXTefq8LpApYlMcZpsqas91WUhmFo7W2m3UX8NApD2gHGN9w4KZWy7-3tIYEtFsNr2Viu16622vVXfO7jswP1bf9y67S0IIb8tOOWNhdoE0IFpVd7Yo_4vetyXeQ
CitedBy_id crossref_primary_10_1109_JBHI_2023_3344646
crossref_primary_10_1016_j_compbiomed_2024_109356
crossref_primary_10_1002_mp_17565
crossref_primary_10_3390_rs17132238
crossref_primary_10_1016_j_compbiomed_2024_108948
crossref_primary_10_1016_j_bspc_2024_106725
crossref_primary_10_1016_j_bspc_2024_106926
crossref_primary_10_1088_1361_6560_ad9e69
crossref_primary_10_1016_j_knosys_2025_113291
crossref_primary_10_1016_j_compbiomed_2022_105780
crossref_primary_10_1016_j_media_2022_102692
crossref_primary_10_1007_s10489_022_04109_8
crossref_primary_10_1007_s11517_023_02834_x
crossref_primary_10_1007_s11760_025_04646_y
crossref_primary_10_1038_s41598_025_00403_w
crossref_primary_10_1016_j_media_2024_103385
crossref_primary_10_32604_cmc_2024_048706
crossref_primary_10_1088_1361_6501_ad1d2d
crossref_primary_10_1109_JBHI_2025_3556676
crossref_primary_10_1007_s11227_024_06470_6
crossref_primary_10_1109_TNNLS_2024_3454076
crossref_primary_10_1016_j_compmedimag_2023_102322
crossref_primary_10_1016_j_compbiomed_2024_109205
crossref_primary_10_1016_j_sigpro_2025_109924
crossref_primary_10_1109_TMI_2024_3437295
crossref_primary_10_1002_mp_17512
crossref_primary_10_1016_j_media_2025_103637
crossref_primary_10_1109_ACCESS_2025_3539890
crossref_primary_10_1016_j_bspc_2025_107897
crossref_primary_10_1109_TMI_2024_3362968
crossref_primary_10_1002_mp_17827
crossref_primary_10_1016_j_bspc_2022_104437
crossref_primary_10_1088_1361_6560_ad3723
crossref_primary_10_1109_JBHI_2022_3189696
crossref_primary_10_1109_JBHI_2024_3376334
crossref_primary_10_1016_j_mri_2025_110386
crossref_primary_10_1088_1361_6560_ac72ef
crossref_primary_10_1109_TMI_2025_3562056
crossref_primary_10_1007_s10278_024_01324_2
crossref_primary_10_1016_j_media_2023_103038
crossref_primary_10_1007_s00371_025_04183_2
crossref_primary_10_1002_mp_17390
crossref_primary_10_1016_j_media_2024_103212
crossref_primary_10_1109_JBHI_2024_3524361
crossref_primary_10_1007_s11517_023_02887_y
crossref_primary_10_1088_1361_6560_ad2717
crossref_primary_10_1016_j_inffus_2025_103509
crossref_primary_10_1117_1_JMI_11_6_064001
crossref_primary_10_1016_j_compbiomed_2024_107990
crossref_primary_10_1016_j_patcog_2025_111761
crossref_primary_10_1109_TMI_2024_3505853
crossref_primary_10_1049_ipr2_70117
crossref_primary_10_1016_j_bspc_2025_108493
crossref_primary_10_1016_j_imavis_2024_105209
crossref_primary_10_1111_exsy_70077
crossref_primary_10_3389_fnins_2024_1364409
crossref_primary_10_1016_j_bspc_2024_106476
crossref_primary_10_1049_ipr2_70154
crossref_primary_10_1109_TMI_2023_3244333
crossref_primary_10_1016_j_compbiomed_2023_106612
crossref_primary_10_1016_j_media_2024_103283
crossref_primary_10_32604_cmc_2024_047754
crossref_primary_10_1016_j_eswa_2025_129335
crossref_primary_10_1109_TIP_2024_3407657
crossref_primary_10_1016_j_bspc_2025_108089
crossref_primary_10_3233_XST_240159
crossref_primary_10_1109_TMI_2024_3400603
crossref_primary_10_1016_j_compbiomed_2024_109103
crossref_primary_10_1186_s42492_024_00173_8
crossref_primary_10_1002_mp_17696
crossref_primary_10_1007_s11227_025_07060_w
crossref_primary_10_1007_s13246_025_01635_w
crossref_primary_10_1016_j_compbiomed_2023_107434
crossref_primary_10_1016_j_compbiomed_2023_107598
crossref_primary_10_1016_j_compmedimag_2025_102589
crossref_primary_10_1016_j_media_2024_103351
Cites_doi 10.1117/12.2549531
10.1007/s11548-019-02068-z
10.3389/fnins.2012.00171
10.1007/s00138-020-01060-x
10.1007/s11263-008-0141-9
10.1016/j.neuroimage.2017.07.008
10.1109/TMI.2016.2521800
10.1016/j.neuroimage.2010.09.025
10.1088/1361-6560/ab5da0
10.1016/j.neuroimage.2007.07.007
10.1109/JBHI.2019.2951024
10.1007/978-3-030-32692-0_74
10.1002/mp.12007
10.1016/j.media.2021.102036
10.1007/978-3-030-32245-8_47
10.1088/1361-6560/ab79c4
10.1109/TMI.2019.2897112
10.1109/TMI.2019.2897538
10.1016/j.media.2018.11.010
10.1088/1361-6560/ab843e
10.1016/j.neuroimage.2007.09.031
10.1016/j.compeleceng.2020.106767
10.1016/j.media.2007.06.004
10.1016/j.neuroimage.2008.10.040
10.1109/TMI.2019.2953788
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright Elsevier BV May 2022
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
– notice: Copyright Elsevier BV May 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2022.102379
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 35349836
10_1016_j_media_2022_102379
S1361841522000317
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c387t-dde75878f3030fb47a3098bff47c1e02e468a7272f887b8cd0ee260bb411329c3
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001266853700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Thu Oct 02 06:12:11 EDT 2025
Tue Oct 07 07:03:15 EDT 2025
Wed Feb 19 02:26:16 EST 2025
Tue Nov 18 21:57:03 EST 2025
Sat Nov 29 07:05:32 EST 2025
Fri Feb 23 02:38:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 3D segmentation
Brain MRI
Encoder-decoder network
Deformable registration
Medical image registration
Language English
License Copyright © 2022. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-dde75878f3030fb47a3098bff47c1e02e468a7272f887b8cd0ee260bb411329c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2434-9990
0000-0002-1520-4140
PMID 35349836
PQID 2696890964
PQPubID 2045428
ParticipantIDs proquest_miscellaneous_2645470324
proquest_journals_2696890964
pubmed_primary_35349836
crossref_citationtrail_10_1016_j_media_2022_102379
crossref_primary_10_1016_j_media_2022_102379
elsevier_sciencedirect_doi_10_1016_j_media_2022_102379
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Klein, Tourville (bib0025) 2012; 6
Xu, Z., Niethammer, M., 2019. DeepAtlas: joint semi-supervised learning of image registration and segmentation. arXiv
Ronneberger, Fischer, Brox (bib0038) 2015
Shattuck, Mirza, Adisetiyo, Hojatkashani, Salamon, Narr, Poldrack, Bilder, Toga (bib0039) 2008; 39
Dosovitskiy, Fischer, Ilg, Hausser, Hazirbas, Golkov, Van Der Smagt, Cremers, Brox (bib0008) 2015
Boveiri, Khayami, Javidan, Mehdizadeh (bib0006) 2020; 87
Eppenhof, Lafarge, Veta, Pluim (bib0009) 2019; 39
Hui, Tang, Change Loy (bib0020) 2018
Zhu, Cao, Qin, Rao, Ni, Wang (bib0051) 2020
Jiang, Yin, Ge, Ren (bib0023) 2020; 65
Zhao, Lau, Luo, Chang, Xu (bib0050) 2020; 24
Avants, Tustison, Song, Cook, Klein, Gee (bib0003) 2011; 54
Hu, Gibson, Barratt, Emberton, Noble, Vercauteren (bib0018) 2019
Lei, Fu, Wang, Liu, Patel, Curran, Liu, Yang (bib0029) 2020; 65
Kuang, D., Schmah, T., 2018. FAIM-a convnet method for unsupervised 3D medical image registration. arXiv
Wang, Cao, Wei, Wang, Ma, Wang, Meng, Zheng (bib0045) 2020
Avants, Epstein, Grossman, Gee (bib0002) 2008; 12
Hering, van Ginneken, Heldmann (bib0014) 2019
Ranjan, Black (bib0036) 2017
Vercauteren, Pennec, Perchant, Ayache (bib0042) 2009; 45
Hu, Wei, Gao, Guo, Wu, Shen (bib0016) 2017; 44
.
Kuckertz, S., Papenberg, N., Honegger, J., Morgas, T., Haas, B., Heldmann, S., 2020. Deep-learning-based CT-CBCT image registration for adaptive radio therapy 11313, 113130Q.
Mok, Chung (bib0034) 2020
Miao, Wang, Liao (bib0033) 2016; 35
Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0005) 2019; 38
Zhao, Dong, Chang, Xu (bib0049) 2019
Hu, Kang, Huang, Scott, Wiest, Reyes (bib0017) 2019
Hering, Kuckertz, Heldmann, Heinrich (bib0015) 2019; 14
Glaunès, Qiu, Miller, Younes (bib0012) 2008; 80
Yang, Kwitt, Styner, Niethammer (bib0047) 2017; 158
Jaderberg, Simonyan, Zisserman (bib0022) 2015
de Vos, Berendsen, Viergever, Staring, Išgum (bib0044) 2017
Ashburner (bib0001) 2007; 38
Sokooti, De Vos, Berendsen, Lelieveldt, Išgum, Staring (bib0040) 2017
Liu, Hu, Zhu, Heng (bib0032) 2019
Liu, L., Aviles-Rivero, A. I., Schönlieb, C.-B., 2020. Contrastive registration for unsupervised medical image segmentation. arXiv
Estienne, Vakalopoulou, Christodoulidis, Battistela, Lerousseau, Carre, Klausner, Sun, Robert, Mougiakakou (bib0010) 2019
Huang, Yang, Liu, Li, Zhang, Wang, Zheng, Wang (bib0019) 2021
Haskins, Kruger, Yan (bib0013) 2020; 31
Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0004) 2018
Nielsen, Darkner, Feragen (bib0035) 2019
Sun, Yang, Liu, Kautz (bib0041) 2018
Zhao, Balakrishnan, Durand, Guttag, Dalca (bib0048) 2019
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib0007) 2016
Isola, Zhu, Zhou, Efros (bib0021) 2017
Krebs, Delingette, Mailhé, Ayache, Mansi (bib0026) 2019; 38
Risheng, L., Zi, L., Xin, F., Chenying, Z., Hao, H., Zhongxuan, L., 2021. Learning deformable image registration from optimization: perspective, modules, bilevel training and beyond. arXiv
Kim, Kim, Park, Kim, Lee, Ye (bib0024) 2021
Fu, Lei, Wang, Curran, Liu, Yang (bib0011) 2020; 65
Lewis, K. M., Balakrishnan, G., Rost, N. S., Guttag, J., Dalca, A. V., 2018. Fast learning-based registration of sparse clinical images. arXiv
de Vos, Berendsen, Viergever, Sokooti, Staring, Išgum (bib0043) 2019; 52
10.1016/j.media.2022.102379_bib0027
10.1016/j.media.2022.102379_bib0028
Haskins (10.1016/j.media.2022.102379_bib0013) 2020; 31
Miao (10.1016/j.media.2022.102379_bib0033) 2016; 35
Mok (10.1016/j.media.2022.102379_bib0034) 2020
Hui (10.1016/j.media.2022.102379_bib0020) 2018
Lei (10.1016/j.media.2022.102379_bib0029) 2020; 65
Zhao (10.1016/j.media.2022.102379_bib0048) 2019
Isola (10.1016/j.media.2022.102379_bib0021) 2017
Yang (10.1016/j.media.2022.102379_bib0047) 2017; 158
Zhao (10.1016/j.media.2022.102379_bib0050) 2020; 24
Glaunès (10.1016/j.media.2022.102379_bib0012) 2008; 80
10.1016/j.media.2022.102379_bib0037
de Vos (10.1016/j.media.2022.102379_bib0043) 2019; 52
Jaderberg (10.1016/j.media.2022.102379_bib0022) 2015
Nielsen (10.1016/j.media.2022.102379_bib0035) 2019
Jiang (10.1016/j.media.2022.102379_bib0023) 2020; 65
10.1016/j.media.2022.102379_bib0030
Klein (10.1016/j.media.2022.102379_bib0025) 2012; 6
10.1016/j.media.2022.102379_bib0031
Çiçek (10.1016/j.media.2022.102379_bib0007) 2016
Kim (10.1016/j.media.2022.102379_bib0024) 2021
Huang (10.1016/j.media.2022.102379_bib0019) 2021
Shattuck (10.1016/j.media.2022.102379_bib0039) 2008; 39
Wang (10.1016/j.media.2022.102379_bib0045) 2020
Hu (10.1016/j.media.2022.102379_bib0017) 2019
Ranjan (10.1016/j.media.2022.102379_bib0036) 2017
Dosovitskiy (10.1016/j.media.2022.102379_bib0008) 2015
Hering (10.1016/j.media.2022.102379_bib0015) 2019; 14
Sun (10.1016/j.media.2022.102379_bib0041) 2018
Fu (10.1016/j.media.2022.102379_bib0011) 2020; 65
Liu (10.1016/j.media.2022.102379_bib0032) 2019
Zhu (10.1016/j.media.2022.102379_bib0051) 2020
Zhao (10.1016/j.media.2022.102379_bib0049) 2019
Hu (10.1016/j.media.2022.102379_bib0016) 2017; 44
10.1016/j.media.2022.102379_bib0046
Ronneberger (10.1016/j.media.2022.102379_bib0038) 2015
Balakrishnan (10.1016/j.media.2022.102379_bib0005) 2019; 38
Balakrishnan (10.1016/j.media.2022.102379_bib0004) 2018
Hering (10.1016/j.media.2022.102379_bib0014) 2019
Sokooti (10.1016/j.media.2022.102379_bib0040) 2017
Hu (10.1016/j.media.2022.102379_bib0018) 2019
Krebs (10.1016/j.media.2022.102379_bib0026) 2019; 38
Ashburner (10.1016/j.media.2022.102379_bib0001) 2007; 38
Eppenhof (10.1016/j.media.2022.102379_bib0009) 2019; 39
de Vos (10.1016/j.media.2022.102379_bib0044) 2017
Avants (10.1016/j.media.2022.102379_bib0002) 2008; 12
Boveiri (10.1016/j.media.2022.102379_bib0006) 2020; 87
Avants (10.1016/j.media.2022.102379_bib0003) 2011; 54
Estienne (10.1016/j.media.2022.102379_bib0010) 2019
Vercauteren (10.1016/j.media.2022.102379_bib0042) 2009; 45
References_xml – volume: 14
  start-page: 1901
  year: 2019
  end-page: 1912
  ident: bib0015
  article-title: Memory-efficient 2.5D convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart CT and MRI scans
  publication-title: Int. J. Comput. Assist.Radiol. Surg.
– start-page: 211
  year: 2020
  end-page: 221
  ident: bib0034
  article-title: Large deformation diffeomorphic image registration with Laplacian pyramid networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 401
  year: 2019
  end-page: 409
  ident: bib0018
  article-title: Conditional segmentation in lieu of image registration
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 35
  start-page: 1352
  year: 2016
  end-page: 1363
  ident: bib0033
  article-title: A CNN regression approach for real-time 2D/3D registration
  publication-title: IEEE Trans. Med. Imaging
– start-page: 364
  year: 2019
  end-page: 372
  ident: bib0035
  article-title: TopAwaRe: topology-aware registration
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 10600
  year: 2019
  end-page: 10610
  ident: bib0049
  article-title: Recursive cascaded networks for unsupervised medical image registration
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 44
  start-page: 158
  year: 2017
  end-page: 170
  ident: bib0016
  article-title: Learning-based deformable image registration for infant MR images in the first year of life
  publication-title: Med. Phys.
– volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  ident: bib0003
  article-title: A reproducible evaluation of ants similarity metric performance in brain image registration
  publication-title: Neuroimage
– start-page: 346
  year: 2019
  end-page: 354
  ident: bib0032
  article-title: Probabilistic multilayer regularization network for unsupervised 3D brain image registration
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 31
  year: 2020
  ident: bib0013
  article-title: Deep learning in medical image registration: a survey
  publication-title: Mach. Vis. Appl.
– volume: 87
  start-page: 106767
  year: 2020
  ident: bib0006
  article-title: Medical image registration using deep neural networks: a comprehensive review
  publication-title: Comput. Electr. Eng.
– start-page: 424
  year: 2016
  end-page: 432
  ident: bib0007
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 45
  start-page: 61
  year: 2009
  end-page: 72
  ident: bib0042
  article-title: Diffeomorphic demons: efficient non-parametric image registration
  publication-title: NeuroImage
– volume: 38
  start-page: 1788
  year: 2019
  end-page: 1800
  ident: bib0005
  article-title: VoxelMorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 65
  start-page: 085003
  year: 2020
  ident: bib0029
  article-title: 4D-CT deformable image registration using multiscale unsupervised deep learning
  publication-title: Phys. Med. Biol.
– start-page: 232
  year: 2017
  end-page: 239
  ident: bib0040
  article-title: Nonrigid image registration using multi-scale 3D convolutional neural networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 2758
  year: 2015
  end-page: 2766
  ident: bib0008
  article-title: FlowNet: learning optical flow with convolutional networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 310
  year: 2019
  end-page: 319
  ident: bib0010
  article-title: U-ReSNet: ultimate coupling of registration and segmentation with deep nets
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 38
  start-page: 2165
  year: 2019
  end-page: 2176
  ident: bib0026
  article-title: Learning a probabilistic model for diffeomorphic registration
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1355
  year: 2020
  end-page: 1359
  ident: bib0051
  article-title: Unsupervised 3D end-to-end deformable network for brain MRI registration
  publication-title: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
– start-page: 2017
  year: 2015
  end-page: 2025
  ident: bib0022
  article-title: Spatial transformer networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 4161
  year: 2017
  end-page: 4170
  ident: bib0036
  article-title: Optical flow estimation using a spatial pyramid network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 65
  start-page: 015011
  year: 2020
  ident: bib0023
  article-title: A multi-scale framework with unsupervised joint training of convolutional neural networks for pulmonary deformable image registration
  publication-title: Phys. Med. Biol.
– reference: Kuang, D., Schmah, T., 2018. FAIM-a convnet method for unsupervised 3D medical image registration. arXiv:
– reference: Kuckertz, S., Papenberg, N., Honegger, J., Morgas, T., Haas, B., Heldmann, S., 2020. Deep-learning-based CT-CBCT image registration for adaptive radio therapy 11313, 113130Q.
– volume: 39
  start-page: 1064
  year: 2008
  end-page: 1080
  ident: bib0039
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: Neuroimage
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: bib0002
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
– start-page: 8934
  year: 2018
  end-page: 8943
  ident: bib0041
  article-title: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0038
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 9162
  year: 2020
  end-page: 9171
  ident: bib0045
  article-title: LT-Net: label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 39
  start-page: 1594
  year: 2019
  end-page: 1604
  ident: bib0009
  article-title: Progressively trained convolutional neural networks for deformable image registration
  publication-title: IEEE Trans. Med. Imaging
– reference: Risheng, L., Zi, L., Xin, F., Chenying, Z., Hao, H., Zhongxuan, L., 2021. Learning deformable image registration from optimization: perspective, modules, bilevel training and beyond. arXiv:
– volume: 24
  start-page: 1394
  year: 2020
  end-page: 1404
  ident: bib0050
  article-title: Unsupervised 3D end-to-end medical image registration with volume tweening network
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 6
  start-page: 171
  year: 2012
  ident: bib0025
  article-title: 101 Labeled brain images and a consistent human cortical labeling protocol
  publication-title: Front. Neurosci.
– start-page: 257
  year: 2019
  end-page: 265
  ident: bib0014
  article-title: mlVIRNET: multilevel variational image registration network
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  ident: bib0001
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– year: 2021
  ident: bib0024
  article-title: CycleMorph: cycle consistent unsupervised deformable image registration
  publication-title: Med. Image Anal.
– volume: 80
  start-page: 317
  year: 2008
  ident: bib0012
  article-title: Large deformation diffeomorphic metric curve mapping
  publication-title: Int. J. Comput. Vis.
– volume: 65
  start-page: 20TR01
  year: 2020
  ident: bib0011
  article-title: Deep learning in medical image registration: a review
  publication-title: Phys. Med. Biol.
– start-page: 8543
  year: 2019
  end-page: 8553
  ident: bib0048
  article-title: Data augmentation using learned transformations for one-shot medical image segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Liu, L., Aviles-Rivero, A. I., Schönlieb, C.-B., 2020. Contrastive registration for unsupervised medical image segmentation. arXiv:
– reference: Lewis, K. M., Balakrishnan, G., Rost, N. S., Guttag, J., Dalca, A. V., 2018. Fast learning-based registration of sparse clinical images. arXiv:
– start-page: 204
  year: 2017
  end-page: 212
  ident: bib0044
  article-title: End-to-end unsupervised deformable image registration with a convolutional neural network
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 158
  start-page: 378
  year: 2017
  ident: bib0047
  article-title: Quicksilver: fast predictive image registration - a deep learning approach
  publication-title: Neuroimage
– reference: Xu, Z., Niethammer, M., 2019. DeepAtlas: joint semi-supervised learning of image registration and segmentation. arXiv:
– reference: .
– year: 2021
  ident: bib0019
  article-title: A coarse-to-fine deformable transformation framework for unsupervised multi-contrast mr image registration with dual consistency constraint
  publication-title: IEEE Trans. Med. Imaging
– start-page: 8981
  year: 2018
  end-page: 8989
  ident: bib0020
  article-title: LiteFlowNet: a lightweight convolutional neural network for optical flow estimation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 382
  year: 2019
  end-page: 390
  ident: bib0017
  article-title: Dual-stream pyramid registration network
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 52
  start-page: 128
  year: 2019
  end-page: 143
  ident: bib0043
  article-title: A deep learning framework for unsupervised affine and deformable image registration
  publication-title: Med. Image Anal.
– year: 2017
  ident: bib0021
  article-title: Image-to-image translation with conditional adversarial networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 9252
  year: 2018
  end-page: 9260
  ident: bib0004
  article-title: An unsupervised learning model for deformable medical image registration
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1355
  year: 2020
  ident: 10.1016/j.media.2022.102379_bib0051
  article-title: Unsupervised 3D end-to-end deformable network for brain MRI registration
– start-page: 257
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0014
  article-title: mlVIRNET: multilevel variational image registration network
– ident: 10.1016/j.media.2022.102379_bib0030
– ident: 10.1016/j.media.2022.102379_bib0028
  doi: 10.1117/12.2549531
– start-page: 8981
  year: 2018
  ident: 10.1016/j.media.2022.102379_bib0020
  article-title: LiteFlowNet: a lightweight convolutional neural network for optical flow estimation
– volume: 14
  start-page: 1901
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0015
  article-title: Memory-efficient 2.5D convolutional transformer networks for multi-modal deformable registration with weak label supervision applied to whole-heart CT and MRI scans
  publication-title: Int. J. Comput. Assist.Radiol. Surg.
  doi: 10.1007/s11548-019-02068-z
– start-page: 310
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0010
  article-title: U-ReSNet: ultimate coupling of registration and segmentation with deep nets
– volume: 6
  start-page: 171
  year: 2012
  ident: 10.1016/j.media.2022.102379_bib0025
  article-title: 101 Labeled brain images and a consistent human cortical labeling protocol
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00171
– volume: 31
  issue: 1-2
  year: 2020
  ident: 10.1016/j.media.2022.102379_bib0013
  article-title: Deep learning in medical image registration: a survey
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-020-01060-x
– volume: 80
  start-page: 317
  year: 2008
  ident: 10.1016/j.media.2022.102379_bib0012
  article-title: Large deformation diffeomorphic metric curve mapping
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-008-0141-9
– volume: 158
  start-page: 378
  year: 2017
  ident: 10.1016/j.media.2022.102379_bib0047
  article-title: Quicksilver: fast predictive image registration - a deep learning approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.008
– volume: 35
  start-page: 1352
  issue: 5
  year: 2016
  ident: 10.1016/j.media.2022.102379_bib0033
  article-title: A CNN regression approach for real-time 2D/3D registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2521800
– start-page: 204
  year: 2017
  ident: 10.1016/j.media.2022.102379_bib0044
  article-title: End-to-end unsupervised deformable image registration with a convolutional neural network
– start-page: 232
  year: 2017
  ident: 10.1016/j.media.2022.102379_bib0040
  article-title: Nonrigid image registration using multi-scale 3D convolutional neural networks
– start-page: 424
  year: 2016
  ident: 10.1016/j.media.2022.102379_bib0007
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
– start-page: 2017
  year: 2015
  ident: 10.1016/j.media.2022.102379_bib0022
  article-title: Spatial transformer networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 346
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0032
  article-title: Probabilistic multilayer regularization network for unsupervised 3D brain image registration
– volume: 54
  start-page: 2033
  year: 2011
  ident: 10.1016/j.media.2022.102379_bib0003
  article-title: A reproducible evaluation of ants similarity metric performance in brain image registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 65
  start-page: 015011
  issue: 1
  year: 2020
  ident: 10.1016/j.media.2022.102379_bib0023
  article-title: A multi-scale framework with unsupervised joint training of convolutional neural networks for pulmonary deformable image registration
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab5da0
– volume: 38
  start-page: 95
  issue: 1
  year: 2007
  ident: 10.1016/j.media.2022.102379_bib0001
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.007
– ident: 10.1016/j.media.2022.102379_bib0031
– volume: 24
  start-page: 1394
  issue: 5
  year: 2020
  ident: 10.1016/j.media.2022.102379_bib0050
  article-title: Unsupervised 3D end-to-end medical image registration with volume tweening network
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2019.2951024
– ident: 10.1016/j.media.2022.102379_bib0027
  doi: 10.1007/978-3-030-32692-0_74
– volume: 44
  start-page: 158
  issue: 1
  year: 2017
  ident: 10.1016/j.media.2022.102379_bib0016
  article-title: Learning-based deformable image registration for infant MR images in the first year of life
  publication-title: Med. Phys.
  doi: 10.1002/mp.12007
– year: 2021
  ident: 10.1016/j.media.2022.102379_bib0024
  article-title: CycleMorph: cycle consistent unsupervised deformable image registration
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102036
– start-page: 4161
  year: 2017
  ident: 10.1016/j.media.2022.102379_bib0036
  article-title: Optical flow estimation using a spatial pyramid network
– ident: 10.1016/j.media.2022.102379_bib0046
  doi: 10.1007/978-3-030-32245-8_47
– volume: 65
  start-page: 085003
  issue: 8
  year: 2020
  ident: 10.1016/j.media.2022.102379_bib0029
  article-title: 4D-CT deformable image registration using multiscale unsupervised deep learning
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab79c4
– volume: 38
  start-page: 2165
  issue: 9
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0026
  article-title: Learning a probabilistic model for diffeomorphic registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2897112
– volume: 38
  start-page: 1788
  issue: 8
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0005
  article-title: VoxelMorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2897538
– volume: 52
  start-page: 128
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0043
  article-title: A deep learning framework for unsupervised affine and deformable image registration
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.11.010
– year: 2017
  ident: 10.1016/j.media.2022.102379_bib0021
  article-title: Image-to-image translation with conditional adversarial networks
– year: 2021
  ident: 10.1016/j.media.2022.102379_bib0019
  article-title: A coarse-to-fine deformable transformation framework for unsupervised multi-contrast mr image registration with dual consistency constraint
  publication-title: IEEE Trans. Med. Imaging
– start-page: 211
  year: 2020
  ident: 10.1016/j.media.2022.102379_bib0034
  article-title: Large deformation diffeomorphic image registration with Laplacian pyramid networks
– volume: 65
  start-page: 20TR01
  issue: 20
  year: 2020
  ident: 10.1016/j.media.2022.102379_bib0011
  article-title: Deep learning in medical image registration: a review
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab843e
– volume: 39
  start-page: 1064
  year: 2008
  ident: 10.1016/j.media.2022.102379_bib0039
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.031
– start-page: 364
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0035
  article-title: TopAwaRe: topology-aware registration
– start-page: 401
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0018
  article-title: Conditional segmentation in lieu of image registration
– start-page: 10600
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0049
  article-title: Recursive cascaded networks for unsupervised medical image registration
– volume: 87
  start-page: 106767
  year: 2020
  ident: 10.1016/j.media.2022.102379_bib0006
  article-title: Medical image registration using deep neural networks: a comprehensive review
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2020.106767
– start-page: 8543
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0048
  article-title: Data augmentation using learned transformations for one-shot medical image segmentation
– volume: 12
  start-page: 26
  year: 2008
  ident: 10.1016/j.media.2022.102379_bib0002
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– start-page: 234
  year: 2015
  ident: 10.1016/j.media.2022.102379_bib0038
  article-title: U-Net: convolutional networks for biomedical image segmentation
– start-page: 9252
  year: 2018
  ident: 10.1016/j.media.2022.102379_bib0004
  article-title: An unsupervised learning model for deformable medical image registration
– start-page: 9162
  year: 2020
  ident: 10.1016/j.media.2022.102379_bib0045
  article-title: LT-Net: label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation
– volume: 45
  start-page: 61
  year: 2009
  ident: 10.1016/j.media.2022.102379_bib0042
  article-title: Diffeomorphic demons: efficient non-parametric image registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.040
– ident: 10.1016/j.media.2022.102379_bib0037
– volume: 39
  start-page: 1594
  issue: 5
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0009
  article-title: Progressively trained convolutional neural networks for deformable image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2953788
– start-page: 2758
  year: 2015
  ident: 10.1016/j.media.2022.102379_bib0008
  article-title: FlowNet: learning optical flow with convolutional networks
– start-page: 382
  year: 2019
  ident: 10.1016/j.media.2022.102379_bib0017
  article-title: Dual-stream pyramid registration network
– start-page: 8934
  year: 2018
  ident: 10.1016/j.media.2022.102379_bib0041
  article-title: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume
SSID ssj0007440
Score 2.624148
Snippet •We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D medical image registration.•We design a two-stream 3D...
We propose a Dual-stream Pyramid Registration Network (referred as Dual-PRNet) for unsupervised 3D brain image registration. Unlike recent CNN-based...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102379
SubjectTerms 3D segmentation
Annotations
Benchmarks
Brain
Brain MRI
Coders
Decoding
Deformable registration
Encoder-decoder network
Encoders-Decoders
Humans
Image Processing, Computer-Assisted
Image registration
Image segmentation
Imaging, Three-Dimensional
Magnetic Resonance Imaging
Medical image registration
Modules
Neural Networks, Computer
Neuroimaging
Pyramids
Registration
Tomography, X-Ray Computed
Warping
Title Dual-stream pyramid registration network
URI https://dx.doi.org/10.1016/j.media.2022.102379
https://www.ncbi.nlm.nih.gov/pubmed/35349836
https://www.proquest.com/docview/2696890964
https://www.proquest.com/docview/2645470324
Volume 78
WOSCitedRecordID wos001266853700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-xDSH2MMH4WNmYgsQDUkmVxG7sPE7bECA2ITZE3iI7cVCqNq36gcZ_zzl23IhqEyDxEkUXJ7Z8l_Odffc7gNdorxFSyNLnhSx8ylXkS6WkT3JSKslZNMwbyPxP7PKSp2ny2Ra6XDTlBFhd85ubZPZfWY00ZLZOnf0LdruPIgHvkel4Rbbj9Y8Yf7YSY1-ngIhJf_ZzLiaVTlD57gBy-7WJ_O6ape1xTTXRITzCApU4ZWz3lC8qMV2LgaakSBmt6jXRtvymqnHlyFd5GxViiov3vwy6mw3op7rQPrMDtpEF0yhNEoc-pyYtc6C6NJNL3GpaU6xnQ2mb_YPRoMmVGehuG0AJU2TmNzTsK_1h3Vekc4zQ-NmCnYgNE1RoOycfztOPbhnWyIcm6c4MroWcaoL7Nrq6zSy5ze1ozI_rR7Bn_QbvxPD7MdxT9T7sdtAk9-HBhY2TeAJvOkLgWSHwukLgWSF4Cl_fnV-fvvdtTQw_J5wtfVyN0MNjvETTIyglZYIECZdlSVkeqiBSNOZCH66XuHpInheBUuiySknDkERJTp7Bdj2t1QF4aEtzKplMQlrSooiSQAwp2odxKQtJiOxB1E5JllvAeF23ZJy1kYGjrJnHTM9jZuaxB2_dSzODl3J387id68yafMaUy1A47n7xqOVMZn--RRZppKcEnXLag1fuMepLfQgmajVd6TYawi5AP6IHzw1H3UDJkNCEk_jFv47qEB6u_5oj2F7OV-ol3M9_LKvF_Bi2WMqPrZz-AnFdlw4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-stream+pyramid+registration+network&rft.jtitle=Medical+image+analysis&rft.au=Kang%2C+Miao&rft.au=Hu%2C+Xiaojun&rft.au=Huang%2C+Weilin&rft.au=Scott%2C+Matthew+R.&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=78&rft_id=info:doi/10.1016%2Fj.media.2022.102379&rft.externalDocID=S1361841522000317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon