Quality prediction for multi-grade batch process using sparse flexible clustered multi-task learning

Data-driven quality prediction methods are widely used in industrial chemical plants. However, it is often difficult to develop prediction models for multi-grade batch processes. Two major issues need to be considered when developing high-accuracy models. The first is the unavailability of sufficien...

Full description

Saved in:
Bibliographic Details
Published in:Computers & chemical engineering Vol. 150; p. 107320
Main Authors: Yamaguchi, Takafumi, Yamashita, Yoshiyuki
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.07.2021
Subjects:
ISSN:0098-1354
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Data-driven quality prediction methods are widely used in industrial chemical plants. However, it is often difficult to develop prediction models for multi-grade batch processes. Two major issues need to be considered when developing high-accuracy models. The first is the unavailability of sufficient data to create models for each grade of these processes. The other is that each batch cycle typically has an excessive number of explanatory variables. This paper proposes two methods to predict the quality of products manufactured in these multi-batch processes in chemical plants. These methods combine the features of two techniques: the first is a flexible clustered multi-task learning method, which utilizes data from other grades effectively to create high-performance quality prediction models with a small amount of data. This is useful when more data are available for the other grades. The other is a sparsity technique to overcome the high-dimensionality problem of input features. The effectiveness of the proposed methods is demonstrated on a numerical dataset, and finally applied to data generated during an actual industrial blow molding process.
AbstractList Data-driven quality prediction methods are widely used in industrial chemical plants. However, it is often difficult to develop prediction models for multi-grade batch processes. Two major issues need to be considered when developing high-accuracy models. The first is the unavailability of sufficient data to create models for each grade of these processes. The other is that each batch cycle typically has an excessive number of explanatory variables. This paper proposes two methods to predict the quality of products manufactured in these multi-batch processes in chemical plants. These methods combine the features of two techniques: the first is a flexible clustered multi-task learning method, which utilizes data from other grades effectively to create high-performance quality prediction models with a small amount of data. This is useful when more data are available for the other grades. The other is a sparsity technique to overcome the high-dimensionality problem of input features. The effectiveness of the proposed methods is demonstrated on a numerical dataset, and finally applied to data generated during an actual industrial blow molding process.
ArticleNumber 107320
Author Yamaguchi, Takafumi
Yamashita, Yoshiyuki
Author_xml – sequence: 1
  givenname: Takafumi
  surname: Yamaguchi
  fullname: Yamaguchi, Takafumi
  email: takafumi.yamaguchi@kaneka.co.jp
  organization: Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
– sequence: 2
  givenname: Yoshiyuki
  surname: Yamashita
  fullname: Yamashita, Yoshiyuki
  organization: Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
BookMark eNqNkMtKAzEUhrOoYKu-Q3yAqbnNTGYlUrxBQQRdh0zmpE3NXEgyYt_eKe1CXHV14PD_H_zfAs26vgOEbilZUkKLu93S9O1gttBCt1kywuj0LzkjMzQnpJIZ5bm4RIsYd4QQJqSco-Z91N6lPR4CNM4k13fY9gG3o08u2wTdAK51Mtsp0BuIEY_RdRscBx0iYOvhx9UesPFjTDAxTs2k4xf2oEM3pa_RhdU-ws3pXqHPp8eP1Uu2fnt-XT2sM8NlmTJT0oKWJbBC1kzndWUrCrwyObEcqiIXwpQFFzUFqwshtRCNlIyxwnCbc17yK3R_5JrQxxjAKuOSPmxKQTuvKFEHUWqn_ohSB1HqKGoiVP8IQ3CtDvuzuqtjF6aJ3w6CisZBZyavAUxSTe_OoPwCRx-QvA
CitedBy_id crossref_primary_10_1002_rnc_6942
crossref_primary_10_1016_j_ces_2023_119560
crossref_primary_10_1016_j_chemolab_2023_104778
crossref_primary_10_1016_j_ress_2025_111090
crossref_primary_10_1002_acs_3884
crossref_primary_10_3390_pr11051481
crossref_primary_10_1016_j_psep_2025_107122
crossref_primary_10_1016_j_aei_2024_102640
crossref_primary_10_1016_j_aei_2024_102860
crossref_primary_10_1016_j_compchemeng_2023_108510
crossref_primary_10_1016_j_compchemeng_2023_108259
crossref_primary_10_1002_srin_202300351
crossref_primary_10_1080_00207543_2021_1987551
crossref_primary_10_1016_j_jii_2024_100610
crossref_primary_10_1002_int_22702
Cites_doi 10.1137/080716542
10.1016/j.neucom.2019.08.006
10.1016/j.cie.2018.06.024
10.1561/2400000003
10.1561/2200000016
10.1111/j.1467-9868.2005.00503.x
10.1109/ACC.1997.610645
10.1016/j.compchemeng.2015.05.006
10.3389/fphar.2018.00074
10.1093/nsr/nwx105
10.1016/j.jprocont.2003.09.008
10.1016/j.chemolab.2016.04.009
10.1002/minf.201800108
10.1016/j.jprocont.2015.01.003
10.3182/20140824-6-ZA-1003.00204
10.1109/TPAMI.2015.2452911
10.1016/j.chemolab.2013.04.006
10.1016/j.chemolab.2018.10.004
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.cjche.2016.07.005
10.1016/0169-7439(95)00043-7
10.1016/j.jprocont.2005.02.001
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compchemeng.2021.107320
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compchemeng_2021_107320
S0098135421000983
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSH
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c387t-c716177e268b2a5b9f91e39c50f3e96544c7634b1efa648a44d882226c3f53373
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000649713200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-1354
IngestDate Tue Nov 18 20:36:17 EST 2025
Sat Nov 29 07:23:56 EST 2025
Sun Apr 06 06:53:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Sparse regularization
Clustered multi-task learning
Multi-grade batch process
Quality prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-c716177e268b2a5b9f91e39c50f3e96544c7634b1efa648a44d882226c3f53373
ParticipantIDs crossref_citationtrail_10_1016_j_compchemeng_2021_107320
crossref_primary_10_1016_j_compchemeng_2021_107320
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2021_107320
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Beck, Teboulle (bib0001) 2009; 2
Chu, Cheng, Jia, Wang, Lei (bib0004) 2018; 183
Flores-Cerrillo, MacGregor (bib0005) 2004; 14
Zhou, Zhao (bib0027) 2016; 38
Tibshirani (bib0018) 1996; 58
Obozinski, G., Taskar, B., Jordan, M., 2006. Multi-task feature selection.
Yang, Jin, Chen, Dai, Wang, Zhang (bib0023) 2016; 155
Wang, He, Wang (bib0020) 2015
Yan, Chiu, Dong, Yao (bib0022) 2014; 47
Chiu, Yao (bib0003) 2013; 125
Mei, Su, Liu, Ding, Liao (bib0008) 2017; 25
Park, Kim, Park, Kim (bib0012) 2018; 123
Zou, Hastie (bib0028) 2005; 67
Simões, Maltarollo, Oliveira, Honorio (bib0015) 2018; 9
Zhang, Zou, Li, Xu (bib0025) 2019; 367
Jaques, Taylor, Nosakhare, Sano, Picard (bib0006) 2016
Wold, Kettaneh, Fridén, Holmberg (bib0021) 1998
Zhang, J., Martin, E.B., Morris, A.J., Kiparissides, C., 2002. Prediction of polymer quality in batch polymerisation reactors using neural networks 69, 1370–1374vol. 3. https://doi.org/10.1109/acc.1997.610645
Parikh (bib0011) 2014; 1
Ramaker, Van Sprang, Westerhuis, Smilde (bib0013) 2005; 15
Lozano, Świrszcz (bib0007) 2012; 1
Wang, Kolar, Srebro, Srerbo (bib0019) 2016; 51
Severson, VanAntwerp, Natarajan, Antoniou, Thömmes, Braatz (bib0014) 2015; 80
Boyd, Parikh, Chu, Peleato, Eckstein (bib0002) 2010
Nomikos, MacGregor (bib0009) 1995; 30
Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical Bayesian Optimization of Machine Learning Algorithms.
Sosnin, Vashurina, Withnall, Karpov, Fedorov, Tetko (bib0017) 2019; 38
Zhang, Y., Yang, Q., 2017. A Survey on Multi-Task Learning 1–20.
Nomikos (10.1016/j.compchemeng.2021.107320_bib0009) 1995; 30
Tibshirani (10.1016/j.compchemeng.2021.107320_bib0018) 1996; 58
Boyd (10.1016/j.compchemeng.2021.107320_bib0002) 2010
Simões (10.1016/j.compchemeng.2021.107320_bib0015) 2018; 9
10.1016/j.compchemeng.2021.107320_bib0026
Mei (10.1016/j.compchemeng.2021.107320_bib0008) 2017; 25
10.1016/j.compchemeng.2021.107320_bib0024
Lozano (10.1016/j.compchemeng.2021.107320_bib0007) 2012; 1
Jaques (10.1016/j.compchemeng.2021.107320_bib0006) 2016
Chiu (10.1016/j.compchemeng.2021.107320_bib0003) 2013; 125
Wold (10.1016/j.compchemeng.2021.107320_bib0021) 1998
Zhou (10.1016/j.compchemeng.2021.107320_bib0027) 2016; 38
Wang (10.1016/j.compchemeng.2021.107320_bib0019) 2016; 51
Park (10.1016/j.compchemeng.2021.107320_bib0012) 2018; 123
Severson (10.1016/j.compchemeng.2021.107320_bib0014) 2015; 80
Zhang (10.1016/j.compchemeng.2021.107320_bib0025) 2019; 367
10.1016/j.compchemeng.2021.107320_bib0010
Flores-Cerrillo (10.1016/j.compchemeng.2021.107320_bib0005) 2004; 14
10.1016/j.compchemeng.2021.107320_bib0016
Wang (10.1016/j.compchemeng.2021.107320_bib0020) 2015
Yang (10.1016/j.compchemeng.2021.107320_bib0023) 2016; 155
Beck (10.1016/j.compchemeng.2021.107320_bib0001) 2009; 2
Yan (10.1016/j.compchemeng.2021.107320_bib0022) 2014; 47
Chu (10.1016/j.compchemeng.2021.107320_bib0004) 2018; 183
Parikh (10.1016/j.compchemeng.2021.107320_bib0011) 2014; 1
Zou (10.1016/j.compchemeng.2021.107320_bib0028) 2005; 67
Sosnin (10.1016/j.compchemeng.2021.107320_bib0017) 2019; 38
Ramaker (10.1016/j.compchemeng.2021.107320_bib0013) 2005; 15
References_xml – volume: 125
  start-page: 153
  year: 2013
  end-page: 165
  ident: bib0003
  article-title: Multiway elastic net (MEN) for final product quality prediction and quality-related analysis of batch processes
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 123
  start-page: 209
  year: 2018
  end-page: 219
  ident: bib0012
  article-title: Multitask learning for virtual metrology in semiconductor manufacturing systems
  publication-title: Comput. Ind. Eng.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 7
  ident: bib0015
  article-title: Transfer and multi-task learning in QSAR modeling: advances and challenges
  publication-title: Front. Pharmacol.
– volume: 15
  start-page: 799
  year: 2005
  end-page: 805
  ident: bib0013
  article-title: Fault detection properties of global, local and time evolving models for batch process monitoring
  publication-title: J. Process Control
– volume: 38
  start-page: 266
  year: 2016
  end-page: 278
  ident: bib0027
  article-title: Flexible clustered multi-task learning by learning representative tasks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 80
  start-page: 30
  year: 2015
  end-page: 36
  ident: bib0014
  article-title: Elastic net with Monte Carlo sampling for data-based modeling in biopharmaceutical manufacturing facilities
  publication-title: Comput. Chem. Eng.
– volume: 155
  start-page: 170
  year: 2016
  end-page: 182
  ident: bib0023
  article-title: Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib0028
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– year: 2015
  ident: bib0020
  article-title: Comparison of variable selection methods for PLS-based soft sensor modeling
  publication-title: J Process Control
– volume: 183
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib0004
  article-title: Final quality prediction method for new batch processes based on improved JYKPLS process transfer model
  publication-title: Chemom. Intell. Lab. Syst.
– year: 2010
  ident: bib0002
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
– volume: 47
  start-page: 6704
  year: 2014
  end-page: 6709
  ident: bib0022
  article-title: A LASSO-based batch process modeling and end-product quality prediction method
  publication-title: IFAC Proc.
– reference: Zhang, Y., Yang, Q., 2017. A Survey on Multi-Task Learning 1–20.
– volume: 14
  start-page: 539
  year: 2004
  end-page: 553
  ident: bib0005
  article-title: Control of batch product quality by trajectory manipulation using latent variable models
  publication-title: J. Process Control
– reference: Zhang, J., Martin, E.B., Morris, A.J., Kiparissides, C., 2002. Prediction of polymer quality in batch polymerisation reactors using neural networks 69, 1370–1374vol. 3. https://doi.org/10.1109/acc.1997.610645
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0018
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 38
  year: 2019
  ident: bib0017
  article-title: A survey of multi-task learning methods in chemoinformatics
  publication-title: Mol. Inform.
– volume: 51
  start-page: 751
  year: 2016
  end-page: 760
  ident: bib0019
  article-title: Distributed multi-task learning
  publication-title: Proc. 19th Int. Conf. Artif. Intell. Stat.
– volume: 1
  start-page: 127
  year: 2014
  end-page: 239
  ident: bib0011
  article-title: Proximal Algorithms
  publication-title: Found. Trends® Optim.
– start-page: 331
  year: 1998
  end-page: 340
  ident: bib0021
  article-title: Modelling and diagnostics of batch processes and analogous kinetic experiments
  publication-title: Chemometrics and Intelligent Laboratory Systems
– start-page: 1
  year: 2016
  end-page: 5
  ident: bib0006
  article-title: Multi-task learning for predicting health, stress, and happiness. NIPS Work
  publication-title: Mach. Learn. Healthc.
– reference: Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical Bayesian Optimization of Machine Learning Algorithms.
– volume: 1
  start-page: 361
  year: 2012
  end-page: 368
  ident: bib0007
  article-title: Multi-level Lasso for sparse multi-task regression
  publication-title: Proc. 29th Int. Conf. Mach. Learn
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: bib0001
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– volume: 25
  start-page: 116
  year: 2017
  end-page: 122
  ident: bib0008
  article-title: Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes
  publication-title: Chinese J. Chem. Eng.
– volume: 367
  start-page: 64
  year: 2019
  end-page: 74
  ident: bib0025
  article-title: A weighted auto regressive LSTM based approach for chemical processes modeling
  publication-title: Neurocomputing
– reference: Obozinski, G., Taskar, B., Jordan, M., 2006. Multi-task feature selection.
– volume: 30
  start-page: 97
  year: 1995
  end-page: 108
  ident: bib0009
  article-title: Multi-way partial least squares in monitoring batch processes
  publication-title: Chemom. Intell. Lab. Syst.
– start-page: 331
  year: 1998
  ident: 10.1016/j.compchemeng.2021.107320_bib0021
  article-title: Modelling and diagnostics of batch processes and analogous kinetic experiments
– volume: 2
  start-page: 183
  year: 2009
  ident: 10.1016/j.compchemeng.2021.107320_bib0001
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 367
  start-page: 64
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107320_bib0025
  article-title: A weighted auto regressive LSTM based approach for chemical processes modeling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.006
– volume: 123
  start-page: 209
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107320_bib0012
  article-title: Multitask learning for virtual metrology in semiconductor manufacturing systems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.06.024
– ident: 10.1016/j.compchemeng.2021.107320_bib0010
– ident: 10.1016/j.compchemeng.2021.107320_bib0016
– volume: 1
  start-page: 127
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107320_bib0011
  article-title: Proximal Algorithms
  publication-title: Found. Trends® Optim.
  doi: 10.1561/2400000003
– year: 2010
  ident: 10.1016/j.compchemeng.2021.107320_bib0002
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 51
  start-page: 751
  year: 2016
  ident: 10.1016/j.compchemeng.2021.107320_bib0019
  article-title: Distributed multi-task learning
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.compchemeng.2021.107320_bib0028
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 10.1016/j.compchemeng.2021.107320_bib0024
  doi: 10.1109/ACC.1997.610645
– volume: 80
  start-page: 30
  year: 2015
  ident: 10.1016/j.compchemeng.2021.107320_bib0014
  article-title: Elastic net with Monte Carlo sampling for data-based modeling in biopharmaceutical manufacturing facilities
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2015.05.006
– start-page: 1
  year: 2016
  ident: 10.1016/j.compchemeng.2021.107320_bib0006
  article-title: Multi-task learning for predicting health, stress, and happiness. NIPS Work
  publication-title: Mach. Learn. Healthc.
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107320_bib0015
  article-title: Transfer and multi-task learning in QSAR modeling: advances and challenges
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00074
– ident: 10.1016/j.compchemeng.2021.107320_bib0026
  doi: 10.1093/nsr/nwx105
– volume: 14
  start-page: 539
  year: 2004
  ident: 10.1016/j.compchemeng.2021.107320_bib0005
  article-title: Control of batch product quality by trajectory manipulation using latent variable models
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2003.09.008
– volume: 155
  start-page: 170
  year: 2016
  ident: 10.1016/j.compchemeng.2021.107320_bib0023
  article-title: Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.04.009
– volume: 38
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107320_bib0017
  article-title: A survey of multi-task learning methods in chemoinformatics
  publication-title: Mol. Inform.
  doi: 10.1002/minf.201800108
– year: 2015
  ident: 10.1016/j.compchemeng.2021.107320_bib0020
  article-title: Comparison of variable selection methods for PLS-based soft sensor modeling
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2015.01.003
– volume: 47
  start-page: 6704
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107320_bib0022
  article-title: A LASSO-based batch process modeling and end-product quality prediction method
  publication-title: IFAC Proc.
  doi: 10.3182/20140824-6-ZA-1003.00204
– volume: 38
  start-page: 266
  year: 2016
  ident: 10.1016/j.compchemeng.2021.107320_bib0027
  article-title: Flexible clustered multi-task learning by learning representative tasks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2452911
– volume: 125
  start-page: 153
  year: 2013
  ident: 10.1016/j.compchemeng.2021.107320_bib0003
  article-title: Multiway elastic net (MEN) for final product quality prediction and quality-related analysis of batch processes
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.04.006
– volume: 183
  start-page: 1
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107320_bib0004
  article-title: Final quality prediction method for new batch processes based on improved JYKPLS process transfer model
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.10.004
– volume: 1
  start-page: 361
  year: 2012
  ident: 10.1016/j.compchemeng.2021.107320_bib0007
  article-title: Multi-level Lasso for sparse multi-task regression
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.compchemeng.2021.107320_bib0018
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 25
  start-page: 116
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107320_bib0008
  article-title: Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes
  publication-title: Chinese J. Chem. Eng.
  doi: 10.1016/j.cjche.2016.07.005
– volume: 30
  start-page: 97
  year: 1995
  ident: 10.1016/j.compchemeng.2021.107320_bib0009
  article-title: Multi-way partial least squares in monitoring batch processes
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(95)00043-7
– volume: 15
  start-page: 799
  year: 2005
  ident: 10.1016/j.compchemeng.2021.107320_bib0013
  article-title: Fault detection properties of global, local and time evolving models for batch process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2005.02.001
SSID ssj0002488
Score 2.4217787
Snippet Data-driven quality prediction methods are widely used in industrial chemical plants. However, it is often difficult to develop prediction models for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107320
SubjectTerms Clustered multi-task learning
Multi-grade batch process
Quality prediction
Sparse regularization
Title Quality prediction for multi-grade batch process using sparse flexible clustered multi-task learning
URI https://dx.doi.org/10.1016/j.compchemeng.2021.107320
Volume 150
WOSCitedRecordID wos000649713200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0098-1354
  databaseCode: AIEXJ
  dateStart: 19950611
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002488
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFiE4IF4V5SUjcVul2s3LtsSlQkWAUMWhoOUU-blNd5uuNpvS_nvGceyEl1qQuERRknG8O1_GM9bMNwi9IsaA2054JFMGAYpRLOI8UdGUTriaaIBAW_X-5SM5PKSzGfs0Gn3ztTDnS1JV9OKCrf6rquEaKNuWzv6FusOgcAHOQelwBLXD8VqKd6wYl7b6X5UypBK2mYPRfM2VHguwv8fjlasRGDftdgFYlnWtx8YSZNpqKrlsLIcC-KNOcsPrhe8xMR-6tL4vRN2iSHoCAt0THQbLwk_53DZfaUHCF9w0p-XwZn1cOmf26xmcXjaLcrgpEU9DAmswtAyC08TxQwdD6yhmO1MJcWfS1sH9asXdhsKJVcLKThtmvGffstfL_Mic_dOKFvIMfQrbSTEYqrBDFW6oG2g7JhkDi769__5g9iEs4nFKqadbtb_jFnrZpwb-YV6_d20G7srRPXS3izPwvsPHfTTS1QN0Z8A--RCpDim4RwoGpOABUnCLFNwhBbdIwQ4p2CMFB6TgHinYI-UR-vz24OjNu6hruhHJhJJNJImNeImOcypinglm2FQnTGYTk2iWZ2kqYUlKxVQbnqeUp6mi1snMZWIgdCDJDtqqzir9GGFhJgLCBWEycLpNwkQsmEgVMfC4zoXaRdT_X4XsGOltY5RlcaXedlEcRFeOluU6Qq-9UorOv3R-YwHAu1r8yb-88ym63X8fz9DWZt3o5-imPN-U9fpFh7rvMf2oCA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+prediction+for+multi-grade+batch+process+using+sparse+flexible+clustered+multi-task+learning&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Yamaguchi%2C+Takafumi&rft.au=Yamashita%2C+Yoshiyuki&rft.date=2021-07-01&rft.issn=0098-1354&rft.volume=150&rft.spage=107320&rft_id=info:doi/10.1016%2Fj.compchemeng.2021.107320&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2021_107320
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon