Quality prediction for multi-grade batch process using sparse flexible clustered multi-task learning
Data-driven quality prediction methods are widely used in industrial chemical plants. However, it is often difficult to develop prediction models for multi-grade batch processes. Two major issues need to be considered when developing high-accuracy models. The first is the unavailability of sufficien...
Uložené v:
| Vydané v: | Computers & chemical engineering Ročník 150; s. 107320 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.07.2021
|
| Predmet: | |
| ISSN: | 0098-1354 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Data-driven quality prediction methods are widely used in industrial chemical plants. However, it is often difficult to develop prediction models for multi-grade batch processes. Two major issues need to be considered when developing high-accuracy models. The first is the unavailability of sufficient data to create models for each grade of these processes. The other is that each batch cycle typically has an excessive number of explanatory variables. This paper proposes two methods to predict the quality of products manufactured in these multi-batch processes in chemical plants. These methods combine the features of two techniques: the first is a flexible clustered multi-task learning method, which utilizes data from other grades effectively to create high-performance quality prediction models with a small amount of data. This is useful when more data are available for the other grades. The other is a sparsity technique to overcome the high-dimensionality problem of input features. The effectiveness of the proposed methods is demonstrated on a numerical dataset, and finally applied to data generated during an actual industrial blow molding process. |
|---|---|
| AbstractList | Data-driven quality prediction methods are widely used in industrial chemical plants. However, it is often difficult to develop prediction models for multi-grade batch processes. Two major issues need to be considered when developing high-accuracy models. The first is the unavailability of sufficient data to create models for each grade of these processes. The other is that each batch cycle typically has an excessive number of explanatory variables. This paper proposes two methods to predict the quality of products manufactured in these multi-batch processes in chemical plants. These methods combine the features of two techniques: the first is a flexible clustered multi-task learning method, which utilizes data from other grades effectively to create high-performance quality prediction models with a small amount of data. This is useful when more data are available for the other grades. The other is a sparsity technique to overcome the high-dimensionality problem of input features. The effectiveness of the proposed methods is demonstrated on a numerical dataset, and finally applied to data generated during an actual industrial blow molding process. |
| ArticleNumber | 107320 |
| Author | Yamaguchi, Takafumi Yamashita, Yoshiyuki |
| Author_xml | – sequence: 1 givenname: Takafumi surname: Yamaguchi fullname: Yamaguchi, Takafumi email: takafumi.yamaguchi@kaneka.co.jp organization: Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan – sequence: 2 givenname: Yoshiyuki surname: Yamashita fullname: Yamashita, Yoshiyuki organization: Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan |
| BookMark | eNqNkMtKAzEUhrOoYKu-Q3yAqbnNTGYlUrxBQQRdh0zmpE3NXEgyYt_eKe1CXHV14PD_H_zfAs26vgOEbilZUkKLu93S9O1gttBCt1kywuj0LzkjMzQnpJIZ5bm4RIsYd4QQJqSco-Z91N6lPR4CNM4k13fY9gG3o08u2wTdAK51Mtsp0BuIEY_RdRscBx0iYOvhx9UesPFjTDAxTs2k4xf2oEM3pa_RhdU-ws3pXqHPp8eP1Uu2fnt-XT2sM8NlmTJT0oKWJbBC1kzndWUrCrwyObEcqiIXwpQFFzUFqwshtRCNlIyxwnCbc17yK3R_5JrQxxjAKuOSPmxKQTuvKFEHUWqn_ohSB1HqKGoiVP8IQ3CtDvuzuqtjF6aJ3w6CisZBZyavAUxSTe_OoPwCRx-QvA |
| CitedBy_id | crossref_primary_10_1002_rnc_6942 crossref_primary_10_1016_j_ces_2023_119560 crossref_primary_10_1016_j_chemolab_2023_104778 crossref_primary_10_1016_j_ress_2025_111090 crossref_primary_10_1002_acs_3884 crossref_primary_10_3390_pr11051481 crossref_primary_10_1016_j_psep_2025_107122 crossref_primary_10_1016_j_aei_2024_102640 crossref_primary_10_1016_j_aei_2024_102860 crossref_primary_10_1016_j_compchemeng_2023_108510 crossref_primary_10_1016_j_compchemeng_2023_108259 crossref_primary_10_1002_srin_202300351 crossref_primary_10_1080_00207543_2021_1987551 crossref_primary_10_1016_j_jii_2024_100610 crossref_primary_10_1002_int_22702 |
| Cites_doi | 10.1137/080716542 10.1016/j.neucom.2019.08.006 10.1016/j.cie.2018.06.024 10.1561/2400000003 10.1561/2200000016 10.1111/j.1467-9868.2005.00503.x 10.1109/ACC.1997.610645 10.1016/j.compchemeng.2015.05.006 10.3389/fphar.2018.00074 10.1093/nsr/nwx105 10.1016/j.jprocont.2003.09.008 10.1016/j.chemolab.2016.04.009 10.1002/minf.201800108 10.1016/j.jprocont.2015.01.003 10.3182/20140824-6-ZA-1003.00204 10.1109/TPAMI.2015.2452911 10.1016/j.chemolab.2013.04.006 10.1016/j.chemolab.2018.10.004 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.cjche.2016.07.005 10.1016/0169-7439(95)00043-7 10.1016/j.jprocont.2005.02.001 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compchemeng.2021.107320 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compchemeng_2021_107320 S0098135421000983 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSH SST SSZ T5K VH1 WUQ ZY4 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c387t-c716177e268b2a5b9f91e39c50f3e96544c7634b1efa648a44d882226c3f53373 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000649713200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-1354 |
| IngestDate | Tue Nov 18 20:36:17 EST 2025 Sat Nov 29 07:23:56 EST 2025 Sun Apr 06 06:53:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sparse regularization Clustered multi-task learning Multi-grade batch process Quality prediction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c387t-c716177e268b2a5b9f91e39c50f3e96544c7634b1efa648a44d882226c3f53373 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_compchemeng_2021_107320 crossref_primary_10_1016_j_compchemeng_2021_107320 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2021_107320 |
| PublicationCentury | 2000 |
| PublicationDate | July 2021 2021-07-00 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & chemical engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Beck, Teboulle (bib0001) 2009; 2 Chu, Cheng, Jia, Wang, Lei (bib0004) 2018; 183 Flores-Cerrillo, MacGregor (bib0005) 2004; 14 Zhou, Zhao (bib0027) 2016; 38 Tibshirani (bib0018) 1996; 58 Obozinski, G., Taskar, B., Jordan, M., 2006. Multi-task feature selection. Yang, Jin, Chen, Dai, Wang, Zhang (bib0023) 2016; 155 Wang, He, Wang (bib0020) 2015 Yan, Chiu, Dong, Yao (bib0022) 2014; 47 Chiu, Yao (bib0003) 2013; 125 Mei, Su, Liu, Ding, Liao (bib0008) 2017; 25 Park, Kim, Park, Kim (bib0012) 2018; 123 Zou, Hastie (bib0028) 2005; 67 Simões, Maltarollo, Oliveira, Honorio (bib0015) 2018; 9 Zhang, Zou, Li, Xu (bib0025) 2019; 367 Jaques, Taylor, Nosakhare, Sano, Picard (bib0006) 2016 Wold, Kettaneh, Fridén, Holmberg (bib0021) 1998 Zhang, J., Martin, E.B., Morris, A.J., Kiparissides, C., 2002. Prediction of polymer quality in batch polymerisation reactors using neural networks 69, 1370–1374vol. 3. https://doi.org/10.1109/acc.1997.610645 Parikh (bib0011) 2014; 1 Ramaker, Van Sprang, Westerhuis, Smilde (bib0013) 2005; 15 Lozano, Świrszcz (bib0007) 2012; 1 Wang, Kolar, Srebro, Srerbo (bib0019) 2016; 51 Severson, VanAntwerp, Natarajan, Antoniou, Thömmes, Braatz (bib0014) 2015; 80 Boyd, Parikh, Chu, Peleato, Eckstein (bib0002) 2010 Nomikos, MacGregor (bib0009) 1995; 30 Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical Bayesian Optimization of Machine Learning Algorithms. Sosnin, Vashurina, Withnall, Karpov, Fedorov, Tetko (bib0017) 2019; 38 Zhang, Y., Yang, Q., 2017. A Survey on Multi-Task Learning 1–20. Nomikos (10.1016/j.compchemeng.2021.107320_bib0009) 1995; 30 Tibshirani (10.1016/j.compchemeng.2021.107320_bib0018) 1996; 58 Boyd (10.1016/j.compchemeng.2021.107320_bib0002) 2010 Simões (10.1016/j.compchemeng.2021.107320_bib0015) 2018; 9 10.1016/j.compchemeng.2021.107320_bib0026 Mei (10.1016/j.compchemeng.2021.107320_bib0008) 2017; 25 10.1016/j.compchemeng.2021.107320_bib0024 Lozano (10.1016/j.compchemeng.2021.107320_bib0007) 2012; 1 Jaques (10.1016/j.compchemeng.2021.107320_bib0006) 2016 Chiu (10.1016/j.compchemeng.2021.107320_bib0003) 2013; 125 Wold (10.1016/j.compchemeng.2021.107320_bib0021) 1998 Zhou (10.1016/j.compchemeng.2021.107320_bib0027) 2016; 38 Wang (10.1016/j.compchemeng.2021.107320_bib0019) 2016; 51 Park (10.1016/j.compchemeng.2021.107320_bib0012) 2018; 123 Severson (10.1016/j.compchemeng.2021.107320_bib0014) 2015; 80 Zhang (10.1016/j.compchemeng.2021.107320_bib0025) 2019; 367 10.1016/j.compchemeng.2021.107320_bib0010 Flores-Cerrillo (10.1016/j.compchemeng.2021.107320_bib0005) 2004; 14 10.1016/j.compchemeng.2021.107320_bib0016 Wang (10.1016/j.compchemeng.2021.107320_bib0020) 2015 Yang (10.1016/j.compchemeng.2021.107320_bib0023) 2016; 155 Beck (10.1016/j.compchemeng.2021.107320_bib0001) 2009; 2 Yan (10.1016/j.compchemeng.2021.107320_bib0022) 2014; 47 Chu (10.1016/j.compchemeng.2021.107320_bib0004) 2018; 183 Parikh (10.1016/j.compchemeng.2021.107320_bib0011) 2014; 1 Zou (10.1016/j.compchemeng.2021.107320_bib0028) 2005; 67 Sosnin (10.1016/j.compchemeng.2021.107320_bib0017) 2019; 38 Ramaker (10.1016/j.compchemeng.2021.107320_bib0013) 2005; 15 |
| References_xml | – volume: 125 start-page: 153 year: 2013 end-page: 165 ident: bib0003 article-title: Multiway elastic net (MEN) for final product quality prediction and quality-related analysis of batch processes publication-title: Chemom. Intell. Lab. Syst. – volume: 123 start-page: 209 year: 2018 end-page: 219 ident: bib0012 article-title: Multitask learning for virtual metrology in semiconductor manufacturing systems publication-title: Comput. Ind. Eng. – volume: 9 start-page: 1 year: 2018 end-page: 7 ident: bib0015 article-title: Transfer and multi-task learning in QSAR modeling: advances and challenges publication-title: Front. Pharmacol. – volume: 15 start-page: 799 year: 2005 end-page: 805 ident: bib0013 article-title: Fault detection properties of global, local and time evolving models for batch process monitoring publication-title: J. Process Control – volume: 38 start-page: 266 year: 2016 end-page: 278 ident: bib0027 article-title: Flexible clustered multi-task learning by learning representative tasks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 80 start-page: 30 year: 2015 end-page: 36 ident: bib0014 article-title: Elastic net with Monte Carlo sampling for data-based modeling in biopharmaceutical manufacturing facilities publication-title: Comput. Chem. Eng. – volume: 155 start-page: 170 year: 2016 end-page: 182 ident: bib0023 article-title: Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models publication-title: Chemom. Intell. Lab. Syst. – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bib0028 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – year: 2015 ident: bib0020 article-title: Comparison of variable selection methods for PLS-based soft sensor modeling publication-title: J Process Control – volume: 183 start-page: 1 year: 2018 end-page: 10 ident: bib0004 article-title: Final quality prediction method for new batch processes based on improved JYKPLS process transfer model publication-title: Chemom. Intell. Lab. Syst. – year: 2010 ident: bib0002 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends Mach. Learn. – volume: 47 start-page: 6704 year: 2014 end-page: 6709 ident: bib0022 article-title: A LASSO-based batch process modeling and end-product quality prediction method publication-title: IFAC Proc. – reference: Zhang, Y., Yang, Q., 2017. A Survey on Multi-Task Learning 1–20. – volume: 14 start-page: 539 year: 2004 end-page: 553 ident: bib0005 article-title: Control of batch product quality by trajectory manipulation using latent variable models publication-title: J. Process Control – reference: Zhang, J., Martin, E.B., Morris, A.J., Kiparissides, C., 2002. Prediction of polymer quality in batch polymerisation reactors using neural networks 69, 1370–1374vol. 3. https://doi.org/10.1109/acc.1997.610645 – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0018 article-title: Regression Shrinkage and Selection Via the Lasso publication-title: J. R. Stat. Soc. Ser. B – volume: 38 year: 2019 ident: bib0017 article-title: A survey of multi-task learning methods in chemoinformatics publication-title: Mol. Inform. – volume: 51 start-page: 751 year: 2016 end-page: 760 ident: bib0019 article-title: Distributed multi-task learning publication-title: Proc. 19th Int. Conf. Artif. Intell. Stat. – volume: 1 start-page: 127 year: 2014 end-page: 239 ident: bib0011 article-title: Proximal Algorithms publication-title: Found. Trends® Optim. – start-page: 331 year: 1998 end-page: 340 ident: bib0021 article-title: Modelling and diagnostics of batch processes and analogous kinetic experiments publication-title: Chemometrics and Intelligent Laboratory Systems – start-page: 1 year: 2016 end-page: 5 ident: bib0006 article-title: Multi-task learning for predicting health, stress, and happiness. NIPS Work publication-title: Mach. Learn. Healthc. – reference: Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical Bayesian Optimization of Machine Learning Algorithms. – volume: 1 start-page: 361 year: 2012 end-page: 368 ident: bib0007 article-title: Multi-level Lasso for sparse multi-task regression publication-title: Proc. 29th Int. Conf. Mach. Learn – volume: 2 start-page: 183 year: 2009 end-page: 202 ident: bib0001 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. – volume: 25 start-page: 116 year: 2017 end-page: 122 ident: bib0008 article-title: Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes publication-title: Chinese J. Chem. Eng. – volume: 367 start-page: 64 year: 2019 end-page: 74 ident: bib0025 article-title: A weighted auto regressive LSTM based approach for chemical processes modeling publication-title: Neurocomputing – reference: Obozinski, G., Taskar, B., Jordan, M., 2006. Multi-task feature selection. – volume: 30 start-page: 97 year: 1995 end-page: 108 ident: bib0009 article-title: Multi-way partial least squares in monitoring batch processes publication-title: Chemom. Intell. Lab. Syst. – start-page: 331 year: 1998 ident: 10.1016/j.compchemeng.2021.107320_bib0021 article-title: Modelling and diagnostics of batch processes and analogous kinetic experiments – volume: 2 start-page: 183 year: 2009 ident: 10.1016/j.compchemeng.2021.107320_bib0001 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 367 start-page: 64 year: 2019 ident: 10.1016/j.compchemeng.2021.107320_bib0025 article-title: A weighted auto regressive LSTM based approach for chemical processes modeling publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.006 – volume: 123 start-page: 209 year: 2018 ident: 10.1016/j.compchemeng.2021.107320_bib0012 article-title: Multitask learning for virtual metrology in semiconductor manufacturing systems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.06.024 – ident: 10.1016/j.compchemeng.2021.107320_bib0010 – ident: 10.1016/j.compchemeng.2021.107320_bib0016 – volume: 1 start-page: 127 year: 2014 ident: 10.1016/j.compchemeng.2021.107320_bib0011 article-title: Proximal Algorithms publication-title: Found. Trends® Optim. doi: 10.1561/2400000003 – year: 2010 ident: 10.1016/j.compchemeng.2021.107320_bib0002 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – volume: 51 start-page: 751 year: 2016 ident: 10.1016/j.compchemeng.2021.107320_bib0019 article-title: Distributed multi-task learning – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.compchemeng.2021.107320_bib0028 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2005.00503.x – ident: 10.1016/j.compchemeng.2021.107320_bib0024 doi: 10.1109/ACC.1997.610645 – volume: 80 start-page: 30 year: 2015 ident: 10.1016/j.compchemeng.2021.107320_bib0014 article-title: Elastic net with Monte Carlo sampling for data-based modeling in biopharmaceutical manufacturing facilities publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2015.05.006 – start-page: 1 year: 2016 ident: 10.1016/j.compchemeng.2021.107320_bib0006 article-title: Multi-task learning for predicting health, stress, and happiness. NIPS Work publication-title: Mach. Learn. Healthc. – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.compchemeng.2021.107320_bib0015 article-title: Transfer and multi-task learning in QSAR modeling: advances and challenges publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00074 – ident: 10.1016/j.compchemeng.2021.107320_bib0026 doi: 10.1093/nsr/nwx105 – volume: 14 start-page: 539 year: 2004 ident: 10.1016/j.compchemeng.2021.107320_bib0005 article-title: Control of batch product quality by trajectory manipulation using latent variable models publication-title: J. Process Control doi: 10.1016/j.jprocont.2003.09.008 – volume: 155 start-page: 170 year: 2016 ident: 10.1016/j.compchemeng.2021.107320_bib0023 article-title: Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.04.009 – volume: 38 year: 2019 ident: 10.1016/j.compchemeng.2021.107320_bib0017 article-title: A survey of multi-task learning methods in chemoinformatics publication-title: Mol. Inform. doi: 10.1002/minf.201800108 – year: 2015 ident: 10.1016/j.compchemeng.2021.107320_bib0020 article-title: Comparison of variable selection methods for PLS-based soft sensor modeling publication-title: J Process Control doi: 10.1016/j.jprocont.2015.01.003 – volume: 47 start-page: 6704 year: 2014 ident: 10.1016/j.compchemeng.2021.107320_bib0022 article-title: A LASSO-based batch process modeling and end-product quality prediction method publication-title: IFAC Proc. doi: 10.3182/20140824-6-ZA-1003.00204 – volume: 38 start-page: 266 year: 2016 ident: 10.1016/j.compchemeng.2021.107320_bib0027 article-title: Flexible clustered multi-task learning by learning representative tasks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2452911 – volume: 125 start-page: 153 year: 2013 ident: 10.1016/j.compchemeng.2021.107320_bib0003 article-title: Multiway elastic net (MEN) for final product quality prediction and quality-related analysis of batch processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.04.006 – volume: 183 start-page: 1 year: 2018 ident: 10.1016/j.compchemeng.2021.107320_bib0004 article-title: Final quality prediction method for new batch processes based on improved JYKPLS process transfer model publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.10.004 – volume: 1 start-page: 361 year: 2012 ident: 10.1016/j.compchemeng.2021.107320_bib0007 article-title: Multi-level Lasso for sparse multi-task regression – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.compchemeng.2021.107320_bib0018 article-title: Regression Shrinkage and Selection Via the Lasso publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 25 start-page: 116 year: 2017 ident: 10.1016/j.compchemeng.2021.107320_bib0008 article-title: Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes publication-title: Chinese J. Chem. Eng. doi: 10.1016/j.cjche.2016.07.005 – volume: 30 start-page: 97 year: 1995 ident: 10.1016/j.compchemeng.2021.107320_bib0009 article-title: Multi-way partial least squares in monitoring batch processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(95)00043-7 – volume: 15 start-page: 799 year: 2005 ident: 10.1016/j.compchemeng.2021.107320_bib0013 article-title: Fault detection properties of global, local and time evolving models for batch process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2005.02.001 |
| SSID | ssj0002488 |
| Score | 2.4217787 |
| Snippet | Data-driven quality prediction methods are widely used in industrial chemical plants. However, it is often difficult to develop prediction models for... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107320 |
| SubjectTerms | Clustered multi-task learning Multi-grade batch process Quality prediction Sparse regularization |
| Title | Quality prediction for multi-grade batch process using sparse flexible clustered multi-task learning |
| URI | https://dx.doi.org/10.1016/j.compchemeng.2021.107320 |
| Volume | 150 |
| WOSCitedRecordID | wos000649713200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0098-1354 databaseCode: AIEXJ dateStart: 19950611 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002488 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpJT2UPqkSZuiQm-LQ9eWLQl6CSUh7SH0kML2ZCRZ2ji7cZb1Ok3-fUaWJbuPkLTQizE2I8uez6MZMfMNQu8LYgwHvzYSkpGITAoaCWJEVAiuOJFJBoJtswl6dMSmU_51NPrha2EuFrSq2OUlX_5XVcM1ULYtnf0LdYdB4QKcg9LhCGqH450U71gxrmz1f1GqkErYZg5Gs5Uo9FiC_T0ZL12NwLhptwvAsqxqPTaWINNWU6lFYzkUwB91kmtRz32PidnQpfV9IeoWRcoTEOie6DBYFnEmZrb5SgsSMRemOSuHN-uT0jmz38_h9KqZl8NNiXgSEliDoeUQnCaOHzoYWkcx25lKiDuTtg7udyvuNhROrRKWdtow4137lN1e5mfm7F9WtJBn6FPYTvPBULkdKndD3UObMU05WPTNvc_70y9hEY8JY55u1b7HA_SuTw28YV5_dm0G7srxE_S4izPwnsPHUzTS1TP0aMA--RwVHVJwjxQMSMEDpOAWKbhDCm6Rgh1SsEcKDkjBPVKwR8oL9O1g__jTYdQ13YhUwug6UtRGvFTHGZOxSCU3fKITrtIPJtE8SwlRsCQROdFGZIQJQgpmncxMJQZCB5q8RBvVeaVfIVwwqiWLqUlSYTmIeCylElySQihLdLuFmP9eueoY6W1jlEV-q962UBxEl46W5S5CH71S8s6_dH5jDsC7XXz7X575Gj3s_483aGO9avQOuq8u1mW9etuh7hr3Jaig |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+prediction+for+multi-grade+batch+process+using+sparse+flexible+clustered+multi-task+learning&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Yamaguchi%2C+Takafumi&rft.au=Yamashita%2C+Yoshiyuki&rft.date=2021-07-01&rft.issn=0098-1354&rft.volume=150&rft.spage=107320&rft_id=info:doi/10.1016%2Fj.compchemeng.2021.107320&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2021_107320 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |