Sensorimotor adaptation changes the neural coding of somatosensory stimuli

Motor learning is reflected in changes to the brain's functional organization as a result of experience. We show here that these changes are not limited to motor areas of the brain and indeed that motor learning also changes sensory systems. We test for plasticity in sensory systems using somat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology Jg. 109; H. 8; S. 2077
Hauptverfasser: Nasir, Sazzad M, Darainy, Mohammad, Ostry, David J
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.04.2013
Schlagworte:
ISSN:1522-1598, 1522-1598
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Motor learning is reflected in changes to the brain's functional organization as a result of experience. We show here that these changes are not limited to motor areas of the brain and indeed that motor learning also changes sensory systems. We test for plasticity in sensory systems using somatosensory evoked potentials (SEPs). A robotic device is used to elicit somatosensory inputs by displacing the arm in the direction of applied force during learning. We observe that following learning there are short latency changes to the response in somatosensory areas of the brain that are reliably correlated with the magnitude of motor learning: subjects who learn more show greater changes in SEP magnitude. The effects we observe are tied to motor learning. When the limb is displaced passively, such that subjects experience similar movements but without experiencing learning, no changes in the evoked response are observed. Sensorimotor adaptation thus alters the neural coding of somatosensory stimuli.
AbstractList Motor learning is reflected in changes to the brain's functional organization as a result of experience. We show here that these changes are not limited to motor areas of the brain and indeed that motor learning also changes sensory systems. We test for plasticity in sensory systems using somatosensory evoked potentials (SEPs). A robotic device is used to elicit somatosensory inputs by displacing the arm in the direction of applied force during learning. We observe that following learning there are short latency changes to the response in somatosensory areas of the brain that are reliably correlated with the magnitude of motor learning: subjects who learn more show greater changes in SEP magnitude. The effects we observe are tied to motor learning. When the limb is displaced passively, such that subjects experience similar movements but without experiencing learning, no changes in the evoked response are observed. Sensorimotor adaptation thus alters the neural coding of somatosensory stimuli.Motor learning is reflected in changes to the brain's functional organization as a result of experience. We show here that these changes are not limited to motor areas of the brain and indeed that motor learning also changes sensory systems. We test for plasticity in sensory systems using somatosensory evoked potentials (SEPs). A robotic device is used to elicit somatosensory inputs by displacing the arm in the direction of applied force during learning. We observe that following learning there are short latency changes to the response in somatosensory areas of the brain that are reliably correlated with the magnitude of motor learning: subjects who learn more show greater changes in SEP magnitude. The effects we observe are tied to motor learning. When the limb is displaced passively, such that subjects experience similar movements but without experiencing learning, no changes in the evoked response are observed. Sensorimotor adaptation thus alters the neural coding of somatosensory stimuli.
Motor learning is reflected in changes to the brain's functional organization as a result of experience. We show here that these changes are not limited to motor areas of the brain and indeed that motor learning also changes sensory systems. We test for plasticity in sensory systems using somatosensory evoked potentials (SEPs). A robotic device is used to elicit somatosensory inputs by displacing the arm in the direction of applied force during learning. We observe that following learning there are short latency changes to the response in somatosensory areas of the brain that are reliably correlated with the magnitude of motor learning: subjects who learn more show greater changes in SEP magnitude. The effects we observe are tied to motor learning. When the limb is displaced passively, such that subjects experience similar movements but without experiencing learning, no changes in the evoked response are observed. Sensorimotor adaptation thus alters the neural coding of somatosensory stimuli.
Author Nasir, Sazzad M
Darainy, Mohammad
Ostry, David J
Author_xml – sequence: 1
  givenname: Sazzad M
  surname: Nasir
  fullname: Nasir, Sazzad M
  organization: Northwestern University, Evanston, Illinois, USA
– sequence: 2
  givenname: Mohammad
  surname: Darainy
  fullname: Darainy, Mohammad
– sequence: 3
  givenname: David J
  surname: Ostry
  fullname: Ostry, David J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23343897$$D View this record in MEDLINE/PubMed
BookMark eNpNjz1PwzAYhC1URD9gZEUeWVLs107ijKjiU5UYgDl6E9ttqsQOsTP03xNBkZjudHrupFuSmfPOEHLN2ZrzFO4Obs1Yzos1MA5nZDFlkPC0ULN_fk6WIRzYBKYMLsgchJBCFfmCvL4bF_zQdD76gaLGPmJsvKP1Ht3OBBr3hjozDtjS2uvG7ai3NPgOow8_1SMNsenGtrkk5xbbYK5OuiKfjw8fm-dk-_b0srnfJrVQeUyQ2ayCtNBWoswkL6TBXAuGlWBK6ozXNaaFrQqDlRTWikpZgRqyTBrQrIYVuf3d7Qf_NZoQy64JtWlbdMaPoeQCFIBKgU_ozQkdq87osp-O4nAs__7DN2gZX8Q
CitedBy_id crossref_primary_10_1177_00315125221093904
crossref_primary_10_1088_1741_2552_aa6abd
crossref_primary_10_1093_cercor_bhab280
crossref_primary_10_1007_s00221_018_5272_9
crossref_primary_10_1016_j_bbr_2018_09_016
crossref_primary_10_1016_j_tins_2015_12_006
crossref_primary_10_1038_srep25926
crossref_primary_10_1016_j_bbr_2018_03_013
crossref_primary_10_1038_s41598_018_29751_6
crossref_primary_10_1186_s12984_023_01258_w
crossref_primary_10_1017_S0263574714002252
crossref_primary_10_3390_jcm11133868
crossref_primary_10_1007_s10072_022_06561_3
crossref_primary_10_3389_fnins_2023_1151309
crossref_primary_10_1038_nrn3724
crossref_primary_10_1152_jn_00313_2018
crossref_primary_10_1016_j_ynirp_2022_100081
crossref_primary_10_3389_fnhum_2021_692181
crossref_primary_10_1016_j_neuroimage_2025_121215
crossref_primary_10_3389_fnhum_2014_01037
crossref_primary_10_7554_eLife_48198
crossref_primary_10_1044_2022_JSLHR_21_00508
crossref_primary_10_1016_j_neuroscience_2020_10_033
crossref_primary_10_1111_jon_12968
crossref_primary_10_3389_fneur_2022_1036891
crossref_primary_10_1152_jn_00497_2019
crossref_primary_10_1162_jocn_a_01452
crossref_primary_10_1016_j_cub_2016_01_064
crossref_primary_10_2522_ptj_20130522
crossref_primary_10_3389_fnins_2020_00182
crossref_primary_10_1152_jn_00383_2019
crossref_primary_10_1523_JNEUROSCI_0629_24_2024
crossref_primary_10_1038_s41598_021_84767_9
crossref_primary_10_1007_s00221_019_05509_y
crossref_primary_10_1016_j_cortex_2021_03_019
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/jn.00719.2012
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
ExternalDocumentID 23343897
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD075740
– fundername: NICHD NIH HHS
  grantid: HD-075740
– fundername: NICHD NIH HHS
  grantid: HD-048924
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
18M
1CY
1Z7
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5VS
8M5
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ABTAH
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADIYS
AENEX
AFFNX
AFOSN
AI.
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
KQ8
L7B
MVM
NEJ
NPM
OHT
OK1
P2P
RAP
RHF
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
UQL
VH1
VXZ
W8F
WH7
WOQ
WOW
X7M
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
ZY4
7X8
ADHGD
AETEA
ID FETCH-LOGICAL-c387t-a0f6b259df4a464194ea7d30ab3084d61cca59fb9eab43ff3b8f3ad2664e2d0c2
IEDL.DBID 7X8
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317574700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1522-1598
IngestDate Wed Oct 01 14:40:17 EDT 2025
Wed Feb 19 01:50:26 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-a0f6b259df4a464194ea7d30ab3084d61cca59fb9eab43ff3b8f3ad2664e2d0c2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3628028
PMID 23343897
PQID 1328228521
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1328228521
pubmed_primary_23343897
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2013
References 9166924 - Exp Brain Res. 1997 Apr;114(2):352-61
11500799 - Exp Brain Res. 2001 Sep;140(1):66-76
9811556 - Neuroimage. 1998 Nov;8(4):377-90
11848712 - Neuroimage. 2002 Mar;15(3):691-6
8182467 - J Neurosci. 1994 May;14(5 Pt 2):3208-24
18971459 - J Neurosci. 2008 Oct 29;28(44):11165-73
7272711 - Brain. 1981 Sep;104(3):465-91
9242612 - Science. 1997 Aug 8;277(5327):821-5
8227514 - J Comp Neurol. 1993 Sep 8;335(2):200-13
15470131 - J Neurosci. 2004 Oct 6;24(40):8662-71
6480903 - J Comp Neurol. 1984 Sep 1;228(1):105-16
2108231 - J Neurosci. 1990 Mar;10(3):952-74
99458 - J Comp Neurol. 1978 Sep 15;181(2):291-347
4063823 - Brain Res. 1985 Nov 25;348(1):183-6
14715143 - Neuron. 2004 Jan 8;41(1):165-73
100583 - J Neurophysiol. 1978 Sep;41(5):1107-19
9888311 - J Comp Neurol. 1999 Jan 25;403(4):431-58
19126799 - Cereb Cortex. 2009 Sep;19(9):2106-13
21368000 - J Neurophysiol. 2011 May;105(5):2512-21
20392960 - J Neurosci. 2010 Apr 14;30(15):5384-93
22114261 - J Neurosci. 2011 Nov 23;31(47):16907-15
10803416 - Exp Brain Res. 2000 Apr;131(4):477-90
8834308 - Somatosens Mot Res. 1995;12(3-4):359-78
8891653 - Exp Brain Res. 1996 Sep;111(2):233-45
18584164 - Exp Brain Res. 2008 Sep;190(2):153-63
11719805 - Nature. 2001 Nov 22;414(6862):446-9
15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
4431519 - Nature. 1974 Dec 13;252(5484):582-4
19828727 - J Neurophysiol. 2009 Dec;102(6):3505-18
1196355 - Nature. 1975 Nov 27;258(5533):321-4
7876038 - Int J Psychophysiol. 1994 Oct;18(1):49-65
15784416 - Neuroimage. 2005 Apr 1;25(2):383-94
12368806 - Nat Neurosci. 2002 Nov;5(11):1217-25
10912591 - Hum Brain Mapp. 2000 Jul;10(3):120-31
12482098 - Neuroimage. 2002 Sep;17(1):461-8
4626361 - Exp Brain Res. 1972;14(3):257-73
References_xml – reference: 6480903 - J Comp Neurol. 1984 Sep 1;228(1):105-16
– reference: 99458 - J Comp Neurol. 1978 Sep 15;181(2):291-347
– reference: 10912591 - Hum Brain Mapp. 2000 Jul;10(3):120-31
– reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
– reference: 9166924 - Exp Brain Res. 1997 Apr;114(2):352-61
– reference: 19828727 - J Neurophysiol. 2009 Dec;102(6):3505-18
– reference: 10803416 - Exp Brain Res. 2000 Apr;131(4):477-90
– reference: 9811556 - Neuroimage. 1998 Nov;8(4):377-90
– reference: 11500799 - Exp Brain Res. 2001 Sep;140(1):66-76
– reference: 20392960 - J Neurosci. 2010 Apr 14;30(15):5384-93
– reference: 9888311 - J Comp Neurol. 1999 Jan 25;403(4):431-58
– reference: 12368806 - Nat Neurosci. 2002 Nov;5(11):1217-25
– reference: 15470131 - J Neurosci. 2004 Oct 6;24(40):8662-71
– reference: 4063823 - Brain Res. 1985 Nov 25;348(1):183-6
– reference: 8891653 - Exp Brain Res. 1996 Sep;111(2):233-45
– reference: 4431519 - Nature. 1974 Dec 13;252(5484):582-4
– reference: 8182467 - J Neurosci. 1994 May;14(5 Pt 2):3208-24
– reference: 7876038 - Int J Psychophysiol. 1994 Oct;18(1):49-65
– reference: 11848712 - Neuroimage. 2002 Mar;15(3):691-6
– reference: 18584164 - Exp Brain Res. 2008 Sep;190(2):153-63
– reference: 11719805 - Nature. 2001 Nov 22;414(6862):446-9
– reference: 2108231 - J Neurosci. 1990 Mar;10(3):952-74
– reference: 15784416 - Neuroimage. 2005 Apr 1;25(2):383-94
– reference: 9242612 - Science. 1997 Aug 8;277(5327):821-5
– reference: 12482098 - Neuroimage. 2002 Sep;17(1):461-8
– reference: 100583 - J Neurophysiol. 1978 Sep;41(5):1107-19
– reference: 18971459 - J Neurosci. 2008 Oct 29;28(44):11165-73
– reference: 8834308 - Somatosens Mot Res. 1995;12(3-4):359-78
– reference: 19126799 - Cereb Cortex. 2009 Sep;19(9):2106-13
– reference: 14715143 - Neuron. 2004 Jan 8;41(1):165-73
– reference: 1196355 - Nature. 1975 Nov 27;258(5533):321-4
– reference: 7272711 - Brain. 1981 Sep;104(3):465-91
– reference: 8227514 - J Comp Neurol. 1993 Sep 8;335(2):200-13
– reference: 22114261 - J Neurosci. 2011 Nov 23;31(47):16907-15
– reference: 21368000 - J Neurophysiol. 2011 May;105(5):2512-21
– reference: 4626361 - Exp Brain Res. 1972;14(3):257-73
SSID ssj0007502
Score 2.2827082
Snippet Motor learning is reflected in changes to the brain's functional organization as a result of experience. We show here that these changes are not limited to...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2077
SubjectTerms Adaptation, Physiological
Adolescent
Adult
Arm
Evoked Potentials, Somatosensory
Humans
Learning
Male
Motor Skills
Neuronal Plasticity
Reaction Time
Robotics
Somatosensory Cortex - physiology
Title Sensorimotor adaptation changes the neural coding of somatosensory stimuli
URI https://www.ncbi.nlm.nih.gov/pubmed/23343897
https://www.proquest.com/docview/1328228521
Volume 109
WOSCitedRecordID wos000317574700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPXjxVR_1RQTxFrrdZDfZkxSxiGgpqNBbyRMU3NRuFfrvnWS39CQIXvaWsCSTfN9kZr5B6MomNNPcWZLYwhEWjqJQihGXB-0YqpRgsVD4kQ-HYjwuRs2DW9WkVS7vxHhRG6_DG3kXvCbAMgFoczP9JKFrVIiuNi001lGLApUJVs3HK7VwQMMY7QSOQQC2xVJjM0u772UQze6FUpXQjPI3dhlRZrDz3__bRdsNv8T92iD20Jot91G7X4Jv_bHA1zhmfMan9DZ6eAYfFuaA3fIzLI2c1nF5XFcDVxjIIQ6ClzCh9gHksHe48kByfRWHLjDcECHB6gC9Du5ebu9J01uBaCr4nMjE5QpcH-OYZDnrFcxKbmgiFU0EM3kPdjYrnCqsVIw6R5VwVBqAc2ZTk-j0EG2UvrTHCCcqMwJ4i7FBOEY4oYFjac614bzIJe-gy-WKTcB2Q0BCltZ_VZPVmnXQUb3sk2ktsjFJKQ2N2fnJH0afoq00dqkICTVnqOXg5NpztKm_52_V7CIaBXyHo6cf9grC8Q
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensorimotor+adaptation+changes+the+neural+coding+of+somatosensory+stimuli&rft.jtitle=Journal+of+neurophysiology&rft.au=Nasir%2C+Sazzad+M&rft.au=Darainy%2C+Mohammad&rft.au=Ostry%2C+David+J&rft.date=2013-04-01&rft.issn=1522-1598&rft.eissn=1522-1598&rft.volume=109&rft.issue=8&rft.spage=2077&rft_id=info:doi/10.1152%2Fjn.00719.2012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-1598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-1598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-1598&client=summon