Constant gradient elastography with optimal control RF pulses

[Display omitted] •Specifically designed radio-frequency pulses are used to perform motion encoding.•Magnetic Resonance Elastography is performed with only a constant gradient.•An analytic development is provided to detail the motion encoding mechanism.•Superior phase-to-noise ratio is obtained comp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance (1997) Vol. 294; pp. 153 - 161
Main Authors: Van Reeth, Eric, Lefebvre, Pauline M., Ratiney, Hélène, Lambert, Simon A., Tesch, Michael, Brusseau, Elisabeth, Grenier, Denis, Beuf, Olivier, Glaser, Steffen J., Sugny, Dominique, Tse-Ve-Koon, Kevin
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.09.2018
Elsevier
Subjects:
ISSN:1090-7807, 1096-0856, 1096-0856
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Specifically designed radio-frequency pulses are used to perform motion encoding.•Magnetic Resonance Elastography is performed with only a constant gradient.•An analytic development is provided to detail the motion encoding mechanism.•Superior phase-to-noise ratio is obtained compared to standard encoding methods. This article presents a new motion encoding strategy to perform magnetic resonance elastography (MRE). Instead of using standard motion encoding gradients, a tailored RF pulse is designed to simultaneously perform selective excitation and motion encoding in presence of a constant gradient. The RF pulse is designed with a numerical optimal control algorithm, in order to obtain a magnetization phase distribution that depends on the displacement characteristics inside each voxel. As a consequence, no post-excitation encoding gradients are required. This offers numerous advantages, such as reducing eddy current artifacts, and relaxing the constraint on the gradients maximum switch rate. It also allows to perform MRE with ultra-short TE acquisition schemes, which limits T2 decay and optimizes signal-to-noise ratio. The pulse design strategy is developed and analytically analyzed to clarify the encoding mechanism. Finally, simulations, phantom and ex vivo experiments show that phase-to-noise ratios are improved when compared to standard MRE encoding strategies.
AbstractList [Display omitted] •Specifically designed radio-frequency pulses are used to perform motion encoding.•Magnetic Resonance Elastography is performed with only a constant gradient.•An analytic development is provided to detail the motion encoding mechanism.•Superior phase-to-noise ratio is obtained compared to standard encoding methods. This article presents a new motion encoding strategy to perform magnetic resonance elastography (MRE). Instead of using standard motion encoding gradients, a tailored RF pulse is designed to simultaneously perform selective excitation and motion encoding in presence of a constant gradient. The RF pulse is designed with a numerical optimal control algorithm, in order to obtain a magnetization phase distribution that depends on the displacement characteristics inside each voxel. As a consequence, no post-excitation encoding gradients are required. This offers numerous advantages, such as reducing eddy current artifacts, and relaxing the constraint on the gradients maximum switch rate. It also allows to perform MRE with ultra-short TE acquisition schemes, which limits T2 decay and optimizes signal-to-noise ratio. The pulse design strategy is developed and analytically analyzed to clarify the encoding mechanism. Finally, simulations, phantom and ex vivo experiments show that phase-to-noise ratios are improved when compared to standard MRE encoding strategies.
This article presents a new motion encoding strategy to perform magnetic resonance elastography (MRE). Instead of using standard motion encoding gradients, a tailored RF pulse is designed to simultaneously perform selective excitation and motion encoding in presence of a constant gradient. The RF pulse is designed with a numerical optimal control algorithm, in order to obtain a magnetization phase distribution that depends on the displacement characteristics inside each voxel. As a consequence, no post-excitation encoding gradients are required. This offers numerous advantages, such as reducing eddy current artifacts, and relaxing the constraint on the gradients maximum switch rate. It also allows to perform MRE with ultra-short TE acquisition schemes, which limits T decay and optimizes signal-to-noise ratio. The pulse design strategy is developed and analytically analyzed to clarify the encoding mechanism. Finally, simulations, phantom and ex vivo experiments show that phase-to-noise ratios are improved when compared to standard MRE encoding strategies.
This article presents a new motion encoding strategy to perform magnetic resonance elastography (MRE). Instead of using standard motion encoding gradients, a tailored RF pulse is designed to simultaneously perform selective excitation and motion encoding in presence of a constant gradient. The RF pulse is designed with a numerical optimal control algorithm, in order to obtain a magnetization phase distribution that depends on the displacement characteristics inside each voxel. As a consequence, no post-excitation encoding gradients are required. This offers numerous advantages, such as reducing eddy current artifacts, and relaxing the constraint on the gradients maximum switch rate. It also allows to perform MRE with ultra-short TE acquisition schemes, which limits T2 decay and optimizes signal-to-noise ratio. The pulse design strategy is developed and analytically analyzed to clarify the encoding mechanism. Finally, simulations, phantom and ex vivo experiments show that phase-to-noise ratios are improved when compared to standard MRE encoding strategies.This article presents a new motion encoding strategy to perform magnetic resonance elastography (MRE). Instead of using standard motion encoding gradients, a tailored RF pulse is designed to simultaneously perform selective excitation and motion encoding in presence of a constant gradient. The RF pulse is designed with a numerical optimal control algorithm, in order to obtain a magnetization phase distribution that depends on the displacement characteristics inside each voxel. As a consequence, no post-excitation encoding gradients are required. This offers numerous advantages, such as reducing eddy current artifacts, and relaxing the constraint on the gradients maximum switch rate. It also allows to perform MRE with ultra-short TE acquisition schemes, which limits T2 decay and optimizes signal-to-noise ratio. The pulse design strategy is developed and analytically analyzed to clarify the encoding mechanism. Finally, simulations, phantom and ex vivo experiments show that phase-to-noise ratios are improved when compared to standard MRE encoding strategies.
Author Van Reeth, Eric
Lefebvre, Pauline M.
Beuf, Olivier
Ratiney, Hélène
Grenier, Denis
Lambert, Simon A.
Sugny, Dominique
Tesch, Michael
Brusseau, Elisabeth
Glaser, Steffen J.
Tse-Ve-Koon, Kevin
Author_xml – sequence: 1
  givenname: Eric
  surname: Van Reeth
  fullname: Van Reeth, Eric
  email: eric.van-reeth@creatis.insa-lyon.fr
  organization: CREATIS, CNRS UMR5220, INSERM U1206, Université Lyon 1, INSA Lyon, Université Jean Monnet Saint-Etienne, France
– sequence: 2
  givenname: Pauline M.
  surname: Lefebvre
  fullname: Lefebvre, Pauline M.
  organization: CREATIS, CNRS UMR5220, INSERM U1206, Université Lyon 1, INSA Lyon, Université Jean Monnet Saint-Etienne, France
– sequence: 3
  givenname: Hélène
  surname: Ratiney
  fullname: Ratiney, Hélène
  organization: CREATIS, CNRS UMR5220, INSERM U1206, Université Lyon 1, INSA Lyon, Université Jean Monnet Saint-Etienne, France
– sequence: 4
  givenname: Simon A.
  surname: Lambert
  fullname: Lambert, Simon A.
  organization: CREATIS, CNRS UMR5220, INSERM U1206, Université Lyon 1, INSA Lyon, Université Jean Monnet Saint-Etienne, France
– sequence: 5
  givenname: Michael
  surname: Tesch
  fullname: Tesch, Michael
  organization: Department of Chemistry, Technische Universität München, Germany
– sequence: 6
  givenname: Elisabeth
  surname: Brusseau
  fullname: Brusseau, Elisabeth
  organization: CREATIS, CNRS UMR5220, INSERM U1206, Université Lyon 1, INSA Lyon, Université Jean Monnet Saint-Etienne, France
– sequence: 7
  givenname: Denis
  surname: Grenier
  fullname: Grenier, Denis
  organization: CREATIS, CNRS UMR5220, INSERM U1206, Université Lyon 1, INSA Lyon, Université Jean Monnet Saint-Etienne, France
– sequence: 8
  givenname: Olivier
  surname: Beuf
  fullname: Beuf, Olivier
  organization: CREATIS, CNRS UMR5220, INSERM U1206, Université Lyon 1, INSA Lyon, Université Jean Monnet Saint-Etienne, France
– sequence: 9
  givenname: Steffen J.
  surname: Glaser
  fullname: Glaser, Steffen J.
  organization: Department of Chemistry, Technische Universität München, Germany
– sequence: 10
  givenname: Dominique
  surname: Sugny
  fullname: Sugny, Dominique
  organization: ICB, CNRS UMR6303, Université de Bourgogne, France
– sequence: 11
  givenname: Kevin
  surname: Tse-Ve-Koon
  fullname: Tse-Ve-Koon, Kevin
  organization: CREATIS, CNRS UMR5220, INSERM U1206, Université Lyon 1, INSA Lyon, Université Jean Monnet Saint-Etienne, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30053754$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01848643$$DView record in HAL
BookMark eNp9kUtLxDAUhYMovn-AG-lSF603TdOkiIth8AUDgug6pEnqZOg0Ncko_nszjrpw4Sonl-9cLuccoO3BDQahEwwFBlxfLIrF0hclYF4AKwCTLbSPoalz4LTe_tKQMw5sDx2EsADAmDLYRXsEgBJGq310NXVDiHKI2YuX2pokTC9DdOk7zj-ydxvnmRujXco-U26I3vXZ4002rvpgwhHa6WQSx9_vIXq-uX6a3uWzh9v76WSWK8JZzJumqljVNTVrMKcdbdsSd4wCYUpzQ1tN2w4M4VACKNlq1vKGNIZrVXNMmCaH6Hyzdy57Mfp0jP8QTlpxN5mJ9SxFUPG6Im84sWcbdvTudWVCFEsblOl7ORi3CqIExmkDJSkTevqNrtql0b-bf-JJAN4AyrsQvOl-EQxiXYFYiFSBWFcggKUzSPKwPx5lo4x2nZ20_b_Oy43TpCjfrPEiqNSIMtp6o6LQzv7j_gSG756H
CitedBy_id crossref_primary_10_1002_nbm_4174
crossref_primary_10_1038_s41598_022_05262_3
crossref_primary_10_1002_nbm_4442
crossref_primary_10_1002_nbm_5210
Cites_doi 10.1126/science.7569924
10.1186/s40736-017-0034-3
10.1016/S1090-7807(03)00153-8
10.1002/mrm.26084
10.1016/j.jmr.2017.05.008
10.1016/j.jmr.2008.02.021
10.1148/radiol.2303021331
10.1007/s00723-014-0629-0
10.1002/mrm.26086
10.1002/mrm.21485
10.1109/TMI.2009.2020064
10.1002/jmri.23731
10.1016/j.jmr.2012.08.003
10.1038/srep00589
10.1002/nbm.2958
10.1063/1.4739755
10.1109/TAC.2012.2195859
10.1002/nbm.3766
10.1002/mrm.21152
10.1016/j.jmr.2011.07.023
10.1002/mrm.25579
10.1016/j.jmr.2004.12.005
10.1088/0031-9155/61/24/R401
10.1016/j.jmr.2012.09.013
10.1016/j.jmr.2013.01.005
10.1109/TMI.1986.4307754
10.1016/j.jmr.2012.01.005
10.3934/mcrf.2013.3.375
10.1109/EMBC.2016.7590924
10.1016/j.jmr.2017.04.012
10.1002/mrm.26101
10.1142/S0218202513500504
10.1016/j.jmr.2012.02.007
10.1007/s10440-014-9947-3
10.1016/j.jmr.2015.11.013
10.1016/j.jmr.2004.11.004
10.1002/mrm.22913
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
1XC
DOI 10.1016/j.jmr.2018.07.013
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
Computer Science
EISSN 1096-0856
EndPage 161
ExternalDocumentID oai:HAL:hal-01848643v1
30053754
10_1016_j_jmr_2018_07_013
S1090780718301903
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABUDA
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
D-I
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSK
SSQ
SSU
SSZ
T5K
UPT
UQL
XPP
YQT
ZA5
ZCG
ZGI
ZXP
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
NPM
7X8
1XC
ID FETCH-LOGICAL-c387t-994474f9679185f5bb21f75037cd8e5bd5bf0e380200cabd7b8939e8dc68137d3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442065200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1090-7807
1096-0856
IngestDate Tue Oct 14 20:23:39 EDT 2025
Sun Nov 09 12:50:10 EST 2025
Mon Jul 21 06:01:39 EDT 2025
Tue Nov 18 22:42:51 EST 2025
Sat Nov 29 07:09:39 EST 2025
Fri Feb 23 02:49:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bloch equations
Elastography
Optimal control
Pulse design
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-994474f9679185f5bb21f75037cd8e5bd5bf0e380200cabd7b8939e8dc68137d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4516-4565
0000-0002-0662-2172
0000-0002-0534-3040
0000-0001-7778-7479
0000-0001-9780-8337
0000-0003-4099-3177
0000-0002-8975-5332
0000-0002-1963-333X
PMID 30053754
PQID 2078590232
PQPubID 23479
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_01848643v1
proquest_miscellaneous_2078590232
pubmed_primary_30053754
crossref_primary_10_1016_j_jmr_2018_07_013
crossref_citationtrail_10_1016_j_jmr_2018_07_013
elsevier_sciencedirect_doi_10_1016_j_jmr_2018_07_013
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of magnetic resonance (1997)
PublicationTitleAlternate J Magn Reson
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Liu, Matson (b0055) 2011; 66
Massire, Cloos, Vignaud, Bihan, Amadon, Boulant (b0105) 2013; 230
Assländer, Glaser, Hennig (b0170) 2016; 75
Lefebvre, Van Reeth, Ratiney, Beuf, Brusseau, Lambert, Glaser, Sugny, Grenier, Tse Ve Koon (b0175) 2017; 281
Conolly, Nishimura, Macovski (b0045) 1986; 5
Venkatesh, Yin, Ehman (b0010) 2013; 37
Hiscox, Johnson, Barnhill, McGarry, Huston 3rd, van Beek, Starr, Roberts (b0015) 2016; 61
Lapert, Zhang, Janich, Glaser, Sugny (b0125) 2012; 2
Sbrizzi, Hoogduin, Hajnal, van den Berg, Luijten, Malik (b0110) 2017; 77
Rump, Klatt, Braun, Warmuth, Sack (b0025) 2007; 57
De Bazelaire, Duhamel, Rofsky, Alsop (b0030) 2004; 230
Assémat, Lapert, Sugny, Glaser (b0130) 2013; 3
Khaneja, Reiss, Kehlet, Schulte-Herbrüggen, Glaser (b0185) 2005; 172
Leporq, Lambert, Ronot, Vilgrain, Van Beers (b0035) 2017; 30
Aigner, Clason, Rund, Stollberger (b0090) 2016; 263
Arani, Glaser, Arunachalam, Rossman, Lake, Trzasko, Manduca, McGee, Ehman, Araoz (b0020) 2017; 77
Bonnard, Cots (b0140) 2014; 24
Chang, Wei, Glaser, Yang (b0145) 2015; 46
Gershenzon, Skinner, Brutscher, Khaneja, Nimbalkar, Luy, Glaser (b0160) 2008; 192
Skinner, Gershenzon, Nimbalkar, Bermel, Luy, Glaser (b0080) 2012; 216
Van Reeth, Ratiney, Lapert, Glaser, Sugny (b0155) 2017; 9
Vinding, Maximov, Tošner, Nielsen (b0085) 2012; 137
Muthupillai, Lomas, Rossman, Greenleaf, Manduca, Ehman (b0005) 1995; 269
de Fouquieres, Schirmer, Glaser, Kuprov (b0190) 2011; 212
Bonnard, Claeys, Cots, Martinon (b0135) 2014; 135
P. Lefebvre, K. Tse Ve Koon, E. Brusseau, S. Nicolle, J.-F. Pallierne, S. Lambert, D. Grenier, Comparison of viscoelastic property characterization of plastisol phantoms with magnetic resonance elastography and high-frequency rheometry, in: 38th IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) 2016, Orlando, United States, 2016.
Garteiser, Sahebjavaher, Ter Beek, Salcudean, Vilgrain, Van Beers, Sinkus (b0040) 2013; 26
Van Reeth, Ratiney, Tesch, Grenier, Beuf, Glaser, Sugny (b0150) 2017; 279
Kobzar, Ehni, Skinner, Glaser, Luy (b0070) 2012; 225
Kobzar, Luy, Khaneja, Glaser (b0165) 2005; 173
Grissom, Xu, Kerr, Fessler, Noll (b0100) 2009; 28
Bonnard, Cots, Glaser, Lapert, Sugny, Zhang (b0120) 2012; 57
Skinner, Reiss, Luy, Khaneja, Glaser (b0050) 2003; 163
Janich, McLean, Noeske, Glaser, Schulte (b0065) 2012; 223
Xu, King, Zhu, McKinnon, Liang (b0095) 2008; 59
Vinding, Guérin, Vosegaard, Nielsen (b0115) 2017; 77
Janich, Schulte, Schwaiger, Glaser (b0060) 2011; 213
Skinner, Gershenzon, Nimbalkar, Glaser (b0075) 2012; 217
Pontryagin (b0180) 1987
Rump (10.1016/j.jmr.2018.07.013_b0025) 2007; 57
Bonnard (10.1016/j.jmr.2018.07.013_b0135) 2014; 135
10.1016/j.jmr.2018.07.013_b0195
Aigner (10.1016/j.jmr.2018.07.013_b0090) 2016; 263
Hiscox (10.1016/j.jmr.2018.07.013_b0015) 2016; 61
De Bazelaire (10.1016/j.jmr.2018.07.013_b0030) 2004; 230
Vinding (10.1016/j.jmr.2018.07.013_b0085) 2012; 137
Venkatesh (10.1016/j.jmr.2018.07.013_b0010) 2013; 37
Assémat (10.1016/j.jmr.2018.07.013_b0130) 2013; 3
Pontryagin (10.1016/j.jmr.2018.07.013_b0180) 1987
Leporq (10.1016/j.jmr.2018.07.013_b0035) 2017; 30
Kobzar (10.1016/j.jmr.2018.07.013_b0070) 2012; 225
Bonnard (10.1016/j.jmr.2018.07.013_b0140) 2014; 24
Xu (10.1016/j.jmr.2018.07.013_b0095) 2008; 59
Kobzar (10.1016/j.jmr.2018.07.013_b0165) 2005; 173
Lapert (10.1016/j.jmr.2018.07.013_b0125) 2012; 2
Skinner (10.1016/j.jmr.2018.07.013_b0050) 2003; 163
Muthupillai (10.1016/j.jmr.2018.07.013_b0005) 1995; 269
Skinner (10.1016/j.jmr.2018.07.013_b0080) 2012; 216
Vinding (10.1016/j.jmr.2018.07.013_b0115) 2017; 77
Khaneja (10.1016/j.jmr.2018.07.013_b0185) 2005; 172
Sbrizzi (10.1016/j.jmr.2018.07.013_b0110) 2017; 77
Liu (10.1016/j.jmr.2018.07.013_b0055) 2011; 66
Van Reeth (10.1016/j.jmr.2018.07.013_b0155) 2017; 9
Conolly (10.1016/j.jmr.2018.07.013_b0045) 1986; 5
Chang (10.1016/j.jmr.2018.07.013_b0145) 2015; 46
Van Reeth (10.1016/j.jmr.2018.07.013_b0150) 2017; 279
Skinner (10.1016/j.jmr.2018.07.013_b0075) 2012; 217
Grissom (10.1016/j.jmr.2018.07.013_b0100) 2009; 28
Bonnard (10.1016/j.jmr.2018.07.013_b0120) 2012; 57
Massire (10.1016/j.jmr.2018.07.013_b0105) 2013; 230
Janich (10.1016/j.jmr.2018.07.013_b0060) 2011; 213
de Fouquieres (10.1016/j.jmr.2018.07.013_b0190) 2011; 212
Assländer (10.1016/j.jmr.2018.07.013_b0170) 2016; 75
Garteiser (10.1016/j.jmr.2018.07.013_b0040) 2013; 26
Arani (10.1016/j.jmr.2018.07.013_b0020) 2017; 77
Lefebvre (10.1016/j.jmr.2018.07.013_b0175) 2017; 281
Gershenzon (10.1016/j.jmr.2018.07.013_b0160) 2008; 192
Janich (10.1016/j.jmr.2018.07.013_b0065) 2012; 223
References_xml – volume: 57
  start-page: 1957
  year: 2012
  end-page: 1969
  ident: b0120
  article-title: Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance
  publication-title: IEEE Trans. Autom. Control
– volume: 135
  start-page: 5
  year: 2014
  end-page: 45
  ident: b0135
  article-title: Geometric and numerical methods in the contrast imaging problem in nuclear magnetic resonance
  publication-title: Acta Appl. Mathe.
– volume: 5
  start-page: 106
  year: 1986
  end-page: 115
  ident: b0045
  article-title: Optimal control solutions to the magnetic resonance selective excitation problem
  publication-title: IEEE Trans. Med. Imag.
– volume: 2
  year: 2012
  ident: b0125
  article-title: Exploring the physical limits of saturation contrast in magnetic resonance imaging
  publication-title: Sci. Rep.
– volume: 24
  start-page: 187
  year: 2014
  end-page: 212
  ident: b0140
  article-title: Geometric numerical methods and results in the contrast imaging problem in nuclear magnetic resonance
  publication-title: Mathe. Models Methods Appl. Sci.
– volume: 217
  start-page: 53
  year: 2012
  end-page: 60
  ident: b0075
  article-title: Optimal control design of band-selective excitation pulses that accommodate relaxation and RF inhomogeneity
  publication-title: J. Magn. Reson.
– volume: 281
  start-page: 82
  year: 2017
  end-page: 93
  ident: b0175
  article-title: Active control of the spatial MRI phase distribution with optimal control theory
  publication-title: J. Magn. Reson.
– volume: 57
  start-page: 388
  year: 2007
  end-page: 395
  ident: b0025
  article-title: Fractional encoding of harmonic motions in mr elastography
  publication-title: Magn. Reson. Med.
– volume: 66
  start-page: 1254
  year: 2011
  end-page: 1266
  ident: b0055
  article-title: Radiofrequency pulse designs for three-dimensional MRI providing uniform tipping in inhomogeneous B1 fields
  publication-title: Magn. Reson. Med.
– volume: 26
  start-page: 1326
  year: 2013
  end-page: 1335
  ident: b0040
  article-title: Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence
  publication-title: NMR Biomed.
– volume: 216
  start-page: 78
  year: 2012
  end-page: 87
  ident: b0080
  article-title: New strategies for designing robust universal rotation pulses: application to broadband refocusing at low power
  publication-title: J. Magn. Reson.
– year: 1987
  ident: b0180
  article-title: Mathematical Theory of Optimal Processes
– volume: 279
  start-page: 39
  year: 2017
  end-page: 50
  ident: b0150
  article-title: Optimal control design of preparation pulses for contrast optimization in MRI
  publication-title: J. Magn. Reson.
– volume: 9
  start-page: 9
  year: 2017
  ident: b0155
  article-title: Optimal control theory for applications in magnetic resonance imaging
  publication-title: Pacific J. Mathe. Ind.
– volume: 59
  start-page: 547
  year: 2008
  end-page: 560
  ident: b0095
  article-title: Designing multichannel, multidimensional, arbitrary flip angle RF pulses using an optimal control approach
  publication-title: Magn. Reson. Med.
– volume: 172
  start-page: 296
  year: 2005
  end-page: 305
  ident: b0185
  article-title: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms
  publication-title: J. Magn. Reson.
– volume: 61
  start-page: R401
  year: 2016
  ident: b0015
  article-title: Magnetic resonance elastography (mre) of the human brain: technique, findings and clinical applications
  publication-title: Phys. Med. Biol.
– volume: 137
  year: 2012
  ident: b0085
  article-title: Fast numerical design of spatial-selective RF pulses in MRI using Krotov and quasi-Newton based optimal control methods
  publication-title: J. Chem. Phys.
– volume: 269
  start-page: 1854
  year: 1995
  ident: b0005
  article-title: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves
  publication-title: Science
– volume: 28
  start-page: 1548
  year: 2009
  end-page: 1559
  ident: b0100
  article-title: Fast large-tip-angle multidimensional and parallel RF pulse design in MRI
  publication-title: IEEE Trans. Med. Imag.
– reference: P. Lefebvre, K. Tse Ve Koon, E. Brusseau, S. Nicolle, J.-F. Pallierne, S. Lambert, D. Grenier, Comparison of viscoelastic property characterization of plastisol phantoms with magnetic resonance elastography and high-frequency rheometry, in: 38th IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) 2016, Orlando, United States, 2016.
– volume: 77
  start-page: 361
  year: 2017
  end-page: 373
  ident: b0110
  article-title: Optimal control design of turbo spin-echo sequences with applications to parallel-transmit systems
  publication-title: Magn. Reson. Med.
– volume: 230
  start-page: 652
  year: 2004
  end-page: 659
  ident: b0030
  article-title: Mr imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 t: preliminary results
  publication-title: Radiology
– volume: 213
  start-page: 126
  year: 2011
  end-page: 135
  ident: b0060
  article-title: Robust slice-selective broadband refocusing pulses
  publication-title: J. Magn. Reson.
– volume: 192
  start-page: 235
  year: 2008
  end-page: 243
  ident: b0160
  article-title: Linear phase slope in pulse design: Application to coherence transfer
  publication-title: J. Magn. Reson.
– volume: 77
  start-page: 374
  year: 2017
  end-page: 384
  ident: b0115
  article-title: Local SAR, global SAR, and power-constrained large-flip-angle pulses with optimal control and virtual observation points
  publication-title: Magn. Reson. Med.
– volume: 77
  start-page: 351
  year: 2017
  end-page: 360
  ident: b0020
  article-title: In vivo, high-frequency three-dimensional cardiac mr elastography: Feasibility in normal volunteers
  publication-title: Magn. Reson. Med.
– volume: 3
  start-page: 375
  year: 2013
  end-page: 396
  ident: b0130
  article-title: On the application of geometric optimal control theory to nuclear magnetic resonance
  publication-title: Mathe. Control Related Fields
– volume: 46
  start-page: 203
  year: 2015
  end-page: 217
  ident: b0145
  article-title: Optimized phase-sensitive inversion recovery for MRI contrast manipulation
  publication-title: Appl. Magn. Reson.
– volume: 212
  start-page: 412
  year: 2011
  end-page: 417
  ident: b0190
  article-title: Second order gradient ascent pulse engineering
  publication-title: J. Magn. Reson.
– volume: 263
  start-page: 33
  year: 2016
  end-page: 44
  ident: b0090
  article-title: Efficient high-resolution RF pulse design applied to simultaneous multi-slice excitation
  publication-title: J. Magn. Reson.
– volume: 30
  year: 2017
  ident: b0035
  article-title: Simultaneous mr quantification of hepatic fat content, fatty acid composition, transverse relaxation time and magnetic susceptibility for the diagnosis of non-alcoholic steatohepatitis
  publication-title: NMR Biomed.
– volume: 163
  start-page: 8
  year: 2003
  end-page: 15
  ident: b0050
  article-title: Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR
  publication-title: J. Magn. Reson.
– volume: 173
  start-page: 229
  year: 2005
  end-page: 235
  ident: b0165
  article-title: Pattern pulses: design of arbitrary excitation profiles as a function of pulse amplitude and offset
  publication-title: J. Magn. Reson.
– volume: 225
  start-page: 142
  year: 2012
  end-page: 160
  ident: b0070
  article-title: Exploring the limits of broadband
  publication-title: J. Magn. Reson.
– volume: 223
  start-page: 129
  year: 2012
  end-page: 137
  ident: b0065
  article-title: Slice-selective broadband refocusing pulses for the robust generation of crushed spin-echoes
  publication-title: J. Magn. Reson.
– volume: 230
  start-page: 76
  year: 2013
  end-page: 83
  ident: b0105
  article-title: Design of non-selective refocusing pulses with phase-free rotation axis by gradient ascent pulse engineering algorithm in parallel transmission at 7 T
  publication-title: J. Magn. Reson.
– volume: 75
  start-page: 150
  year: 2016
  end-page: 160
  ident: b0170
  article-title: Spin echoes in the regime of weak dephasing
  publication-title: Magn. Reson. Med.
– volume: 37
  start-page: 544
  year: 2013
  end-page: 555
  ident: b0010
  article-title: Magnetic resonance elastography of liver: Technique, analysis, and clinical applications
  publication-title: J. Magn. Reson. Imaging
– year: 1987
  ident: 10.1016/j.jmr.2018.07.013_b0180
– volume: 269
  start-page: 1854
  year: 1995
  ident: 10.1016/j.jmr.2018.07.013_b0005
  article-title: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves
  publication-title: Science
  doi: 10.1126/science.7569924
– volume: 9
  start-page: 9
  year: 2017
  ident: 10.1016/j.jmr.2018.07.013_b0155
  article-title: Optimal control theory for applications in magnetic resonance imaging
  publication-title: Pacific J. Mathe. Ind.
  doi: 10.1186/s40736-017-0034-3
– volume: 163
  start-page: 8
  year: 2003
  ident: 10.1016/j.jmr.2018.07.013_b0050
  article-title: Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR
  publication-title: J. Magn. Reson.
  doi: 10.1016/S1090-7807(03)00153-8
– volume: 77
  start-page: 361
  year: 2017
  ident: 10.1016/j.jmr.2018.07.013_b0110
  article-title: Optimal control design of turbo spin-echo sequences with applications to parallel-transmit systems
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26084
– volume: 281
  start-page: 82
  year: 2017
  ident: 10.1016/j.jmr.2018.07.013_b0175
  article-title: Active control of the spatial MRI phase distribution with optimal control theory
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2017.05.008
– volume: 192
  start-page: 235
  year: 2008
  ident: 10.1016/j.jmr.2018.07.013_b0160
  article-title: Linear phase slope in pulse design: Application to coherence transfer
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2008.02.021
– volume: 230
  start-page: 652
  year: 2004
  ident: 10.1016/j.jmr.2018.07.013_b0030
  article-title: Mr imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 t: preliminary results
  publication-title: Radiology
  doi: 10.1148/radiol.2303021331
– volume: 46
  start-page: 203
  year: 2015
  ident: 10.1016/j.jmr.2018.07.013_b0145
  article-title: Optimized phase-sensitive inversion recovery for MRI contrast manipulation
  publication-title: Appl. Magn. Reson.
  doi: 10.1007/s00723-014-0629-0
– volume: 77
  start-page: 374
  year: 2017
  ident: 10.1016/j.jmr.2018.07.013_b0115
  article-title: Local SAR, global SAR, and power-constrained large-flip-angle pulses with optimal control and virtual observation points
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26086
– volume: 59
  start-page: 547
  year: 2008
  ident: 10.1016/j.jmr.2018.07.013_b0095
  article-title: Designing multichannel, multidimensional, arbitrary flip angle RF pulses using an optimal control approach
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21485
– volume: 28
  start-page: 1548
  year: 2009
  ident: 10.1016/j.jmr.2018.07.013_b0100
  article-title: Fast large-tip-angle multidimensional and parallel RF pulse design in MRI
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2009.2020064
– volume: 37
  start-page: 544
  year: 2013
  ident: 10.1016/j.jmr.2018.07.013_b0010
  article-title: Magnetic resonance elastography of liver: Technique, analysis, and clinical applications
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23731
– volume: 223
  start-page: 129
  year: 2012
  ident: 10.1016/j.jmr.2018.07.013_b0065
  article-title: Slice-selective broadband refocusing pulses for the robust generation of crushed spin-echoes
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2012.08.003
– volume: 2
  year: 2012
  ident: 10.1016/j.jmr.2018.07.013_b0125
  article-title: Exploring the physical limits of saturation contrast in magnetic resonance imaging
  publication-title: Sci. Rep.
  doi: 10.1038/srep00589
– volume: 26
  start-page: 1326
  year: 2013
  ident: 10.1016/j.jmr.2018.07.013_b0040
  article-title: Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.2958
– volume: 137
  year: 2012
  ident: 10.1016/j.jmr.2018.07.013_b0085
  article-title: Fast numerical design of spatial-selective RF pulses in MRI using Krotov and quasi-Newton based optimal control methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4739755
– volume: 57
  start-page: 1957
  year: 2012
  ident: 10.1016/j.jmr.2018.07.013_b0120
  article-title: Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2012.2195859
– volume: 30
  year: 2017
  ident: 10.1016/j.jmr.2018.07.013_b0035
  article-title: Simultaneous mr quantification of hepatic fat content, fatty acid composition, transverse relaxation time and magnetic susceptibility for the diagnosis of non-alcoholic steatohepatitis
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3766
– volume: 57
  start-page: 388
  year: 2007
  ident: 10.1016/j.jmr.2018.07.013_b0025
  article-title: Fractional encoding of harmonic motions in mr elastography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21152
– volume: 212
  start-page: 412
  year: 2011
  ident: 10.1016/j.jmr.2018.07.013_b0190
  article-title: Second order gradient ascent pulse engineering
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2011.07.023
– volume: 75
  start-page: 150
  year: 2016
  ident: 10.1016/j.jmr.2018.07.013_b0170
  article-title: Spin echoes in the regime of weak dephasing
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25579
– volume: 173
  start-page: 229
  year: 2005
  ident: 10.1016/j.jmr.2018.07.013_b0165
  article-title: Pattern pulses: design of arbitrary excitation profiles as a function of pulse amplitude and offset
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2004.12.005
– volume: 61
  start-page: R401
  year: 2016
  ident: 10.1016/j.jmr.2018.07.013_b0015
  article-title: Magnetic resonance elastography (mre) of the human brain: technique, findings and clinical applications
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/24/R401
– volume: 225
  start-page: 142
  year: 2012
  ident: 10.1016/j.jmr.2018.07.013_b0070
  article-title: Exploring the limits of broadband 90° and 180° universal rotation pulses
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2012.09.013
– volume: 230
  start-page: 76
  year: 2013
  ident: 10.1016/j.jmr.2018.07.013_b0105
  article-title: Design of non-selective refocusing pulses with phase-free rotation axis by gradient ascent pulse engineering algorithm in parallel transmission at 7 T
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2013.01.005
– volume: 5
  start-page: 106
  year: 1986
  ident: 10.1016/j.jmr.2018.07.013_b0045
  article-title: Optimal control solutions to the magnetic resonance selective excitation problem
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.1986.4307754
– volume: 213
  start-page: 126
  year: 2011
  ident: 10.1016/j.jmr.2018.07.013_b0060
  article-title: Robust slice-selective broadband refocusing pulses
  publication-title: J. Magn. Reson.
– volume: 216
  start-page: 78
  year: 2012
  ident: 10.1016/j.jmr.2018.07.013_b0080
  article-title: New strategies for designing robust universal rotation pulses: application to broadband refocusing at low power
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2012.01.005
– volume: 3
  start-page: 375
  year: 2013
  ident: 10.1016/j.jmr.2018.07.013_b0130
  article-title: On the application of geometric optimal control theory to nuclear magnetic resonance
  publication-title: Mathe. Control Related Fields
  doi: 10.3934/mcrf.2013.3.375
– ident: 10.1016/j.jmr.2018.07.013_b0195
  doi: 10.1109/EMBC.2016.7590924
– volume: 279
  start-page: 39
  year: 2017
  ident: 10.1016/j.jmr.2018.07.013_b0150
  article-title: Optimal control design of preparation pulses for contrast optimization in MRI
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2017.04.012
– volume: 77
  start-page: 351
  year: 2017
  ident: 10.1016/j.jmr.2018.07.013_b0020
  article-title: In vivo, high-frequency three-dimensional cardiac mr elastography: Feasibility in normal volunteers
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26101
– volume: 24
  start-page: 187
  year: 2014
  ident: 10.1016/j.jmr.2018.07.013_b0140
  article-title: Geometric numerical methods and results in the contrast imaging problem in nuclear magnetic resonance
  publication-title: Mathe. Models Methods Appl. Sci.
  doi: 10.1142/S0218202513500504
– volume: 217
  start-page: 53
  year: 2012
  ident: 10.1016/j.jmr.2018.07.013_b0075
  article-title: Optimal control design of band-selective excitation pulses that accommodate relaxation and RF inhomogeneity
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2012.02.007
– volume: 135
  start-page: 5
  year: 2014
  ident: 10.1016/j.jmr.2018.07.013_b0135
  article-title: Geometric and numerical methods in the contrast imaging problem in nuclear magnetic resonance
  publication-title: Acta Appl. Mathe.
  doi: 10.1007/s10440-014-9947-3
– volume: 263
  start-page: 33
  year: 2016
  ident: 10.1016/j.jmr.2018.07.013_b0090
  article-title: Efficient high-resolution RF pulse design applied to simultaneous multi-slice excitation
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2015.11.013
– volume: 172
  start-page: 296
  year: 2005
  ident: 10.1016/j.jmr.2018.07.013_b0185
  article-title: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2004.11.004
– volume: 66
  start-page: 1254
  year: 2011
  ident: 10.1016/j.jmr.2018.07.013_b0055
  article-title: Radiofrequency pulse designs for three-dimensional MRI providing uniform tipping in inhomogeneous B1 fields
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22913
SSID ssj0011570
Score 2.2597237
Snippet [Display omitted] •Specifically designed radio-frequency pulses are used to perform motion encoding.•Magnetic Resonance Elastography is performed with only a...
This article presents a new motion encoding strategy to perform magnetic resonance elastography (MRE). Instead of using standard motion encoding gradients, a...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 153
SubjectTerms Bioengineering
Bloch equations
Computer Science
Elastography
Imaging
Life Sciences
Medical Imaging
Optimal control
Pulse design
Title Constant gradient elastography with optimal control RF pulses
URI https://dx.doi.org/10.1016/j.jmr.2018.07.013
https://www.ncbi.nlm.nih.gov/pubmed/30053754
https://www.proquest.com/docview/2078590232
https://hal.science/hal-01848643
Volume 294
WOSCitedRecordID wos000442065200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0856
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011570
  issn: 1090-7807
  databaseCode: AIEXJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXaDcReEIyPlY8pIJ6oUtWxE9uPVbWqoDKhbaC-RXbijFVtWrVptT_C_-U6dtIC6gRIvLSVlbiW7831yb3Hxwi9EzQBFCS139Uk8WmWSl_iNPEjqhSsh4JQK5k_YufnfDwWnxuN79VemM2U5Tm_vRWL_2pqaANjm62zf2HuulNogN9gdPgEs8PnHxm-bxFf0b5elnSuoq0BIRdOmtomXucQKGalMoglql8M2os1LJKrPVh1Jq9zbdWeDXQ3wcAIPAmxm0n4WlYDtE3UmPi6JftkWm3cdjK5LoHtp862wlTcOMrZ0Jbtp-UX3xb8R9IcW1IuF5fgW3m719nNVmBe07FcCq3aRvMTy9OQQ33G7fG3HV21RT7gwWg3VAeC7gRbbGWG3bqNraj7b0uCzU5MOpOZkX_FvNRqxWS7_tWsxEszDjMMCHNmiz1posOAhQKC5WHvw9n4Y12ewiGzMhdu3FW5vCQO_vJH-wBP85th3u57rSnhzdUj9NDZ2utZf3qMGjo_Rg_61XGAx-h-yRVOVk9Q7WFe5WHerod5xsM852Ge8zDvYuBZD3uKvgzOrvpD353C4SeEs8IXglJGMxExAdguC5UKcGaq3yxJuQ5VGqoMHnQO7x3dRKqUKYDAQvM0iTgmLCXP0EE-z_UJ8nhGiFQh11IKqqNIRhrzKBMiCVSgMtZC3Wqq4sRJ1JuTUqZxxUWcxDC7sZnduMtimN0Wel_fsrD6LHddTKv5jx3AtMAxBme567a3YKu6eyPIPuyNYtMGF1EOoH6DW-hNZcoYLGPKbjLX8_UKemLciCSRoIWeWxvXfZFSTymkL_5tZC_R0fYhe4UOiuVav0b3kk1xs1qeoiYb81Pnuz8AKUK7XQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constant+gradient+elastography+with+optimal+control+RF+pulses&rft.jtitle=Journal+of+magnetic+resonance+%281997%29&rft.au=Van+Reeth%2C+Eric&rft.au=Lefebvre%2C+Pauline+M.&rft.au=Ratiney%2C+H%C3%A9l%C3%A8ne&rft.au=Lambert%2C+Simon+A.&rft.date=2018-09-01&rft.pub=Elsevier+Inc&rft.issn=1090-7807&rft.eissn=1096-0856&rft.volume=294&rft.spage=153&rft.epage=161&rft_id=info:doi/10.1016%2Fj.jmr.2018.07.013&rft.externalDocID=S1090780718301903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1090-7807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1090-7807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1090-7807&client=summon