Lead-free ferroelectric materials: Prospective applications

The year of 2021 is the 100th anniversary of the first publication of ferroelectric behaviour in Rochelle salt, focussing on its piezoelectric properties. Over the past many decades, people witnessed a great impact of ferroelectricity on our everyday life, where numerous ferroelectric materials have...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research Vol. 36; no. 5; pp. 985 - 995
Main Authors: Zhang, Shujun, Malič, Barbara, Li, Jing-Feng, Rödel, Jürgen
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 14.03.2021
Springer Nature B.V
Subjects:
ISSN:0884-2914, 2044-5326
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The year of 2021 is the 100th anniversary of the first publication of ferroelectric behaviour in Rochelle salt, focussing on its piezoelectric properties. Over the past many decades, people witnessed a great impact of ferroelectricity on our everyday life, where numerous ferroelectric materials have been designed and developed to enable the advancement of diverse applications. Now the driving forces for ferroelectric studies stem from regulations on environment, human health and sustainable society development. This leads to the resurgence of lead-free ferroelectric materials for the expectation of replacing the state-of-the-art lead-based counterparts. The next wave of explorations into ferroelectric materials maybe related to the Internet-of-Things, which requires millions of self-powered sensors and memories. This will promote research on ferroelectrics for sensing, energy harvesting and storage, communication and non-volatile memories, from centimetre scale to micro and nanoscale. This review gives a brief discussion from the materials viewpoint, on the challenges and current status of lead-free ferroelectrics based on prospective applications. Graphic Abstract
AbstractList The year of 2021 is the 100th anniversary of the first publication of ferroelectric behaviour in Rochelle salt, focussing on its piezoelectric properties. Over the past many decades, people witnessed a great impact of ferroelectricity on our everyday life, where numerous ferroelectric materials have been designed and developed to enable the advancement of diverse applications. Now the driving forces for ferroelectric studies stem from regulations on environment, human health and sustainable society development. This leads to the resurgence of lead-free ferroelectric materials for the expectation of replacing the state-of-the-art lead-based counterparts. The next wave of explorations into ferroelectric materials maybe related to the Internet-of-Things, which requires millions of self-powered sensors and memories. This will promote research on ferroelectrics for sensing, energy harvesting and storage, communication and non-volatile memories, from centimetre scale to micro and nanoscale. This review gives a brief discussion from the materials viewpoint, on the challenges and current status of lead-free ferroelectrics based on prospective applications.Graphic Abstract
The year of 2021 is the 100th anniversary of the first publication of ferroelectric behaviour in Rochelle salt, focussing on its piezoelectric properties. Over the past many decades, people witnessed a great impact of ferroelectricity on our everyday life, where numerous ferroelectric materials have been designed and developed to enable the advancement of diverse applications. Now the driving forces for ferroelectric studies stem from regulations on environment, human health and sustainable society development. This leads to the resurgence of lead-free ferroelectric materials for the expectation of replacing the state-of-the-art lead-based counterparts. The next wave of explorations into ferroelectric materials maybe related to the Internet-of-Things, which requires millions of self-powered sensors and memories. This will promote research on ferroelectrics for sensing, energy harvesting and storage, communication and non-volatile memories, from centimetre scale to micro and nanoscale. This review gives a brief discussion from the materials viewpoint, on the challenges and current status of lead-free ferroelectrics based on prospective applications. Graphic Abstract
Author Rödel, Jürgen
Li, Jing-Feng
Zhang, Shujun
Malič, Barbara
Author_xml – sequence: 1
  givenname: Shujun
  orcidid: 0000-0001-6139-6887
  surname: Zhang
  fullname: Zhang, Shujun
  email: shujun@uow.edu.au
  organization: Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong
– sequence: 2
  givenname: Barbara
  orcidid: 0000-0002-3438-8846
  surname: Malič
  fullname: Malič, Barbara
  organization: Electronic Ceramics Department, Jožef Stefan Institute
– sequence: 3
  givenname: Jing-Feng
  orcidid: 0000-0002-0185-0512
  surname: Li
  fullname: Li, Jing-Feng
  organization: State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 4
  givenname: Jürgen
  orcidid: 0000-0002-8975-7741
  surname: Rödel
  fullname: Rödel, Jürgen
  organization: Institute of Materials Science, Technische Universität Darmstadt
BookMark eNp9kE1LAzEURYNUsK3-AVcDrqMvX5NEV1L8goIudB3STCIp05kxmQr990YrCC66CjzOeS_3ztCk6zuP0DmBSyKEvMqcCakwUIIBiAK8O0JTCpxjwWg9QVNQimOqCT9Bs5zXBRIg-RTdLL1tcEjeV8Gn1PvWuzFFV23s6FO0bb6uXlKfhzKOn76yw9BGZ8fYd_kUHYcC-LPfd47e7u9eF494-fzwtLhdYseUHLFqONXgVOMd4VaQlSUAInDCbCCkDgFEo5tQh5UXIWjKmVvJWnsNquAQ2Bxd7PcOqf_Y-jyadb9NXTlpSjjJmaS6PkRRCYoqkFoXSu0pV0Ll5INxcfyJMyYbW0PAfBdq9oWaUqj5KdTsikr_qUOKG5t2hyW2l3KBu3ef_n51wPoClF2KoA
CitedBy_id crossref_primary_10_1016_j_ceramint_2024_08_432
crossref_primary_10_1016_j_ceramint_2025_09_080
crossref_primary_10_1063_5_0149949
crossref_primary_10_1016_j_mtcomm_2024_110784
crossref_primary_10_1016_j_ceramint_2023_06_264
crossref_primary_10_1016_j_jmst_2024_06_047
crossref_primary_10_1016_j_ceramint_2022_02_243
crossref_primary_10_1002_adfm_202306416
crossref_primary_10_1139_cjp_2023_0265
crossref_primary_10_1016_j_materresbull_2025_113475
crossref_primary_10_1002_advs_202508293
crossref_primary_10_1063_5_0242877
crossref_primary_10_1016_j_mssp_2024_108948
crossref_primary_10_1016_j_physb_2023_415537
crossref_primary_10_1016_j_tsf_2023_139885
crossref_primary_10_1016_j_solidstatesciences_2024_107558
crossref_primary_10_1039_D5SE00053J
crossref_primary_10_3390_ceramics7020047
crossref_primary_10_1016_j_flatc_2025_100926
crossref_primary_10_1007_s40830_025_00526_z
crossref_primary_10_1007_s11665_024_09786_9
crossref_primary_10_1016_j_jeurceramsoc_2023_07_042
crossref_primary_10_3390_inventions10030041
crossref_primary_10_1007_s10854_025_14686_2
crossref_primary_10_1007_s10854_025_14700_7
crossref_primary_10_1016_j_jeurceramsoc_2023_01_007
crossref_primary_10_1007_s10854_023_11517_0
crossref_primary_10_1080_00150193_2023_2262655
crossref_primary_10_3390_cryst11091031
crossref_primary_10_1126_science_adn4926
crossref_primary_10_1016_j_ceramint_2025_02_267
crossref_primary_10_1038_s41467_024_51024_2
crossref_primary_10_1002_adfm_202511290
crossref_primary_10_1063_5_0220720
crossref_primary_10_1002_adma_202109175
crossref_primary_10_1016_j_ceramint_2025_01_179
crossref_primary_10_1016_j_mtla_2023_101935
crossref_primary_10_1111_jace_19326
crossref_primary_10_1038_s41598_021_02751_9
crossref_primary_10_1016_j_molstruc_2023_137391
crossref_primary_10_1016_j_mser_2025_101111
crossref_primary_10_1016_j_ceramint_2025_09_307
crossref_primary_10_1016_j_jallcom_2025_181529
crossref_primary_10_1007_s10854_022_08005_2
crossref_primary_10_1016_j_matdes_2022_110893
crossref_primary_10_1039_D5RA00245A
crossref_primary_10_1016_j_nanoen_2024_109972
crossref_primary_10_1007_s12598_023_02452_4
crossref_primary_10_1016_j_mssp_2023_107942
crossref_primary_10_1016_j_supflu_2024_106340
crossref_primary_10_1016_j_mser_2024_100793
crossref_primary_10_1063_5_0206593
crossref_primary_10_1002_zaac_202400005
crossref_primary_10_1016_j_ceramint_2022_12_061
crossref_primary_10_1016_j_ceramint_2024_05_132
crossref_primary_10_1016_j_matchemphys_2024_129381
crossref_primary_10_26599_JAC_2024_9220878
crossref_primary_10_1016_j_jeurceramsoc_2024_117065
crossref_primary_10_1038_s41467_025_56074_8
crossref_primary_10_1007_s41779_022_00785_4
crossref_primary_10_3390_nano15110863
crossref_primary_10_1016_j_jeurceramsoc_2023_12_045
crossref_primary_10_1007_s10854_023_11393_8
crossref_primary_10_1016_j_jssc_2023_124378
crossref_primary_10_1007_s00339_023_06820_w
crossref_primary_10_3390_ma14237137
crossref_primary_10_1142_S2010135X25400016
crossref_primary_10_1016_j_ceramint_2025_02_038
crossref_primary_10_1016_j_cej_2025_161567
crossref_primary_10_1016_j_ceramint_2022_01_260
crossref_primary_10_1016_j_matchemphys_2024_129374
crossref_primary_10_1016_j_jeurceramsoc_2023_09_034
crossref_primary_10_1016_j_jmst_2022_05_031
crossref_primary_10_1063_5_0258087
crossref_primary_10_1016_j_jeurceramsoc_2024_05_077
crossref_primary_10_1007_s10854_025_15271_3
crossref_primary_10_1016_j_jeurceramsoc_2023_12_058
crossref_primary_10_1007_s10832_021_00264_5
crossref_primary_10_1063_5_0250408
crossref_primary_10_1016_j_mtcomm_2023_105446
crossref_primary_10_1016_j_apcatb_2022_121471
crossref_primary_10_1016_j_ceramint_2023_10_112
crossref_primary_10_1016_j_jallcom_2024_176373
crossref_primary_10_1016_j_jallcom_2024_177342
crossref_primary_10_1007_s10854_023_10240_0
crossref_primary_10_1016_j_actamat_2021_117351
crossref_primary_10_1016_j_ceramint_2022_09_255
crossref_primary_10_1016_j_jallcom_2022_165604
crossref_primary_10_1007_s10854_024_13519_y
crossref_primary_10_1021_acs_chemmater_5c00325
crossref_primary_10_1007_s10854_024_13120_3
crossref_primary_10_1016_j_optmat_2024_115191
crossref_primary_10_1016_j_ceramint_2023_12_195
crossref_primary_10_1016_j_jssc_2023_124150
crossref_primary_10_1016_j_physo_2025_100327
crossref_primary_10_1039_D5MA00643K
crossref_primary_10_1016_j_actamat_2023_118997
crossref_primary_10_1002_pssa_202300755
crossref_primary_10_1016_j_jallcom_2024_178145
Cites_doi 10.1557/s43578-020-00048-7
10.1557/s43578-020-00018-z
10.1557/s43578-020-00016-1
10.1557/s43578-020-00074-5
10.1557/s43578-020-00007-2
10.1557/s43578-020-00078-1
10.1557/s43578-020-00023-2
10.1557/s43578-020-00093-2
10.1557/s43578-020-00081-6
10.1557/s43578-020-00015-2
10.1557/s43578-020-00085-2
10.1557/s43578-020-00076-3
10.1016/j.jeurceramsoc.2016.07.023
10.1557/mrs.2018.181
10.1016/j.pmatsci.2014.01.002
10.1063/1.1554488
10.1179/174367606X81650
10.1039/C6TA06353E
10.1063/5.0035281
10.1007/s10832-007-9095-5
10.1016/j.pmatsci.2018.12.005
10.1016/j.actamat.2017.07.008
10.1063/1.1721741
10.1111/jace.12715
10.1038/srep17656
10.1039/C7TA03821F
10.1016/j.jeurceramsoc.2014.12.013
10.1063/1.4861260
10.3390/ma8125449
10.1126/sciadv.aay5979
10.1016/j.actamat.2020.06.002
10.1039/C6TC03289C
10.1063/1.2562464
10.1038/s41467-020-18665-5
10.3390/act5010008
10.1111/j.1551-2916.2009.03104.x
10.1111/j.1551-2916.2008.02871.x
10.1039/C6TA04107H
10.1002/adfm.201801504
10.7567/JJAP.50.09ND10
10.1111/jace.16755
10.1016/j.jeurceramsoc.2019.12.009
10.1016/j.jmat.2018.02.001
10.1039/C8EE03287D
10.1143/JPSJ.7.5
10.1111/j.1551-2916.2009.03061.x
10.1002/adma.201601727
10.1016/j.actamat.2018.02.026
10.1143/JPSJ.8.615
10.1063/1.1367291
10.1038/s41467-021-21202-7
10.1016/j.jeurceramsoc.2018.11.025
10.1039/D0TC04381H
10.1039/D0TA08345C
10.1002/adma.201601859
10.7567/JJAP.52.09KD07
10.1039/C9TA02053E
10.1038/s41563-020-0704-x
10.1111/j.1551-2916.2012.05462.x
10.1038/s41467-021-21673-8
10.1126/science.1123811
10.1039/C5TA03614C
10.1002/adma.201705171
10.1021/cr5006809
10.1016/j.jmat.2015.12.002
10.1007/s10832-005-0956-5
10.1039/D0TC01220C
10.1063/1.3634052
10.1111/jace.15079
10.1016/j.jmat.2018.09.006
10.1557/mrs.2018.154
10.1146/annurev-matsci-070616-124023
10.1080/00150190902889036
10.1063/1.3641975
10.1007/s10832-012-9742-3
10.1007/s10832-004-5130-y
10.1039/C8TA09353A
10.1002/adma.200802902
10.1063/1.4976026
10.1021/acsami.0c08737
10.1002/adma.201904819
10.1063/5.0035542
10.1063/1.3636434
10.1063/1.4895615
10.1002/adfm.201203754
10.1209/0295-5075/111/57009
10.1007/978-1-4419-9598-8
10.1557/jmr.2017.207
10.1111/jace.13723
10.1038/nature03028
10.1063/5.0018373
10.1002/adfm.201903877
10.7567/JJAP.55.10TB07
10.1080/10408430490490905
10.1021/acsami.7b17382
10.1002/adma.201701824
10.1002/adma.201802155
10.7567/JJAP.52.07HE01
10.1063/1.4986911
10.1039/C9CS00432G
10.1111/j.1551-2916.2008.02324.x
10.1021/acs.cgd.6b01287
10.1016/j.jeurceramsoc.2020.02.038
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The Materials Research Society 2021
The Author(s), under exclusive licence to The Materials Research Society 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to The Materials Research Society 2021
– notice: The Author(s), under exclusive licence to The Materials Research Society 2021.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
3V.
7WY
7WZ
7XB
87Z
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
F~G
HCIFZ
K60
K6~
KB.
L.-
L.0
M0C
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0W
DOI 10.1557/s43578-021-00180-y
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ABI/INFORM Global
Materials Science Collection
ProQuest Databases
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ABI/INFORM Professional Standard
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database
Materials Research Database

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2044-5326
EndPage 995
ExternalDocumentID 10_1557_s43578_021_00180_y
GroupedDBID -E.
-~X
.DC
.FH
0E1
0R~
2JN
4.4
406
5GY
5VS
74X
74Y
7WY
7~V
8FE
8FG
8UJ
8WZ
A6W
AAAZR
AACDK
AACJH
AAGFV
AAHNG
AAIKC
AAJBT
AAKTX
AAMNW
AARAB
ABBXD
ABECU
ABEFU
ABGDZ
ABJNI
ABKKG
ABMQK
ABQTM
ABROB
ABTEG
ABTKH
ABTMW
ABZCX
ACAOD
ACBEA
ACBEK
ACBMC
ACGFO
ACGFS
ACHSB
ACIHN
ACIMK
ACIWK
ACPIV
ACUIJ
ACXSD
ACZBM
ACZOJ
ACZUX
ADCGK
ADFEC
AEAQA
AEFQL
AEMSY
AEMTW
AENEX
AESKC
AEYYC
AFBBN
AFFUJ
AFKRA
AFLOS
AFLVW
AFUTZ
AGMZJ
AGQEE
AISIE
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AMTXH
AMXSW
AMYLF
ARABE
ATUCA
BBLKV
BENPR
BEZIV
BGHMG
BGLVJ
BMAJL
BPHCQ
C0O
CS3
CZ9
D1I
DC4
DOHLZ
DPUIP
DU5
EBLON
EBS
F5P
HG-
HST
HZ~
I.6
I.9
IH6
IKXTQ
IS6
IWAJR
I~P
J36
J38
J3A
JHPGK
JKPOH
JZLTJ
K60
K6~
KB.
KC.
L98
LLZTM
M-V
M0C
NIKVX
NPVJJ
NQJWS
O9-
P2P
PQBIZ
PQQKQ
PROAC
PYCCK
RAMDC
RCA
RNS
ROL
RR0
RSV
S0W
S6-
S6U
SJN
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
T9M
TAE
TN5
TWZ
UPT
UT1
WH7
WQ3
WXU
YQT
~02
8FL
AASML
AATNV
AAUYE
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ABUWG
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIGIU
AIXLP
ATHPR
AYFIA
CCPQU
CITATION
DWQXO
HCIFZ
KOV
PDBOC
PHGZM
PHGZT
PQBZA
PQGLB
7SR
8BQ
8FD
JG9
3V.
7XB
8FK
FRNLG
L.-
L.0
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c387t-8d4290c8dec14a51ba1005f413af116ff05d9df6fbe5ff9243cb769e9084a50f3
IEDL.DBID BENPR
ISICitedReferencesCount 129
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645615700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0884-2914
IngestDate Sat Nov 01 15:01:49 EDT 2025
Thu Sep 18 00:04:50 EDT 2025
Sat Nov 29 05:54:50 EST 2025
Tue Nov 18 22:29:09 EST 2025
Fri Feb 21 02:47:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Ferroelectrics
Lead free
Ceramics
Piezoelectric
Energy storage
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-8d4290c8dec14a51ba1005f413af116ff05d9df6fbe5ff9243cb769e9084a50f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3438-8846
0000-0001-6139-6887
0000-0002-0185-0512
0000-0002-8975-7741
OpenAccessLink https://link.springer.com/content/pdf/10.1557/s43578-021-00180-y.pdf
PQID 3267437296
PQPubID 626330
PageCount 11
ParticipantIDs proquest_journals_3267437296
proquest_journals_2708280799
crossref_citationtrail_10_1557_s43578_021_00180_y
crossref_primary_10_1557_s43578_021_00180_y
springer_journals_10_1557_s43578_021_00180_y
PublicationCentury 2000
PublicationDate 2021-03-14
PublicationDateYYYYMMDD 2021-03-14
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-14
  day: 14
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Warrendale
PublicationTitle Journal of materials research
PublicationTitleAbbrev Journal of Materials Research
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Gao, Guo, Zhang, Randall (CR105) 2016; 5
Li (CR6) 2021
Li, Shen, Chen (CR90) 2020; 19
Maeder, Damjanovic, Setter (CR14) 2004; 13
Yang, Li, Liu (CR44) 2021; 12
Randall, Kelnberger, Yang (CR104) 2005; 14
Fu, Zuo (CR26) 2020; 195
Li, Wang, Zhu (CR17) 2013; 96
Kabakov, Dean, Kurusingal (CR29) 2020; 8
Chen, Xu, Yang, Wang (CR32) 2007; 101
Zheng, Chen, Jiang (CR59) 2021
Ogihara, Randall, Trolier-McKinstry (CR67) 2009; 92
Yang, Gao, Shu (CR77) 2020; 8
Yao, Song, Hao (CR63) 2017; 29
Lv, Zhu, Xiao (CR27) 2020; 49
Sabolsky, James, Kwon (CR43) 2001; 78
Shrout, Zhang (CR10) 2007; 19
Chen, Cheng, Guo (CR57) 2020; 103
Hur, Wang, Tasneem (CR103) 2021
Shen, Zhang, Qin (CR60) 2021
Böscke, Bräuhaus (CR100) 2011; 99
Tian, Jin, Zhang (CR81) 2017; 5
Hong, Kim, Choi (CR16) 2016; 2
Harada, Takagi, Nagata (CR58) 2021
Tan, Ma, Frederick (CR74) 2011; 94
Zhao, Liu, Zhang, Li (CR78) 2016; 4
Tani, Kimura (CR42) 2006; 105
Bell, Deubzer (CR5) 2018; 43
Shen, Wang, Luo (CR71) 2015; 3
Shkuratov, Baird, Antipov, Zhang, Chase (CR66) 2019; 31
Hu, Meng, Zhang (CR30) 2020; 6
Luo, Tang, Han (CR85) 2021
Hao, Zhai, Kong, Xu (CR75) 2014; 63
Jaffe, Roth, Marzullo (CR3) 1954; 25
Gao, Zhao, Lee (CR82) 2019; 7
Gao, Cheng, Chen (CR28) 2021; 12
Qi, Zuo, Xie (CR87) 2019; 19
Lalitha, Riemer, Koruza, Rödel (CR53) 2017; 111
Wu (CR8) 2018
Li, Jin, Xu (CR91) 2014; 1
Zhao, Liu, Gao (CR84) 2017; 29
Chen, Kang, Hou (CR61) 2021
Luo, Han, Zhuo (CR83) 2019; 7
Saito, Takao, Tani (CR22) 2004; 432
Koruza, Bell, Fromling (CR13) 2018; 4
Wang, Bando, Katsumata (CR23) 2009; 3
Moriana, Zhang (CR45) 2018; 4
Yang, Kong, Cheng (CR68) 2020; 12
Tian, Jin, Zhang (CR80) 2016; 4
Lee, Ural, Chen (CR52) 2012; 95
Jiang, Randall, Guo (CR35) 2015; 98
Jo, Dittmer, Acosta (CR12) 2012; 29
Nguyen, Thong, Zhu (CR48) 2021
Kong, Yang, Cheng (CR72) 2021; 20
Trolier-McKinstry, Zhang, Bell, Tan (CR4) 2018; 48
Wang, Bando, Kidate (CR24) 2011; 50
Park, Yang, Lee (CR101) 2020; 128
Wang, Wu, Dkhil (CR96) 2017; 110
Lalitha, Zhu, Salazar (CR49) 2021; 104
Boscke, Muller, Brauhaus (CR99) 2011; 99
Luo, Han, Cabral (CR88) 2020; 11
Kobayashi, Doshida, Mizuno, Randall (CR106) 2013; 52
Yang, Kong, Cheng (CR73) 2021
Sabolsky, Trolier-McKinstry, Messing (CR46) 2003; 93
Plaznik, Vrabelj, Kutnjak (CR95) 2015; 111
Malic, Koruza, Hrescak (CR21) 2015; 8
Li, Zhai, Shen (CR47) 2018; 30
Fujii, Ueno, Wada (CR38) 2020; 40
Ahn, Rahman, Ryu (CR37) 2016; 16
Zhang, Zheng, Zhao (CR98) 2021
Rodel, Jo, Seifert (CR9) 2009; 92
Fisher, Bencan, Kosec (CR34) 2008; 91
Ko, Park, Kim (CR33) 2017; 37
Priya, Nahm (CR7) 2012
Jiang, Hao, Zhang (CR70) 2019; 39
Rozic, Kosec, Ursic (CR94) 2011; 110
Rodel, Li (CR15) 2018; 43
Xu, Li, Lv (CR19) 2016; 28
Sawaguchi (CR1) 1953; 8
Wang, Lu, Li (CR107) 2020; 40
Yao, Jiang, Han (CR39) 2021; 20
Wang, Yao, Jo (CR20) 2013; 23
Yang, Kong, Li (CR62) 2019; 102
Rodel, Webber, Dittmer (CR11) 2015; 35
CR18
Zhao, Gao, Liu (CR79) 2018; 10
Ahn, Lee, Han (CR36) 2015; 5
Breyer, Mulaosmannovic, Mikolajick, Slesazeck (CR102) 2021; 118
Riemer, Venkataraman, Jiang (CR54) 2017; 136
Yang, Du, Qu (CR69) 2016; 4
Gao, Li, Zhang, Li (CR76) 2020; 128
Yang, Bao, Lu (CR108) 2021
Wang, Li, Zhang (CR64) 2019; 12
Liu, Veber, Rodel (CR31) 2018; 148
Mischenko, Zhang, Scott (CR92) 2006; 311
Zhang, Wei, Zhang (CR65) 2020; 8
Luo, Zhang, Liu (CR97) 2014; 105
Messing, Poterala, Chang (CR41) 2017; 32
Messing, Trolier-McKinstry, Sabolsky (CR40) 2004; 29
Doshida, Shimizu, Mizuno, Tamura (CR50) 2013; 52
Li, Li, Xu (CR89) 2018; 30
Lu, Zhang (CR93) 2009; 21
Watanabe, Hiruma, Nagaata, Takenaka (CR51) 2009; 385
Li, Wei, Tu (CR56) 2017; 100
Shirane, Suzuki (CR2) 1952; 7
Zuo, Fu, Lv (CR25) 2009; 92
Li, Zhang, Damjanovic (CR86) 2018; 28
Muramatsu, Nataga, Takenaka (CR55) 2016; 55
TN Nguyen (180_CR48) 2021
L Yang (180_CR62) 2019; 102
Z Yang (180_CR69) 2016; 4
H Liu (180_CR31) 2018; 148
L Zhao (180_CR79) 2018; 10
I Fujii (180_CR38) 2020; 40
N Luo (180_CR83) 2019; 7
M Jiang (180_CR35) 2015; 98
L Zheng (180_CR59) 2021
S Lu (180_CR93) 2009; 21
N Luo (180_CR85) 2021
GL Messing (180_CR40) 2004; 29
ET Breyer (180_CR102) 2021; 118
X Lv (180_CR27) 2020; 49
EM Sabolsky (180_CR46) 2003; 93
J Chen (180_CR57) 2020; 103
H Muramatsu (180_CR55) 2016; 55
B Rozic (180_CR94) 2011; 110
H Ogihara (180_CR67) 2009; 92
AJ Bell (180_CR5) 2018; 43
H Qi (180_CR87) 2019; 19
JN Chen (180_CR61) 2021
B Malic (180_CR21) 2015; 8
AS Mischenko (180_CR92) 2006; 311
K Kobayashi (180_CR106) 2013; 52
Y Doshida (180_CR50) 2013; 52
X Tan (180_CR74) 2011; 94
N Zhang (180_CR98) 2021
G Shirane (180_CR2) 1952; 7
Q Li (180_CR56) 2017; 100
J Gao (180_CR76) 2020; 128
KV Lalitha (180_CR49) 2021; 104
G Wang (180_CR64) 2019; 12
K Xu (180_CR19) 2016; 28
U Plaznik (180_CR95) 2015; 111
Z Shen (180_CR71) 2015; 3
XH Hao (180_CR75) 2014; 63
X Kong (180_CR72) 2021; 20
R Zuo (180_CR25) 2009; 92
X Yao (180_CR39) 2021; 20
N Luo (180_CR88) 2020; 11
J Gao (180_CR82) 2019; 7
MD Maeder (180_CR14) 2004; 13
X Jiang (180_CR70) 2019; 39
CH Hong (180_CR16) 2016; 2
L Riemer (180_CR54) 2017; 136
Z Luo (180_CR97) 2014; 105
JY Park (180_CR101) 2020; 128
C Randall (180_CR104) 2005; 14
X Gao (180_CR28) 2021; 12
CW Ahn (180_CR36) 2015; 5
W Jo (180_CR12) 2012; 29
G Wang (180_CR107) 2020; 40
CW Ahn (180_CR37) 2016; 16
S Yang (180_CR44) 2021; 12
J Li (180_CR89) 2018; 30
SI Shkuratov (180_CR66) 2019; 31
J Fu (180_CR26) 2020; 195
T Tani (180_CR42) 2006; 105
SY Ko (180_CR33) 2017; 37
EM Sabolsky (180_CR43) 2001; 78
Y Tian (180_CR81) 2017; 5
S Harada (180_CR58) 2021
T Watanabe (180_CR51) 2009; 385
J Li (180_CR90) 2020; 19
JF Li (180_CR6) 2021
X Wang (180_CR96) 2017; 110
L Zhao (180_CR78) 2016; 4
L Yang (180_CR68) 2020; 12
L Yang (180_CR73) 2021
D Yang (180_CR77) 2020; 8
AD Moriana (180_CR45) 2018; 4
J Rodel (180_CR15) 2018; 43
JF Li (180_CR17) 2013; 96
R Wang (180_CR24) 2011; 50
F Li (180_CR86) 2018; 28
JG Wu (180_CR8) 2018
K Wang (180_CR20) 2013; 23
Z Yao (180_CR63) 2017; 29
C Hu (180_CR30) 2020; 6
H Yang (180_CR108) 2021
F Li (180_CR91) 2014; 1
J Rodel (180_CR11) 2015; 35
TR Shrout (180_CR10) 2007; 19
P Li (180_CR47) 2018; 30
L Gao (180_CR105) 2016; 5
TS Boscke (180_CR99) 2011; 99
180_CR18
Y Saito (180_CR22) 2004; 432
JG Fisher (180_CR34) 2008; 91
K Chen (180_CR32) 2007; 101
GL Messing (180_CR41) 2017; 32
L Zhao (180_CR84) 2017; 29
P Kabakov (180_CR29) 2020; 8
KV Lalitha (180_CR53) 2017; 111
TS Böscke (180_CR100) 2011; 99
J Hur (180_CR103) 2021
R Wang (180_CR23) 2009; 3
H Zhang (180_CR65) 2020; 8
E Sawaguchi (180_CR1) 1953; 8
B Jaffe (180_CR3) 1954; 25
J Koruza (180_CR13) 2018; 4
Y Tian (180_CR80) 2016; 4
Z Shen (180_CR60) 2021
S Priya (180_CR7) 2012
S Trolier-McKinstry (180_CR4) 2018; 48
HJ Lee (180_CR52) 2012; 95
J Rodel (180_CR9) 2009; 92
References_xml – volume: 95
  start-page: 3383
  year: 2012
  ident: CR52
  article-title: High power characteristics of lead-free piezoelectric ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 92
  start-page: 283
  year: 2009
  ident: CR25
  article-title: Phase transformation and tunable piezoelectric properties of lead-free (Na, K, Li)(Nb, Sb, Ta)O3 system
  publication-title: J. Am. Ceram. Soc.
– volume: 148
  start-page: 499
  year: 2018
  ident: CR31
  article-title: High performance piezoelectric (K, Na, Li)(Nb, Ta, Sb)O3 single crystals by oxygen annealing
  publication-title: Acta Mater.
– volume: 8
  start-page: 16648
  year: 2020
  ident: CR65
  article-title: A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors
  publication-title: J. Mater. Chem. C
– volume: 25
  start-page: 809
  year: 1954
  ident: CR3
  article-title: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 5
  year: 1952
  ident: CR2
  article-title: Crystal structure of Pb(Zr, Ti) 3
  publication-title: J. Phys. Soc. Jpn.
– year: 2021
  ident: CR58
  article-title: Quenching effects on electrical properties of Cu-doped (Bi Na )TiO -based solid solution ceramics
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00048-7
– volume: 55
  start-page: 10TB07
  year: 2016
  ident: CR55
  article-title: Quenching effects for piezoelectric properties on lead-free BNT ceramics
  publication-title: Jpn. J. Appl. Phys.
– volume: 100
  start-page: 5573
  year: 2017
  ident: CR56
  article-title: Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched BF-BT ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 16
  start-page: 6586
  year: 2016
  ident: CR37
  article-title: Composition design for growth of single crystal by abnormal grain growth in modified potassium sodium niobate ceramics
  publication-title: Cryst. Growth Des.
– volume: 52
  start-page: 09KD07
  year: 2013
  ident: CR106
  article-title: Possibility of cofiring a nickel inner electrode in a NKN-LiF piezoelectric actuator
  publication-title: Jpn. J. Appl. Phys.
– year: 2021
  ident: CR6
  publication-title: Lead-Free Piezoelectric Materials
– volume: 30
  start-page: 1705171
  year: 2018
  ident: CR47
  article-title: Ultrahigh piezoelectric properties in textured KNN-based lead-free ceramics
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2225
  year: 2019
  ident: CR82
  article-title: Enhanced antiferroelectric phase stability in La-doped AN: perspectives from the microstructure to energy storage property
  publication-title: J. Mater. Chem. A
– volume: 40
  start-page: 2970
  year: 2020
  ident: CR38
  article-title: Effects of sintering aid and atmosphere powder on the growth of KNN single crystals fabricated by solid-state crystal growth method
  publication-title: J. Europ. Ceram. Soc.
– year: 2021
  ident: CR85
  article-title: Silver stoichiometry engineering: an alternative way to improve energy storage density of AgNbO -based antiferroelectric ceramics
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00018-z
– volume: 37
  start-page: 407
  year: 2017
  ident: CR33
  article-title: Improved solid-state conversion and piezoelectric properties of NBT-BT-KNN single crystals
  publication-title: J. Europ. Ceram. Soc.
– volume: 30
  start-page: 1802155
  year: 2018
  ident: CR89
  article-title: Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency
  publication-title: Adv. Mater.
– volume: 23
  start-page: 4079
  year: 2013
  ident: CR20
  article-title: Temperature-insensitive KNN based lead-free piezoactuator ceramics
  publication-title: Adv. Funct. Mater.
– volume: 110
  start-page: 063904
  year: 2017
  ident: CR96
  article-title: Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 1601727
  year: 2017
  ident: CR63
  article-title: Homogeneous/inhomogeneous structured dielectric and their energy storage performances
  publication-title: Adv. Mater.
– year: 2021
  ident: CR48
  article-title: Hardening effect in lead-free piezoelectric ceramics
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00016-1
– volume: 14
  start-page: 177
  year: 2005
  ident: CR104
  article-title: High strain piezoelectric multilayer actuators- a material science and engineering challenge
  publication-title: J. Electroceram.
– volume: 3
  start-page: 18146
  year: 2015
  ident: CR71
  article-title: BaTiO –BiYbO perovskite materials for energy storage applications
  publication-title: J. Mater. Chem. A
– year: 2021
  ident: CR103
  article-title: Exploring argon plasma effect on ferroelectric Hf Zr O thin film atomic layer deposition
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00074-5
– ident: CR18
– volume: 4
  start-page: 277
  year: 2018
  ident: CR45
  article-title: Lead-free textured piezoceramics using tape casting: a review
  publication-title: J. Materiomics.
– volume: 20
  start-page: 21
  year: 2021
  ident: CR72
  article-title: Bi(Mg Hf )O -modified SrTiO lead-free ceramics for high-temperature energy storage capacitors
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00007-2
– volume: 4
  start-page: 13
  year: 2018
  ident: CR13
  article-title: Requirements for the transfer of lead-free piezoceramics into application
  publication-title: J. Materiomics
– volume: 8
  start-page: 615
  year: 1953
  ident: CR1
  article-title: Ferroelectricity versus antiferroelectricity in the solid solutions of PZ and PT
  publication-title: J. Phys. Soc. Jpn.
– year: 2021
  ident: CR60
  article-title: Effect of (K Ce ) complex on the electrical properties of lead-free Bi Ti W O high-temperature piezoelectric ceramics
  publication-title: J. Mater. Res
  doi: 10.1557/s43578-020-00078-1
– volume: 52
  start-page: 0701
  year: 2013
  ident: CR50
  article-title: Investigation of high power properties of (Bi, Na, Ba)TiO3 and (Sr, Ca)2NaNb5O15 piezoelectric ceramics
  publication-title: Jpn. J. Appl. Phys.
– volume: 118
  start-page: 050501
  year: 2021
  ident: CR102
  article-title: Perspective on ferroelectric, hafnium oxide based transistors for digital beyond von-Neumann computer
  publication-title: Appl. Phys. Lett.
– year: 2021
  ident: CR61
  article-title: Dielectric, ferroelectric, and piezoelectric properties of Gd-modified CaBi Nb O high Curie temperature ceramics
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00023-2
– volume: 19
  start-page: 999
  year: 2020
  ident: CR90
  article-title: Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications
  publication-title: Nature Mater.
– volume: 10
  start-page: 819
  year: 2018
  ident: CR79
  article-title: Silver niobate lead-free antiferroelectric ceramics: enhancing energy storage density by B-site doping
  publication-title: ACS Appl. Mater. Interfaces
– volume: 103
  start-page: 374
  year: 2020
  ident: CR57
  article-title: Excellent thermal stability and aging behaviors in BF-BT piezoelecrtric ceramics with rhombohedral phase
  publication-title: J. Am. Ceram. Soc.
– volume: 93
  start-page: 4072
  year: 2003
  ident: CR46
  article-title: Dielectric and piezoelectric properties of <001> fiber-textured 0675PMN-0325PT ceramics
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 8
  year: 2016
  ident: CR105
  article-title: Based metal co-fired multilayer piezoelectrics
  publication-title: Actuators
– volume: 6
  start-page: eaay5979
  year: 2020
  ident: CR30
  article-title: Ultra-large electric field induced strain in potassium sodium niobate crystals
  publication-title: Sci. Adv.
– volume: 5
  start-page: 17656
  year: 2015
  ident: CR36
  article-title: Self-growth of centimetre scale single crystals by normal sintering process in modified potassium sodium niobate ceramics
  publication-title: Sci. Rep.
– volume: 29
  start-page: 71
  year: 2012
  ident: CR12
  article-title: Giant electric field induced strains in lead-free ceramics for actuator applications- status and perspective
  publication-title: J. Electroceram
– volume: 29
  start-page: 1701824
  year: 2017
  ident: CR84
  article-title: Lead-free antiferroelectric silver niobate tantalate with high energy storage performance
  publication-title: Adv. Mater.
– volume: 13
  start-page: 385
  year: 2004
  ident: CR14
  article-title: Lead free piezoelectric materials
  publication-title: J. Electroceram
– volume: 99
  start-page: 112904
  year: 2011
  ident: CR100
  article-title: Phase transitions in ferroelectric silicon doped hafnium oxide
  publication-title: Appl. Phys. Lett.
– volume: 48
  start-page: 191
  year: 2018
  ident: CR4
  article-title: High performance piezoelectric crystals, ceramics and films
  publication-title: Ann. Rev. Mater. Res.
– volume: 104
  start-page: 2021
  year: 2021
  ident: CR49
  article-title: Influence of Zn-doping on ferroelectric stability and electromechanical hardening in (Na Bi )TiO - BaTiO
  publication-title: J. Amer. Ceram. Soc.
– volume: 92
  start-page: 1719
  year: 2009
  ident: CR67
  article-title: High-energy density capacitors utilizing BaTiO -BiScO ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 12
  start-page: 32834
  year: 2020
  ident: CR68
  article-title: Enhanced energy storage performance of sodium niobate-based relaxor dielectrics by a ramp-to-spike sintering profile
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 8380
  year: 2016
  ident: CR78
  article-title: Lead-free AN antiferroelectric ceramics with an enhanced energy storage performance using MnO modification
  publication-title: J. Mater. Chem. C
– volume: 105
  start-page: 55
  year: 2006
  ident: CR42
  article-title: Reactive-templated grain growth processing for lead free piezoelectric ceramics
  publication-title: Adv. Appl. Ceram.
– volume: 311
  start-page: 1270
  year: 2006
  ident: CR92
  article-title: Giant electrocaloric effect in thin-film PbZr Ti O
  publication-title: Science
– volume: 28
  start-page: 8519
  year: 2016
  ident: CR19
  article-title: Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics
  publication-title: Adv. Mater.
– volume: 12
  start-page: 582
  year: 2019
  ident: CR64
  article-title: Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity
  publication-title: Energy Environ. Sci.
– volume: 50
  start-page: 09ND10
  year: 2011
  ident: CR24
  article-title: Effects of A-site ions on the phase transition temperatures and dielectric properties of NKN-AZrO solid solutions
  publication-title: Jpn. J. Appl. Phys.
– volume: 43
  start-page: 581
  year: 2018
  ident: CR5
  article-title: Lead-free piezoelectrics- The environmental and regulatory issues
  publication-title: MRS Bull.
– year: 2018
  ident: CR8
  publication-title: Advances in lead-free piezoelectric materials
– volume: 63
  start-page: 1
  year: 2014
  ident: CR75
  article-title: A comprehensive review on the progress of lead zirconate based antiferroelectric materials
  publication-title: Prog. Mater Sci.
– volume: 195
  start-page: 571
  year: 2020
  ident: CR26
  article-title: Structural evidence for the polymorphic phase boundary in NKN based perovskites close to the rhombohedral-tetragonal phase coexistence zone
  publication-title: Acta Mater.
– volume: 29
  start-page: 45
  year: 2004
  ident: CR40
  article-title: Templated grain growth of textured piezoelectric ceramics
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 39
  start-page: 1103
  year: 2019
  ident: CR70
  article-title: Enhanced energy storage and fast discharge properties of BT based ceramics modified by BMZ
  publication-title: J. Europ. Ceram. Soc.
– volume: 40
  start-page: 1779
  year: 2020
  ident: CR107
  article-title: Lead-free (Ba, Sr)TiO  based multilayer ceramic capacitors with high energy density
  publication-title: J. Europ. Ceram. Soc.
– volume: 8
  start-page: 23724
  year: 2020
  ident: CR77
  article-title: Lead-free antiferroelectric niobates AgNbO and NaNbO for energy storage applications
  publication-title: J. Mater. Chem. A.
– volume: 21
  start-page: 1983
  year: 2009
  ident: CR93
  article-title: Electrocaloric materials for solid-state refrigeration
  publication-title: Adv. Mater.
– volume: 1
  start-page: 011103
  year: 2014
  ident: CR91
  article-title: Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity
  publication-title: Appl. Phys. Rev.
– volume: 31
  start-page: 1904819
  year: 2019
  ident: CR66
  article-title: Multilayer PZT 95/5 Antiferroelectric Film Energy Storage Devices with Giant Power Density
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1
  year: 2016
  ident: CR16
  article-title: Lead-free piezoceramics-where to move on?
  publication-title: J. Materiomics
– volume: 101
  start-page: 044103
  year: 2007
  ident: CR32
  article-title: Dielectric and piezoelectric properties of lead-free KNN-LN crystals grown by the Bridgman method
  publication-title: J. Appl. Phys.
– volume: 43
  start-page: 576
  year: 2018
  ident: CR15
  article-title: Lead-free piezoceramics: status and perspectives
  publication-title: MRS Bull.
– year: 2021
  ident: CR108
  article-title: High-energy storage performance in BaTiO -based lead-free multilayer ceramic capacitors
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00093-2
– volume: 4
  start-page: 13778
  year: 2016
  ident: CR69
  article-title: Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics
  publication-title: J. Mater. Chem. A
– volume: 111
  start-page: 022905
  year: 2017
  ident: CR53
  article-title: Hardening of electromechanical properties in piezoceramics using a composite approach
  publication-title: Appl. Phys. Let.
– year: 2021
  ident: CR98
  article-title: Enhanced electrocaloric effect in compositional driven potassium sodium niobate-based relaxor ferroelectrics
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00081-6
– volume: 3
  start-page: 142
  year: 2009
  ident: CR23
  article-title: Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate
  publication-title: Phys. Status Solidi: Rapid Res. Lett.
– volume: 12
  start-page: 1414
  year: 2021
  ident: CR44
  article-title: Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range
  publication-title: Nat. Commun.
– volume: 12
  start-page: 881
  year: 2021
  ident: CR28
  article-title: The mechanism for the enhanced piezoelectricity in mult-elements doped KNN ceramics
  publication-title: Nat. Commun.
– volume: 19
  start-page: 111
  year: 2007
  ident: CR10
  article-title: Lead-free piezoelectric ceramics: alternatives for PZT?
  publication-title: J. Electroceram.
– volume: 385
  start-page: 135
  year: 2009
  ident: CR51
  article-title: High power characteristics at large amplitude vibration of BNT-based lead-free ferroelectric ceramics
  publication-title: Ferroelectrics
– volume: 8
  start-page: 8117
  year: 2015
  ident: CR21
  article-title: Sintering of lead-free piezoelectric sodium potassium niobate ceramics
  publication-title: Materials
– volume: 94
  start-page: 283
  year: 2011
  ident: CR74
  article-title: The antiferroelectric ferroelectric phase transition in lead-containing and lead-free perovskite ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 136
  start-page: 271
  year: 2017
  ident: CR54
  article-title: Stress-induced phase transition in lead-free relaxor ferroelectric composites
  publication-title: Acta Mater.
– volume: 28
  start-page: 1801504
  year: 2018
  ident: CR86
  article-title: Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics
  publication-title: Adv. Funct. Mater.
– volume: 432
  start-page: 84
  year: 2004
  ident: CR22
  article-title: Lead-free piezoceramics
  publication-title: Nature
– volume: 110
  start-page: 064118
  year: 2011
  ident: CR94
  article-title: Influence of the critical point on the electrocaloric response of relaxor ferroelectrics
  publication-title: J. Appl. Phys.
– volume: 105
  start-page: 102904
  year: 2014
  ident: CR97
  article-title: Enhanced electrocaloric effect in lead-free BaTiSnO ceramics near room temperature
  publication-title: Appl. Phys. Lett.
– volume: 128
  start-page: 070903
  year: 2020
  ident: CR76
  article-title: Lead-free antiferroelectric AgNbO : phase transitions and structure engineering for dielectric energy storage applications
  publication-title: J. Appl. Phys.
– volume: 111
  start-page: 57009
  year: 2015
  ident: CR95
  article-title: Electrocaloric cooling: The importance of electric-energy recovery and heat regeneration
  publication-title: EPL
– volume: 102
  start-page: 72
  year: 2019
  ident: CR62
  article-title: Perovskite lead-free dielectrics for energy storage applications
  publication-title: Prog. Mater. Sci.
– year: 2012
  ident: CR7
  publication-title: Advances lead-free piezoelectrics
– volume: 20
  start-page: 21
  year: 2021
  ident: CR39
  article-title: Microstructure and electrical properties of CuO-doped K Na NbO -based single crystals with low dielectric loss
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00015-2
– volume: 35
  start-page: 1659
  year: 2015
  ident: CR11
  article-title: Transferring lead-free piezoelectric ceramics into application
  publication-title: J. Europ. Ceram. Soc.
– volume: 7
  start-page: 14118
  year: 2019
  ident: CR83
  article-title: Aliovalent A-site engineered AN lead-free antiferroelectric ceramics toward superior energy storage density
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 1903877
  year: 2019
  ident: CR87
  article-title: Ultrahigh energy storage density in NN-based lead-free relaxor antiferroelectric ceramics with nanoscale domains
  publication-title: Adv. Funct. Mater.
– volume: 128
  start-page: 240904
  year: 2020
  ident: CR101
  article-title: A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials-device integration perspective
  publication-title: J. Appl. Phys.
– volume: 98
  start-page: 2988
  year: 2015
  ident: CR35
  article-title: Seed-free solid-state growth of large lead-free piezoelectric single crystals: NKN
  publication-title: J. Am. Ceram. Soc.
– volume: 91
  start-page: 1503
  year: 2008
  ident: CR34
  article-title: Growth of dense single crystals of potassium sodium niobate by a combination of solid-state crystal growth and hot pressing
  publication-title: J. Am. Ceram. Soc.
– volume: 4
  start-page: 17279
  year: 2016
  ident: CR80
  article-title: High energy density in silver niobate ceramics
  publication-title: J. Mater. Chem. A
– volume: 32
  start-page: 3219
  year: 2017
  ident: CR41
  article-title: Texture-engineered ceramics—property enhancements through crystallographic tailoring
  publication-title: J. Mater. Res.
– year: 2021
  ident: CR73
  article-title: Enhanced energy density and electric cycling reliability via MnO2 modification in sodium niobate-based relaxor dielectric capacitors
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00085-2
– volume: 11
  start-page: 4824
  year: 2020
  ident: CR88
  article-title: Constructing phase boundary in AgNbO antiferroelectrics: pathway simultaneously achieving high energy density and efficiency
  publication-title: Nat. Commun.
– volume: 49
  start-page: 671
  year: 2020
  ident: CR27
  article-title: Emerging new phase boundary in potassium sodium niobate based ceramics
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 7606
  year: 2020
  ident: CR29
  article-title: Solid-state crystal growth of lead-free ferroelectrics
  publication-title: J. Mater. Chem. C.
– volume: 92
  start-page: 1153
  year: 2009
  ident: CR9
  article-title: Perspective on the development of lead-free piezoceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 78
  start-page: 2551
  year: 2001
  ident: CR43
  article-title: Piezoelectric properties of <001> textured PMN-PT ceramics
  publication-title: Appl. Phys. Lett.
– volume: 96
  start-page: 3677
  year: 2013
  ident: CR17
  article-title: KNN-based lead-free piezoceramics: fundamental aspects, processing technologies and remaining challenges
  publication-title: J. Am. Ceram. Soc.
– year: 2021
  ident: CR59
  article-title: Effects of defect on thermal stability and photoluminescence in quenched Ho-doped 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 lead-free ceramics
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00076-3
– volume: 5
  start-page: 17525
  year: 2017
  ident: CR81
  article-title: Phase transitions in bismuth modified silver niobate ceramics for high power energy storage
  publication-title: J. Mater. Chem. A
– volume: 99
  start-page: 102903
  year: 2011
  ident: CR99
  article-title: Ferroelectricity in hafnium oxide thin films
  publication-title: Appl. Phys. Lett.
– volume: 37
  start-page: 407
  year: 2017
  ident: 180_CR33
  publication-title: J. Europ. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.07.023
– volume: 43
  start-page: 576
  year: 2018
  ident: 180_CR15
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2018.181
– volume: 63
  start-page: 1
  year: 2014
  ident: 180_CR75
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2014.01.002
– volume: 93
  start-page: 4072
  year: 2003
  ident: 180_CR46
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1554488
– volume: 105
  start-page: 55
  year: 2006
  ident: 180_CR42
  publication-title: Adv. Appl. Ceram.
  doi: 10.1179/174367606X81650
– year: 2021
  ident: 180_CR85
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00018-z
– volume: 4
  start-page: 17279
  year: 2016
  ident: 180_CR80
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06353E
– volume: 118
  start-page: 050501
  year: 2021
  ident: 180_CR102
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0035281
– volume: 19
  start-page: 111
  year: 2007
  ident: 180_CR10
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-007-9095-5
– volume: 102
  start-page: 72
  year: 2019
  ident: 180_CR62
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2018.12.005
– volume: 136
  start-page: 271
  year: 2017
  ident: 180_CR54
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.07.008
– volume-title: Lead-Free Piezoelectric Materials
  year: 2021
  ident: 180_CR6
– volume: 25
  start-page: 809
  year: 1954
  ident: 180_CR3
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1721741
– volume: 96
  start-page: 3677
  year: 2013
  ident: 180_CR17
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12715
– volume: 5
  start-page: 17656
  year: 2015
  ident: 180_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/srep17656
– volume: 5
  start-page: 17525
  year: 2017
  ident: 180_CR81
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03821F
– volume: 35
  start-page: 1659
  year: 2015
  ident: 180_CR11
  publication-title: J. Europ. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2014.12.013
– volume: 1
  start-page: 011103
  year: 2014
  ident: 180_CR91
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4861260
– volume: 8
  start-page: 8117
  year: 2015
  ident: 180_CR21
  publication-title: Materials
  doi: 10.3390/ma8125449
– volume: 3
  start-page: 142
  year: 2009
  ident: 180_CR23
  publication-title: Phys. Status Solidi: Rapid Res. Lett.
– volume: 6
  start-page: eaay5979
  year: 2020
  ident: 180_CR30
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay5979
– volume: 195
  start-page: 571
  year: 2020
  ident: 180_CR26
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.06.002
– year: 2021
  ident: 180_CR59
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00076-3
– volume: 20
  start-page: 21
  year: 2021
  ident: 180_CR39
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00015-2
– volume: 4
  start-page: 8380
  year: 2016
  ident: 180_CR78
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC03289C
– volume: 101
  start-page: 044103
  year: 2007
  ident: 180_CR32
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2562464
– volume: 11
  start-page: 4824
  year: 2020
  ident: 180_CR88
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18665-5
– volume: 5
  start-page: 8
  year: 2016
  ident: 180_CR105
  publication-title: Actuators
  doi: 10.3390/act5010008
– volume: 92
  start-page: 1719
  year: 2009
  ident: 180_CR67
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03104.x
– volume: 92
  start-page: 283
  year: 2009
  ident: 180_CR25
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2008.02871.x
– volume: 104
  start-page: 2021
  year: 2021
  ident: 180_CR49
  publication-title: J. Amer. Ceram. Soc.
– volume: 4
  start-page: 13778
  year: 2016
  ident: 180_CR69
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04107H
– volume: 28
  start-page: 1801504
  year: 2018
  ident: 180_CR86
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801504
– volume: 50
  start-page: 09ND10
  year: 2011
  ident: 180_CR24
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.50.09ND10
– volume: 103
  start-page: 374
  year: 2020
  ident: 180_CR57
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16755
– volume: 40
  start-page: 1779
  year: 2020
  ident: 180_CR107
  publication-title: J. Europ. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.12.009
– volume: 4
  start-page: 13
  year: 2018
  ident: 180_CR13
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2018.02.001
– volume: 12
  start-page: 582
  year: 2019
  ident: 180_CR64
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03287D
– volume: 7
  start-page: 5
  year: 1952
  ident: 180_CR2
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.7.5
– volume: 92
  start-page: 1153
  year: 2009
  ident: 180_CR9
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03061.x
– volume: 29
  start-page: 1601727
  year: 2017
  ident: 180_CR63
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601727
– volume: 148
  start-page: 499
  year: 2018
  ident: 180_CR31
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.02.026
– year: 2021
  ident: 180_CR98
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00081-6
– volume: 8
  start-page: 615
  year: 1953
  ident: 180_CR1
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.8.615
– volume: 78
  start-page: 2551
  year: 2001
  ident: 180_CR43
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1367291
– year: 2021
  ident: 180_CR108
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00093-2
– volume: 12
  start-page: 881
  year: 2021
  ident: 180_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21202-7
– volume: 39
  start-page: 1103
  year: 2019
  ident: 180_CR70
  publication-title: J. Europ. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.11.025
– volume: 8
  start-page: 16648
  year: 2020
  ident: 180_CR65
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC04381H
– volume: 8
  start-page: 23724
  year: 2020
  ident: 180_CR77
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA08345C
– volume: 28
  start-page: 8519
  year: 2016
  ident: 180_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601859
– volume: 52
  start-page: 09KD07
  year: 2013
  ident: 180_CR106
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.52.09KD07
– year: 2021
  ident: 180_CR61
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00023-2
– volume: 7
  start-page: 14118
  year: 2019
  ident: 180_CR83
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02053E
– volume: 19
  start-page: 999
  year: 2020
  ident: 180_CR90
  publication-title: Nature Mater.
  doi: 10.1038/s41563-020-0704-x
– volume: 95
  start-page: 3383
  year: 2012
  ident: 180_CR52
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2012.05462.x
– volume: 12
  start-page: 1414
  year: 2021
  ident: 180_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21673-8
– volume: 311
  start-page: 1270
  year: 2006
  ident: 180_CR92
  publication-title: Science
  doi: 10.1126/science.1123811
– volume: 3
  start-page: 18146
  year: 2015
  ident: 180_CR71
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03614C
– volume: 30
  start-page: 1705171
  year: 2018
  ident: 180_CR47
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705171
– ident: 180_CR18
  doi: 10.1021/cr5006809
– volume: 2
  start-page: 1
  year: 2016
  ident: 180_CR16
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2015.12.002
– volume: 14
  start-page: 177
  year: 2005
  ident: 180_CR104
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-005-0956-5
– volume: 8
  start-page: 7606
  year: 2020
  ident: 180_CR29
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/D0TC01220C
– volume: 99
  start-page: 102903
  year: 2011
  ident: 180_CR99
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3634052
– volume: 100
  start-page: 5573
  year: 2017
  ident: 180_CR56
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.15079
– volume: 4
  start-page: 277
  year: 2018
  ident: 180_CR45
  publication-title: J. Materiomics.
  doi: 10.1016/j.jmat.2018.09.006
– year: 2021
  ident: 180_CR73
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00085-2
– volume: 43
  start-page: 581
  year: 2018
  ident: 180_CR5
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2018.154
– volume: 48
  start-page: 191
  year: 2018
  ident: 180_CR4
  publication-title: Ann. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070616-124023
– volume: 385
  start-page: 135
  year: 2009
  ident: 180_CR51
  publication-title: Ferroelectrics
  doi: 10.1080/00150190902889036
– year: 2021
  ident: 180_CR58
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00048-7
– volume: 110
  start-page: 064118
  year: 2011
  ident: 180_CR94
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3641975
– volume: 29
  start-page: 71
  year: 2012
  ident: 180_CR12
  publication-title: J. Electroceram
  doi: 10.1007/s10832-012-9742-3
– volume: 13
  start-page: 385
  year: 2004
  ident: 180_CR14
  publication-title: J. Electroceram
  doi: 10.1007/s10832-004-5130-y
– volume: 7
  start-page: 2225
  year: 2019
  ident: 180_CR82
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09353A
– volume: 21
  start-page: 1983
  year: 2009
  ident: 180_CR93
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802902
– volume: 110
  start-page: 063904
  year: 2017
  ident: 180_CR96
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4976026
– year: 2021
  ident: 180_CR48
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00016-1
– volume: 12
  start-page: 32834
  year: 2020
  ident: 180_CR68
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08737
– volume: 31
  start-page: 1904819
  year: 2019
  ident: 180_CR66
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904819
– volume: 128
  start-page: 240904
  year: 2020
  ident: 180_CR101
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0035542
– volume: 99
  start-page: 112904
  year: 2011
  ident: 180_CR100
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3636434
– volume: 105
  start-page: 102904
  year: 2014
  ident: 180_CR97
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4895615
– year: 2021
  ident: 180_CR103
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00074-5
– volume: 23
  start-page: 4079
  year: 2013
  ident: 180_CR20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201203754
– volume: 111
  start-page: 57009
  year: 2015
  ident: 180_CR95
  publication-title: EPL
  doi: 10.1209/0295-5075/111/57009
– volume: 20
  start-page: 21
  year: 2021
  ident: 180_CR72
  publication-title: J. Mater. Res.
  doi: 10.1557/s43578-020-00007-2
– volume-title: Advances lead-free piezoelectrics
  year: 2012
  ident: 180_CR7
  doi: 10.1007/978-1-4419-9598-8
– volume: 32
  start-page: 3219
  year: 2017
  ident: 180_CR41
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2017.207
– volume: 98
  start-page: 2988
  year: 2015
  ident: 180_CR35
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13723
– volume: 432
  start-page: 84
  year: 2004
  ident: 180_CR22
  publication-title: Nature
  doi: 10.1038/nature03028
– volume: 128
  start-page: 070903
  year: 2020
  ident: 180_CR76
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0018373
– volume-title: Advances in lead-free piezoelectric materials
  year: 2018
  ident: 180_CR8
– volume: 19
  start-page: 1903877
  year: 2019
  ident: 180_CR87
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903877
– year: 2021
  ident: 180_CR60
  publication-title: J. Mater. Res
  doi: 10.1557/s43578-020-00078-1
– volume: 55
  start-page: 10TB07
  year: 2016
  ident: 180_CR55
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.55.10TB07
– volume: 29
  start-page: 45
  year: 2004
  ident: 180_CR40
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408430490490905
– volume: 10
  start-page: 819
  year: 2018
  ident: 180_CR79
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17382
– volume: 29
  start-page: 1701824
  year: 2017
  ident: 180_CR84
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701824
– volume: 94
  start-page: 283
  year: 2011
  ident: 180_CR74
  publication-title: J. Am. Ceram. Soc.
– volume: 30
  start-page: 1802155
  year: 2018
  ident: 180_CR89
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802155
– volume: 52
  start-page: 0701
  year: 2013
  ident: 180_CR50
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.52.07HE01
– volume: 111
  start-page: 022905
  year: 2017
  ident: 180_CR53
  publication-title: Appl. Phys. Let.
  doi: 10.1063/1.4986911
– volume: 49
  start-page: 671
  year: 2020
  ident: 180_CR27
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00432G
– volume: 91
  start-page: 1503
  year: 2008
  ident: 180_CR34
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2008.02324.x
– volume: 16
  start-page: 6586
  year: 2016
  ident: 180_CR37
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b01287
– volume: 40
  start-page: 2970
  year: 2020
  ident: 180_CR38
  publication-title: J. Europ. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.02.038
SSID ssj0015074
Score 2.6290703
Snippet The year of 2021 is the 100th anniversary of the first publication of ferroelectric behaviour in Rochelle salt, focussing on its piezoelectric properties. Over...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 985
SubjectTerms Applied and Technical Physics
Biomaterials
Ceramics
Charged particles
Chemistry and Materials Science
Electric fields
Energy harvesting
Energy storage
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Grain boundaries
Grain growth
Inorganic Chemistry
Internet of Things
Introduction
Lead free
Materials Engineering
Materials research
Materials Science
Nanotechnology
Phase transitions
Piezoelectricity
R&D
Research & development
Single crystals
Solid solutions
Temperature
SummonAdditionalLinks – databaseName: Springer Standard Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60KujBR1WsVsnBmy5skt1sVk8iFg9Sii96W9LNLhSklaQK_ffO5mGrVEHPO5uEeWS-YV4Ap2maWKo5I4NUB4RZzolMdURiGXF0p5pH5cj8O9Htxv2-7FVNYXld7V6nJIs_dbGjB8P2nLnBLMSVFLhNcpRMl2EF3V3szPH-4fkzd4AIh5XYkZFA-qxqlVn8jK_uaIYxv6VFC2_T2frfd27DZoUuvatSHXZgyYyasDE3c7AJa0XNp8534dKt1yQ2M8azJsvG5UacofYQxJZ6eeH1snHdi-nN57r34Klz83h9S6pdCkSHsZiQOEXHQ3WcGu2zhPuDxEf7s-jCEuv7kbWUpzK1kR0Ybi0GZaEeiEgaSWMkpzbch8ZoPDIH4OFlHibIWUQWzMUzkQgSKlAXODWhYS3wa5YqXQ0ad_suXpQLOJBFqmSRQhapgkVq2oKzzzuv5ZiNX6nbtaRUZXK5CoSbxkeFlAuPEaaKIkcZteC8Ftzs-OeXHf6N_AjWg0L2IfFZGxqT7M0cw6p-nwzz7KTQ1A831uGr
  priority: 102
  providerName: Springer Nature
Title Lead-free ferroelectric materials: Prospective applications
URI https://link.springer.com/article/10.1557/s43578-021-00180-y
https://www.proquest.com/docview/2708280799
https://www.proquest.com/docview/3267437296
Volume 36
WOSCitedRecordID wos000645615700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: 7WY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: M0C
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: KB.
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 2044-5326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015074
  issn: 0884-2914
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB90PUEf1PODW7_og29eNG2TptEHUVEEdVk8P59KNx8gyK7Xrgf-9zdpU1dFffElUJK0JTPJzGSS3w9gQ-vcUsUZ6WkVEWY5J1KrhKQy4WhOFU9qyPwz0emkt7ey6zfcSn-sslkTq4VaD5TbI99GN0NUOaZk7_EvcaxRLrvqKTTGYcIhlbEWTBwcdboXL3kE9HZY7UcyEsmQ-WsznIvtkjmgF-KOKDhmOkqe35qmkb_5LkVaWZ7j2e_-8xzMeJ8z2K-V5CeMmf48TL9CIpyHyeokqCoXYNeRbhJbGBNYUxSDmifnXgXo2tbauhN0i0FzQzN4nQFfhKvjo8vDE-IZFoiKUzEkqUZzRFWqjQpZzsNeHuKstGjYchuGibWUa6ltYnuGW4uhWqx6IpFG0hSbUxsvQas_6JtfEGBnHuc4xuhvMBflJCLKqUAN4dTEhrUhbAY3Ux5-3LFgPGQuDEGBZLVAMhRIVgkke27D5kufxxp848vWq40UMj8RyywSDqOPCik_rB5JqA2_GzGPqj__2PLXb1uBqajSrJiEbBVaw-LJrMEP9W94XxbrMC5u7ta9ruLT6cEWluf0EMuLP9f_ASbu8As
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6FtKjlUEopIpCCD-UEq67tXa8XhBBKqVoljXIoUm-Lsw-pEkqKnYLyp_obO-tHE6qSWw-c92HZ883sN57ZGYB9YzJHNWdkbHREmOOcSKMTksqE43GqeVKVzB-I4TA9P5ejFlw3d2F8WmVjE0tDbaba_yM_QJohyhhT8uXyF_Fdo3x0tWmhUcGib-d_0GUrPp8conzfRdHRt7PeMam7ChAdp2JGUoMmmOrUWB2yjIfjLEQkOjTmmQvDxDnKjTQucWPLnUP3JNZjkUgraYrTqYtx30ewxhiqg08VpL3bqAVyK1axVkYiGbL6kg7n4qBgvqwM8QkRvg8eJfO_D8IFu70TkC3PuaOn_9sX2oatmlEHXysVeAYtO9mBJ0t1FnfgcZnnqovn8Mm3FCUutzZwNs-nVRegCx0gca908WMwyqfN_dNgOb6_C98f5D1eQHsyndiXEOBiHmcoU2RTzPtwiYgyKhD_nNrYsg6EjTCVrour-x4fP5V3shAAqgKAQgCoEgBq3oH3t2suq9IiK2d3G6mr2swUKhK-AiEVUt47vEBEBz40sFoM__thr1bv9hY2js9OB2pwMuy_hs2oRHVMQtaF9iy_snuwrn_PLor8TakfAfx4aLjdAOueSIc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xrMqBV1t1gUIOcAJrncSOY1BVVaUrEGi1ByrgZLJ-SEjVLk22rfav9dcxzoMFVLhx4OxHlMw345nMeD6AbWMyRzVnpG90RJjjnEijE5LKhONxqnlStcw_Fd1uenEhe1Pwr7kL48sqG5tYGmoz1P4feRvdDFHmmJK2q8sieoedLze_iGeQ8pnWhk6jgsiJHf_F8K34fHyIst6Jos73s29HpGYYIDpOxYikBs0x1amxOmQZD_tZiKh0aNgzF4aJc5QbaVzi-pY7h6FKrPsikVbSFKdTF-O-0zArPO5Rl8T55V0GA_0sVnmwjEQyZPWFHc5Fu2C-xQzxxRGeE4-S8cNDceLpPkrOlmdeZ-k1f61lWKw97eBrpRorMGUHq7Bwr__iKsyX9a-6eAcHnmqUuNzawNk8H1bsQNc6QIe-0tH9oJcPm3upwf28_3v48SLv8QFmBsOB_QgBLuZxhvJFL4v52C4RUUYF6gWnNrasBWEjWKXrpuue--On8sEXgkFVYFAIBlWCQY1bsHu35qZqOfLs7I0GAao2P4WKhO9MSIWU_x2eoKMFew3EJsNPP2zt-d224A2iTJ0ed0_W4W1UAjwmIduAmVH-236COf1ndF3km6WqBHD10mi7BR3_UaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lead-free+ferroelectric+materials%3A+Prospective+applications&rft.jtitle=Journal+of+materials+research&rft.au=Zhang%2C+Shujun&rft.au=Mali%C4%8D%2C+Barbara&rft.au=Jing-Feng%2C+Li&rft.au=R%C3%B6del+J%C3%BCrgen&rft.date=2021-03-14&rft.pub=Springer+Nature+B.V&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=36&rft.issue=5&rft.spage=985&rft.epage=995&rft_id=info:doi/10.1557%2Fs43578-021-00180-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon