Lead-free ferroelectric materials: Prospective applications
The year of 2021 is the 100th anniversary of the first publication of ferroelectric behaviour in Rochelle salt, focussing on its piezoelectric properties. Over the past many decades, people witnessed a great impact of ferroelectricity on our everyday life, where numerous ferroelectric materials have...
Saved in:
| Published in: | Journal of materials research Vol. 36; no. 5; pp. 985 - 995 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
14.03.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0884-2914, 2044-5326 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The year of 2021 is the 100th anniversary of the first publication of ferroelectric behaviour in Rochelle salt, focussing on its piezoelectric properties. Over the past many decades, people witnessed a great impact of ferroelectricity on our everyday life, where numerous ferroelectric materials have been designed and developed to enable the advancement of diverse applications. Now the driving forces for ferroelectric studies stem from regulations on environment, human health and sustainable society development. This leads to the resurgence of lead-free ferroelectric materials for the expectation of replacing the state-of-the-art lead-based counterparts. The next wave of explorations into ferroelectric materials maybe related to the Internet-of-Things, which requires millions of self-powered sensors and memories. This will promote research on ferroelectrics for sensing, energy harvesting and storage, communication and non-volatile memories, from centimetre scale to micro and nanoscale. This review gives a brief discussion from the materials viewpoint, on the challenges and current status of lead-free ferroelectrics based on prospective applications.
Graphic Abstract |
|---|---|
| AbstractList | The year of 2021 is the 100th anniversary of the first publication of ferroelectric behaviour in Rochelle salt, focussing on its piezoelectric properties. Over the past many decades, people witnessed a great impact of ferroelectricity on our everyday life, where numerous ferroelectric materials have been designed and developed to enable the advancement of diverse applications. Now the driving forces for ferroelectric studies stem from regulations on environment, human health and sustainable society development. This leads to the resurgence of lead-free ferroelectric materials for the expectation of replacing the state-of-the-art lead-based counterparts. The next wave of explorations into ferroelectric materials maybe related to the Internet-of-Things, which requires millions of self-powered sensors and memories. This will promote research on ferroelectrics for sensing, energy harvesting and storage, communication and non-volatile memories, from centimetre scale to micro and nanoscale. This review gives a brief discussion from the materials viewpoint, on the challenges and current status of lead-free ferroelectrics based on prospective applications.Graphic Abstract The year of 2021 is the 100th anniversary of the first publication of ferroelectric behaviour in Rochelle salt, focussing on its piezoelectric properties. Over the past many decades, people witnessed a great impact of ferroelectricity on our everyday life, where numerous ferroelectric materials have been designed and developed to enable the advancement of diverse applications. Now the driving forces for ferroelectric studies stem from regulations on environment, human health and sustainable society development. This leads to the resurgence of lead-free ferroelectric materials for the expectation of replacing the state-of-the-art lead-based counterparts. The next wave of explorations into ferroelectric materials maybe related to the Internet-of-Things, which requires millions of self-powered sensors and memories. This will promote research on ferroelectrics for sensing, energy harvesting and storage, communication and non-volatile memories, from centimetre scale to micro and nanoscale. This review gives a brief discussion from the materials viewpoint, on the challenges and current status of lead-free ferroelectrics based on prospective applications. Graphic Abstract |
| Author | Rödel, Jürgen Li, Jing-Feng Zhang, Shujun Malič, Barbara |
| Author_xml | – sequence: 1 givenname: Shujun orcidid: 0000-0001-6139-6887 surname: Zhang fullname: Zhang, Shujun email: shujun@uow.edu.au organization: Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong – sequence: 2 givenname: Barbara orcidid: 0000-0002-3438-8846 surname: Malič fullname: Malič, Barbara organization: Electronic Ceramics Department, Jožef Stefan Institute – sequence: 3 givenname: Jing-Feng orcidid: 0000-0002-0185-0512 surname: Li fullname: Li, Jing-Feng organization: State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 4 givenname: Jürgen orcidid: 0000-0002-8975-7741 surname: Rödel fullname: Rödel, Jürgen organization: Institute of Materials Science, Technische Universität Darmstadt |
| BookMark | eNp9kE1LAzEURYNUsK3-AVcDrqMvX5NEV1L8goIudB3STCIp05kxmQr990YrCC66CjzOeS_3ztCk6zuP0DmBSyKEvMqcCakwUIIBiAK8O0JTCpxjwWg9QVNQimOqCT9Bs5zXBRIg-RTdLL1tcEjeV8Gn1PvWuzFFV23s6FO0bb6uXlKfhzKOn76yw9BGZ8fYd_kUHYcC-LPfd47e7u9eF494-fzwtLhdYseUHLFqONXgVOMd4VaQlSUAInDCbCCkDgFEo5tQh5UXIWjKmVvJWnsNquAQ2Bxd7PcOqf_Y-jyadb9NXTlpSjjJmaS6PkRRCYoqkFoXSu0pV0Ll5INxcfyJMyYbW0PAfBdq9oWaUqj5KdTsikr_qUOKG5t2hyW2l3KBu3ef_n51wPoClF2KoA |
| CitedBy_id | crossref_primary_10_1016_j_ceramint_2024_08_432 crossref_primary_10_1016_j_ceramint_2025_09_080 crossref_primary_10_1063_5_0149949 crossref_primary_10_1016_j_mtcomm_2024_110784 crossref_primary_10_1016_j_ceramint_2023_06_264 crossref_primary_10_1016_j_jmst_2024_06_047 crossref_primary_10_1016_j_ceramint_2022_02_243 crossref_primary_10_1002_adfm_202306416 crossref_primary_10_1139_cjp_2023_0265 crossref_primary_10_1016_j_materresbull_2025_113475 crossref_primary_10_1002_advs_202508293 crossref_primary_10_1063_5_0242877 crossref_primary_10_1016_j_mssp_2024_108948 crossref_primary_10_1016_j_physb_2023_415537 crossref_primary_10_1016_j_tsf_2023_139885 crossref_primary_10_1016_j_solidstatesciences_2024_107558 crossref_primary_10_1039_D5SE00053J crossref_primary_10_3390_ceramics7020047 crossref_primary_10_1016_j_flatc_2025_100926 crossref_primary_10_1007_s40830_025_00526_z crossref_primary_10_1007_s11665_024_09786_9 crossref_primary_10_1016_j_jeurceramsoc_2023_07_042 crossref_primary_10_3390_inventions10030041 crossref_primary_10_1007_s10854_025_14686_2 crossref_primary_10_1007_s10854_025_14700_7 crossref_primary_10_1016_j_jeurceramsoc_2023_01_007 crossref_primary_10_1007_s10854_023_11517_0 crossref_primary_10_1080_00150193_2023_2262655 crossref_primary_10_3390_cryst11091031 crossref_primary_10_1126_science_adn4926 crossref_primary_10_1016_j_ceramint_2025_02_267 crossref_primary_10_1038_s41467_024_51024_2 crossref_primary_10_1002_adfm_202511290 crossref_primary_10_1063_5_0220720 crossref_primary_10_1002_adma_202109175 crossref_primary_10_1016_j_ceramint_2025_01_179 crossref_primary_10_1016_j_mtla_2023_101935 crossref_primary_10_1111_jace_19326 crossref_primary_10_1038_s41598_021_02751_9 crossref_primary_10_1016_j_molstruc_2023_137391 crossref_primary_10_1016_j_mser_2025_101111 crossref_primary_10_1016_j_ceramint_2025_09_307 crossref_primary_10_1016_j_jallcom_2025_181529 crossref_primary_10_1007_s10854_022_08005_2 crossref_primary_10_1016_j_matdes_2022_110893 crossref_primary_10_1039_D5RA00245A crossref_primary_10_1016_j_nanoen_2024_109972 crossref_primary_10_1007_s12598_023_02452_4 crossref_primary_10_1016_j_mssp_2023_107942 crossref_primary_10_1016_j_supflu_2024_106340 crossref_primary_10_1016_j_mser_2024_100793 crossref_primary_10_1063_5_0206593 crossref_primary_10_1002_zaac_202400005 crossref_primary_10_1016_j_ceramint_2022_12_061 crossref_primary_10_1016_j_ceramint_2024_05_132 crossref_primary_10_1016_j_matchemphys_2024_129381 crossref_primary_10_26599_JAC_2024_9220878 crossref_primary_10_1016_j_jeurceramsoc_2024_117065 crossref_primary_10_1038_s41467_025_56074_8 crossref_primary_10_1007_s41779_022_00785_4 crossref_primary_10_3390_nano15110863 crossref_primary_10_1016_j_jeurceramsoc_2023_12_045 crossref_primary_10_1007_s10854_023_11393_8 crossref_primary_10_1016_j_jssc_2023_124378 crossref_primary_10_1007_s00339_023_06820_w crossref_primary_10_3390_ma14237137 crossref_primary_10_1142_S2010135X25400016 crossref_primary_10_1016_j_ceramint_2025_02_038 crossref_primary_10_1016_j_cej_2025_161567 crossref_primary_10_1016_j_ceramint_2022_01_260 crossref_primary_10_1016_j_matchemphys_2024_129374 crossref_primary_10_1016_j_jeurceramsoc_2023_09_034 crossref_primary_10_1016_j_jmst_2022_05_031 crossref_primary_10_1063_5_0258087 crossref_primary_10_1016_j_jeurceramsoc_2024_05_077 crossref_primary_10_1007_s10854_025_15271_3 crossref_primary_10_1016_j_jeurceramsoc_2023_12_058 crossref_primary_10_1007_s10832_021_00264_5 crossref_primary_10_1063_5_0250408 crossref_primary_10_1016_j_mtcomm_2023_105446 crossref_primary_10_1016_j_apcatb_2022_121471 crossref_primary_10_1016_j_ceramint_2023_10_112 crossref_primary_10_1016_j_jallcom_2024_176373 crossref_primary_10_1016_j_jallcom_2024_177342 crossref_primary_10_1007_s10854_023_10240_0 crossref_primary_10_1016_j_actamat_2021_117351 crossref_primary_10_1016_j_ceramint_2022_09_255 crossref_primary_10_1016_j_jallcom_2022_165604 crossref_primary_10_1007_s10854_024_13519_y crossref_primary_10_1021_acs_chemmater_5c00325 crossref_primary_10_1007_s10854_024_13120_3 crossref_primary_10_1016_j_optmat_2024_115191 crossref_primary_10_1016_j_ceramint_2023_12_195 crossref_primary_10_1016_j_jssc_2023_124150 crossref_primary_10_1016_j_physo_2025_100327 crossref_primary_10_1039_D5MA00643K crossref_primary_10_1016_j_actamat_2023_118997 crossref_primary_10_1002_pssa_202300755 crossref_primary_10_1016_j_jallcom_2024_178145 |
| Cites_doi | 10.1557/s43578-020-00048-7 10.1557/s43578-020-00018-z 10.1557/s43578-020-00016-1 10.1557/s43578-020-00074-5 10.1557/s43578-020-00007-2 10.1557/s43578-020-00078-1 10.1557/s43578-020-00023-2 10.1557/s43578-020-00093-2 10.1557/s43578-020-00081-6 10.1557/s43578-020-00015-2 10.1557/s43578-020-00085-2 10.1557/s43578-020-00076-3 10.1016/j.jeurceramsoc.2016.07.023 10.1557/mrs.2018.181 10.1016/j.pmatsci.2014.01.002 10.1063/1.1554488 10.1179/174367606X81650 10.1039/C6TA06353E 10.1063/5.0035281 10.1007/s10832-007-9095-5 10.1016/j.pmatsci.2018.12.005 10.1016/j.actamat.2017.07.008 10.1063/1.1721741 10.1111/jace.12715 10.1038/srep17656 10.1039/C7TA03821F 10.1016/j.jeurceramsoc.2014.12.013 10.1063/1.4861260 10.3390/ma8125449 10.1126/sciadv.aay5979 10.1016/j.actamat.2020.06.002 10.1039/C6TC03289C 10.1063/1.2562464 10.1038/s41467-020-18665-5 10.3390/act5010008 10.1111/j.1551-2916.2009.03104.x 10.1111/j.1551-2916.2008.02871.x 10.1039/C6TA04107H 10.1002/adfm.201801504 10.7567/JJAP.50.09ND10 10.1111/jace.16755 10.1016/j.jeurceramsoc.2019.12.009 10.1016/j.jmat.2018.02.001 10.1039/C8EE03287D 10.1143/JPSJ.7.5 10.1111/j.1551-2916.2009.03061.x 10.1002/adma.201601727 10.1016/j.actamat.2018.02.026 10.1143/JPSJ.8.615 10.1063/1.1367291 10.1038/s41467-021-21202-7 10.1016/j.jeurceramsoc.2018.11.025 10.1039/D0TC04381H 10.1039/D0TA08345C 10.1002/adma.201601859 10.7567/JJAP.52.09KD07 10.1039/C9TA02053E 10.1038/s41563-020-0704-x 10.1111/j.1551-2916.2012.05462.x 10.1038/s41467-021-21673-8 10.1126/science.1123811 10.1039/C5TA03614C 10.1002/adma.201705171 10.1021/cr5006809 10.1016/j.jmat.2015.12.002 10.1007/s10832-005-0956-5 10.1039/D0TC01220C 10.1063/1.3634052 10.1111/jace.15079 10.1016/j.jmat.2018.09.006 10.1557/mrs.2018.154 10.1146/annurev-matsci-070616-124023 10.1080/00150190902889036 10.1063/1.3641975 10.1007/s10832-012-9742-3 10.1007/s10832-004-5130-y 10.1039/C8TA09353A 10.1002/adma.200802902 10.1063/1.4976026 10.1021/acsami.0c08737 10.1002/adma.201904819 10.1063/5.0035542 10.1063/1.3636434 10.1063/1.4895615 10.1002/adfm.201203754 10.1209/0295-5075/111/57009 10.1007/978-1-4419-9598-8 10.1557/jmr.2017.207 10.1111/jace.13723 10.1038/nature03028 10.1063/5.0018373 10.1002/adfm.201903877 10.7567/JJAP.55.10TB07 10.1080/10408430490490905 10.1021/acsami.7b17382 10.1002/adma.201701824 10.1002/adma.201802155 10.7567/JJAP.52.07HE01 10.1063/1.4986911 10.1039/C9CS00432G 10.1111/j.1551-2916.2008.02324.x 10.1021/acs.cgd.6b01287 10.1016/j.jeurceramsoc.2020.02.038 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to The Materials Research Society 2021 The Author(s), under exclusive licence to The Materials Research Society 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to The Materials Research Society 2021 – notice: The Author(s), under exclusive licence to The Materials Research Society 2021. |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 3V. 7WY 7WZ 7XB 87Z 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA BENPR BEZIV BGLVJ CCPQU D1I DWQXO FRNLG F~G HCIFZ K60 K6~ KB. L.- L.0 M0C PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0W |
| DOI | 10.1557/s43578-021-00180-y |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Materials Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ABI/INFORM Global Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ABI/INFORM Professional Standard ProQuest Central Korea Materials Science Database ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Materials Research Database Materials Research Database |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 2044-5326 |
| EndPage | 995 |
| ExternalDocumentID | 10_1557_s43578_021_00180_y |
| GroupedDBID | -E. -~X .DC .FH 0E1 0R~ 2JN 4.4 406 5GY 5VS 74X 74Y 7WY 7~V 8FE 8FG 8UJ 8WZ A6W AAAZR AACDK AACJH AAGFV AAHNG AAIKC AAJBT AAKTX AAMNW AARAB ABBXD ABECU ABEFU ABGDZ ABJNI ABKKG ABMQK ABQTM ABROB ABTEG ABTKH ABTMW ABZCX ACAOD ACBEA ACBEK ACBMC ACGFO ACGFS ACHSB ACIHN ACIMK ACIWK ACPIV ACUIJ ACXSD ACZBM ACZOJ ACZUX ADCGK ADFEC AEAQA AEFQL AEMSY AEMTW AENEX AESKC AEYYC AFBBN AFFUJ AFKRA AFLOS AFLVW AFUTZ AGMZJ AGQEE AISIE AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALWZO AMTXH AMXSW AMYLF ARABE ATUCA BBLKV BENPR BEZIV BGHMG BGLVJ BMAJL BPHCQ C0O CS3 CZ9 D1I DC4 DOHLZ DPUIP DU5 EBLON EBS F5P HG- HST HZ~ I.6 I.9 IH6 IKXTQ IS6 IWAJR I~P J36 J38 J3A JHPGK JKPOH JZLTJ K60 K6~ KB. KC. L98 LLZTM M-V M0C NIKVX NPVJJ NQJWS O9- P2P PQBIZ PQQKQ PROAC PYCCK RAMDC RCA RNS ROL RR0 RSV S0W S6- S6U SJN SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW T9M TAE TN5 TWZ UPT UT1 WH7 WQ3 WXU YQT ~02 8FL AASML AATNV AAUYE AAYXX ABAKF ABBRH ABDBE ABFSG ABJCF ABRTQ ABUWG ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIGIU AIXLP ATHPR AYFIA CCPQU CITATION DWQXO HCIFZ KOV PDBOC PHGZM PHGZT PQBZA PQGLB 7SR 8BQ 8FD JG9 3V. 7XB 8FK FRNLG L.- L.0 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c387t-8d4290c8dec14a51ba1005f413af116ff05d9df6fbe5ff9243cb769e9084a50f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 129 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645615700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0884-2914 |
| IngestDate | Sat Nov 01 15:01:49 EDT 2025 Thu Sep 18 00:04:50 EDT 2025 Sat Nov 29 05:54:50 EST 2025 Tue Nov 18 22:29:09 EST 2025 Fri Feb 21 02:47:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Ferroelectrics Lead free Ceramics Piezoelectric Energy storage |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c387t-8d4290c8dec14a51ba1005f413af116ff05d9df6fbe5ff9243cb769e9084a50f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3438-8846 0000-0001-6139-6887 0000-0002-0185-0512 0000-0002-8975-7741 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1557/s43578-021-00180-y.pdf |
| PQID | 3267437296 |
| PQPubID | 626330 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3267437296 proquest_journals_2708280799 crossref_citationtrail_10_1557_s43578_021_00180_y crossref_primary_10_1557_s43578_021_00180_y springer_journals_10_1557_s43578_021_00180_y |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-14 |
| PublicationDateYYYYMMDD | 2021-03-14 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Warrendale |
| PublicationTitle | Journal of materials research |
| PublicationTitleAbbrev | Journal of Materials Research |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Gao, Guo, Zhang, Randall (CR105) 2016; 5 Li (CR6) 2021 Li, Shen, Chen (CR90) 2020; 19 Maeder, Damjanovic, Setter (CR14) 2004; 13 Yang, Li, Liu (CR44) 2021; 12 Randall, Kelnberger, Yang (CR104) 2005; 14 Fu, Zuo (CR26) 2020; 195 Li, Wang, Zhu (CR17) 2013; 96 Kabakov, Dean, Kurusingal (CR29) 2020; 8 Chen, Xu, Yang, Wang (CR32) 2007; 101 Zheng, Chen, Jiang (CR59) 2021 Ogihara, Randall, Trolier-McKinstry (CR67) 2009; 92 Yang, Gao, Shu (CR77) 2020; 8 Yao, Song, Hao (CR63) 2017; 29 Lv, Zhu, Xiao (CR27) 2020; 49 Sabolsky, James, Kwon (CR43) 2001; 78 Shrout, Zhang (CR10) 2007; 19 Chen, Cheng, Guo (CR57) 2020; 103 Hur, Wang, Tasneem (CR103) 2021 Shen, Zhang, Qin (CR60) 2021 Böscke, Bräuhaus (CR100) 2011; 99 Tian, Jin, Zhang (CR81) 2017; 5 Hong, Kim, Choi (CR16) 2016; 2 Harada, Takagi, Nagata (CR58) 2021 Tan, Ma, Frederick (CR74) 2011; 94 Zhao, Liu, Zhang, Li (CR78) 2016; 4 Tani, Kimura (CR42) 2006; 105 Bell, Deubzer (CR5) 2018; 43 Shen, Wang, Luo (CR71) 2015; 3 Shkuratov, Baird, Antipov, Zhang, Chase (CR66) 2019; 31 Hu, Meng, Zhang (CR30) 2020; 6 Luo, Tang, Han (CR85) 2021 Hao, Zhai, Kong, Xu (CR75) 2014; 63 Jaffe, Roth, Marzullo (CR3) 1954; 25 Gao, Zhao, Lee (CR82) 2019; 7 Gao, Cheng, Chen (CR28) 2021; 12 Qi, Zuo, Xie (CR87) 2019; 19 Lalitha, Riemer, Koruza, Rödel (CR53) 2017; 111 Wu (CR8) 2018 Li, Jin, Xu (CR91) 2014; 1 Zhao, Liu, Gao (CR84) 2017; 29 Chen, Kang, Hou (CR61) 2021 Luo, Han, Zhuo (CR83) 2019; 7 Saito, Takao, Tani (CR22) 2004; 432 Koruza, Bell, Fromling (CR13) 2018; 4 Wang, Bando, Katsumata (CR23) 2009; 3 Moriana, Zhang (CR45) 2018; 4 Yang, Kong, Cheng (CR68) 2020; 12 Tian, Jin, Zhang (CR80) 2016; 4 Lee, Ural, Chen (CR52) 2012; 95 Jiang, Randall, Guo (CR35) 2015; 98 Jo, Dittmer, Acosta (CR12) 2012; 29 Nguyen, Thong, Zhu (CR48) 2021 Kong, Yang, Cheng (CR72) 2021; 20 Trolier-McKinstry, Zhang, Bell, Tan (CR4) 2018; 48 Wang, Bando, Kidate (CR24) 2011; 50 Park, Yang, Lee (CR101) 2020; 128 Wang, Wu, Dkhil (CR96) 2017; 110 Lalitha, Zhu, Salazar (CR49) 2021; 104 Boscke, Muller, Brauhaus (CR99) 2011; 99 Luo, Han, Cabral (CR88) 2020; 11 Kobayashi, Doshida, Mizuno, Randall (CR106) 2013; 52 Yang, Kong, Cheng (CR73) 2021 Sabolsky, Trolier-McKinstry, Messing (CR46) 2003; 93 Plaznik, Vrabelj, Kutnjak (CR95) 2015; 111 Malic, Koruza, Hrescak (CR21) 2015; 8 Li, Zhai, Shen (CR47) 2018; 30 Fujii, Ueno, Wada (CR38) 2020; 40 Ahn, Rahman, Ryu (CR37) 2016; 16 Zhang, Zheng, Zhao (CR98) 2021 Rodel, Jo, Seifert (CR9) 2009; 92 Fisher, Bencan, Kosec (CR34) 2008; 91 Ko, Park, Kim (CR33) 2017; 37 Priya, Nahm (CR7) 2012 Jiang, Hao, Zhang (CR70) 2019; 39 Rozic, Kosec, Ursic (CR94) 2011; 110 Rodel, Li (CR15) 2018; 43 Xu, Li, Lv (CR19) 2016; 28 Sawaguchi (CR1) 1953; 8 Wang, Lu, Li (CR107) 2020; 40 Yao, Jiang, Han (CR39) 2021; 20 Wang, Yao, Jo (CR20) 2013; 23 Yang, Kong, Li (CR62) 2019; 102 Rodel, Webber, Dittmer (CR11) 2015; 35 CR18 Zhao, Gao, Liu (CR79) 2018; 10 Ahn, Lee, Han (CR36) 2015; 5 Breyer, Mulaosmannovic, Mikolajick, Slesazeck (CR102) 2021; 118 Riemer, Venkataraman, Jiang (CR54) 2017; 136 Yang, Du, Qu (CR69) 2016; 4 Gao, Li, Zhang, Li (CR76) 2020; 128 Yang, Bao, Lu (CR108) 2021 Wang, Li, Zhang (CR64) 2019; 12 Liu, Veber, Rodel (CR31) 2018; 148 Mischenko, Zhang, Scott (CR92) 2006; 311 Zhang, Wei, Zhang (CR65) 2020; 8 Luo, Zhang, Liu (CR97) 2014; 105 Messing, Poterala, Chang (CR41) 2017; 32 Messing, Trolier-McKinstry, Sabolsky (CR40) 2004; 29 Doshida, Shimizu, Mizuno, Tamura (CR50) 2013; 52 Li, Li, Xu (CR89) 2018; 30 Lu, Zhang (CR93) 2009; 21 Watanabe, Hiruma, Nagaata, Takenaka (CR51) 2009; 385 Li, Wei, Tu (CR56) 2017; 100 Shirane, Suzuki (CR2) 1952; 7 Zuo, Fu, Lv (CR25) 2009; 92 Li, Zhang, Damjanovic (CR86) 2018; 28 Muramatsu, Nataga, Takenaka (CR55) 2016; 55 TN Nguyen (180_CR48) 2021 L Yang (180_CR62) 2019; 102 Z Yang (180_CR69) 2016; 4 H Liu (180_CR31) 2018; 148 L Zhao (180_CR79) 2018; 10 I Fujii (180_CR38) 2020; 40 N Luo (180_CR83) 2019; 7 M Jiang (180_CR35) 2015; 98 L Zheng (180_CR59) 2021 S Lu (180_CR93) 2009; 21 N Luo (180_CR85) 2021 GL Messing (180_CR40) 2004; 29 ET Breyer (180_CR102) 2021; 118 X Lv (180_CR27) 2020; 49 EM Sabolsky (180_CR46) 2003; 93 J Chen (180_CR57) 2020; 103 H Muramatsu (180_CR55) 2016; 55 B Rozic (180_CR94) 2011; 110 H Ogihara (180_CR67) 2009; 92 AJ Bell (180_CR5) 2018; 43 H Qi (180_CR87) 2019; 19 JN Chen (180_CR61) 2021 B Malic (180_CR21) 2015; 8 AS Mischenko (180_CR92) 2006; 311 K Kobayashi (180_CR106) 2013; 52 Y Doshida (180_CR50) 2013; 52 X Tan (180_CR74) 2011; 94 N Zhang (180_CR98) 2021 G Shirane (180_CR2) 1952; 7 Q Li (180_CR56) 2017; 100 J Gao (180_CR76) 2020; 128 KV Lalitha (180_CR49) 2021; 104 G Wang (180_CR64) 2019; 12 K Xu (180_CR19) 2016; 28 U Plaznik (180_CR95) 2015; 111 Z Shen (180_CR71) 2015; 3 XH Hao (180_CR75) 2014; 63 X Kong (180_CR72) 2021; 20 R Zuo (180_CR25) 2009; 92 X Yao (180_CR39) 2021; 20 N Luo (180_CR88) 2020; 11 J Gao (180_CR82) 2019; 7 MD Maeder (180_CR14) 2004; 13 X Jiang (180_CR70) 2019; 39 CH Hong (180_CR16) 2016; 2 L Riemer (180_CR54) 2017; 136 Z Luo (180_CR97) 2014; 105 JY Park (180_CR101) 2020; 128 C Randall (180_CR104) 2005; 14 X Gao (180_CR28) 2021; 12 CW Ahn (180_CR36) 2015; 5 W Jo (180_CR12) 2012; 29 G Wang (180_CR107) 2020; 40 CW Ahn (180_CR37) 2016; 16 S Yang (180_CR44) 2021; 12 J Li (180_CR89) 2018; 30 SI Shkuratov (180_CR66) 2019; 31 J Fu (180_CR26) 2020; 195 T Tani (180_CR42) 2006; 105 SY Ko (180_CR33) 2017; 37 EM Sabolsky (180_CR43) 2001; 78 Y Tian (180_CR81) 2017; 5 S Harada (180_CR58) 2021 T Watanabe (180_CR51) 2009; 385 J Li (180_CR90) 2020; 19 JF Li (180_CR6) 2021 X Wang (180_CR96) 2017; 110 L Zhao (180_CR78) 2016; 4 L Yang (180_CR68) 2020; 12 L Yang (180_CR73) 2021 D Yang (180_CR77) 2020; 8 AD Moriana (180_CR45) 2018; 4 J Rodel (180_CR15) 2018; 43 JF Li (180_CR17) 2013; 96 R Wang (180_CR24) 2011; 50 F Li (180_CR86) 2018; 28 JG Wu (180_CR8) 2018 K Wang (180_CR20) 2013; 23 Z Yao (180_CR63) 2017; 29 C Hu (180_CR30) 2020; 6 H Yang (180_CR108) 2021 F Li (180_CR91) 2014; 1 J Rodel (180_CR11) 2015; 35 TR Shrout (180_CR10) 2007; 19 P Li (180_CR47) 2018; 30 L Gao (180_CR105) 2016; 5 TS Boscke (180_CR99) 2011; 99 180_CR18 Y Saito (180_CR22) 2004; 432 JG Fisher (180_CR34) 2008; 91 K Chen (180_CR32) 2007; 101 GL Messing (180_CR41) 2017; 32 L Zhao (180_CR84) 2017; 29 P Kabakov (180_CR29) 2020; 8 KV Lalitha (180_CR53) 2017; 111 TS Böscke (180_CR100) 2011; 99 J Hur (180_CR103) 2021 R Wang (180_CR23) 2009; 3 H Zhang (180_CR65) 2020; 8 E Sawaguchi (180_CR1) 1953; 8 B Jaffe (180_CR3) 1954; 25 J Koruza (180_CR13) 2018; 4 Y Tian (180_CR80) 2016; 4 Z Shen (180_CR60) 2021 S Priya (180_CR7) 2012 S Trolier-McKinstry (180_CR4) 2018; 48 HJ Lee (180_CR52) 2012; 95 J Rodel (180_CR9) 2009; 92 |
| References_xml | – volume: 95 start-page: 3383 year: 2012 ident: CR52 article-title: High power characteristics of lead-free piezoelectric ceramics publication-title: J. Am. Ceram. Soc. – volume: 92 start-page: 283 year: 2009 ident: CR25 article-title: Phase transformation and tunable piezoelectric properties of lead-free (Na, K, Li)(Nb, Sb, Ta)O3 system publication-title: J. Am. Ceram. Soc. – volume: 148 start-page: 499 year: 2018 ident: CR31 article-title: High performance piezoelectric (K, Na, Li)(Nb, Ta, Sb)O3 single crystals by oxygen annealing publication-title: Acta Mater. – volume: 8 start-page: 16648 year: 2020 ident: CR65 article-title: A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors publication-title: J. Mater. Chem. C – volume: 25 start-page: 809 year: 1954 ident: CR3 article-title: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics publication-title: J. Appl. Phys. – volume: 7 start-page: 5 year: 1952 ident: CR2 article-title: Crystal structure of Pb(Zr, Ti) 3 publication-title: J. Phys. Soc. Jpn. – year: 2021 ident: CR58 article-title: Quenching effects on electrical properties of Cu-doped (Bi Na )TiO -based solid solution ceramics publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00048-7 – volume: 55 start-page: 10TB07 year: 2016 ident: CR55 article-title: Quenching effects for piezoelectric properties on lead-free BNT ceramics publication-title: Jpn. J. Appl. Phys. – volume: 100 start-page: 5573 year: 2017 ident: CR56 article-title: Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched BF-BT ceramics publication-title: J. Am. Ceram. Soc. – volume: 16 start-page: 6586 year: 2016 ident: CR37 article-title: Composition design for growth of single crystal by abnormal grain growth in modified potassium sodium niobate ceramics publication-title: Cryst. Growth Des. – volume: 52 start-page: 09KD07 year: 2013 ident: CR106 article-title: Possibility of cofiring a nickel inner electrode in a NKN-LiF piezoelectric actuator publication-title: Jpn. J. Appl. Phys. – year: 2021 ident: CR6 publication-title: Lead-Free Piezoelectric Materials – volume: 30 start-page: 1705171 year: 2018 ident: CR47 article-title: Ultrahigh piezoelectric properties in textured KNN-based lead-free ceramics publication-title: Adv. Mater. – volume: 7 start-page: 2225 year: 2019 ident: CR82 article-title: Enhanced antiferroelectric phase stability in La-doped AN: perspectives from the microstructure to energy storage property publication-title: J. Mater. Chem. A – volume: 40 start-page: 2970 year: 2020 ident: CR38 article-title: Effects of sintering aid and atmosphere powder on the growth of KNN single crystals fabricated by solid-state crystal growth method publication-title: J. Europ. Ceram. Soc. – year: 2021 ident: CR85 article-title: Silver stoichiometry engineering: an alternative way to improve energy storage density of AgNbO -based antiferroelectric ceramics publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00018-z – volume: 37 start-page: 407 year: 2017 ident: CR33 article-title: Improved solid-state conversion and piezoelectric properties of NBT-BT-KNN single crystals publication-title: J. Europ. Ceram. Soc. – volume: 30 start-page: 1802155 year: 2018 ident: CR89 article-title: Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency publication-title: Adv. Mater. – volume: 23 start-page: 4079 year: 2013 ident: CR20 article-title: Temperature-insensitive KNN based lead-free piezoactuator ceramics publication-title: Adv. Funct. Mater. – volume: 110 start-page: 063904 year: 2017 ident: CR96 article-title: Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics publication-title: Appl. Phys. Lett. – volume: 29 start-page: 1601727 year: 2017 ident: CR63 article-title: Homogeneous/inhomogeneous structured dielectric and their energy storage performances publication-title: Adv. Mater. – year: 2021 ident: CR48 article-title: Hardening effect in lead-free piezoelectric ceramics publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00016-1 – volume: 14 start-page: 177 year: 2005 ident: CR104 article-title: High strain piezoelectric multilayer actuators- a material science and engineering challenge publication-title: J. Electroceram. – volume: 3 start-page: 18146 year: 2015 ident: CR71 article-title: BaTiO –BiYbO perovskite materials for energy storage applications publication-title: J. Mater. Chem. A – year: 2021 ident: CR103 article-title: Exploring argon plasma effect on ferroelectric Hf Zr O thin film atomic layer deposition publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00074-5 – ident: CR18 – volume: 4 start-page: 277 year: 2018 ident: CR45 article-title: Lead-free textured piezoceramics using tape casting: a review publication-title: J. Materiomics. – volume: 20 start-page: 21 year: 2021 ident: CR72 article-title: Bi(Mg Hf )O -modified SrTiO lead-free ceramics for high-temperature energy storage capacitors publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00007-2 – volume: 4 start-page: 13 year: 2018 ident: CR13 article-title: Requirements for the transfer of lead-free piezoceramics into application publication-title: J. Materiomics – volume: 8 start-page: 615 year: 1953 ident: CR1 article-title: Ferroelectricity versus antiferroelectricity in the solid solutions of PZ and PT publication-title: J. Phys. Soc. Jpn. – year: 2021 ident: CR60 article-title: Effect of (K Ce ) complex on the electrical properties of lead-free Bi Ti W O high-temperature piezoelectric ceramics publication-title: J. Mater. Res doi: 10.1557/s43578-020-00078-1 – volume: 52 start-page: 0701 year: 2013 ident: CR50 article-title: Investigation of high power properties of (Bi, Na, Ba)TiO3 and (Sr, Ca)2NaNb5O15 piezoelectric ceramics publication-title: Jpn. J. Appl. Phys. – volume: 118 start-page: 050501 year: 2021 ident: CR102 article-title: Perspective on ferroelectric, hafnium oxide based transistors for digital beyond von-Neumann computer publication-title: Appl. Phys. Lett. – year: 2021 ident: CR61 article-title: Dielectric, ferroelectric, and piezoelectric properties of Gd-modified CaBi Nb O high Curie temperature ceramics publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00023-2 – volume: 19 start-page: 999 year: 2020 ident: CR90 article-title: Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications publication-title: Nature Mater. – volume: 10 start-page: 819 year: 2018 ident: CR79 article-title: Silver niobate lead-free antiferroelectric ceramics: enhancing energy storage density by B-site doping publication-title: ACS Appl. Mater. Interfaces – volume: 103 start-page: 374 year: 2020 ident: CR57 article-title: Excellent thermal stability and aging behaviors in BF-BT piezoelecrtric ceramics with rhombohedral phase publication-title: J. Am. Ceram. Soc. – volume: 93 start-page: 4072 year: 2003 ident: CR46 article-title: Dielectric and piezoelectric properties of <001> fiber-textured 0675PMN-0325PT ceramics publication-title: J. Appl. Phys. – volume: 5 start-page: 8 year: 2016 ident: CR105 article-title: Based metal co-fired multilayer piezoelectrics publication-title: Actuators – volume: 6 start-page: eaay5979 year: 2020 ident: CR30 article-title: Ultra-large electric field induced strain in potassium sodium niobate crystals publication-title: Sci. Adv. – volume: 5 start-page: 17656 year: 2015 ident: CR36 article-title: Self-growth of centimetre scale single crystals by normal sintering process in modified potassium sodium niobate ceramics publication-title: Sci. Rep. – volume: 29 start-page: 71 year: 2012 ident: CR12 article-title: Giant electric field induced strains in lead-free ceramics for actuator applications- status and perspective publication-title: J. Electroceram – volume: 29 start-page: 1701824 year: 2017 ident: CR84 article-title: Lead-free antiferroelectric silver niobate tantalate with high energy storage performance publication-title: Adv. Mater. – volume: 13 start-page: 385 year: 2004 ident: CR14 article-title: Lead free piezoelectric materials publication-title: J. Electroceram – volume: 99 start-page: 112904 year: 2011 ident: CR100 article-title: Phase transitions in ferroelectric silicon doped hafnium oxide publication-title: Appl. Phys. Lett. – volume: 48 start-page: 191 year: 2018 ident: CR4 article-title: High performance piezoelectric crystals, ceramics and films publication-title: Ann. Rev. Mater. Res. – volume: 104 start-page: 2021 year: 2021 ident: CR49 article-title: Influence of Zn-doping on ferroelectric stability and electromechanical hardening in (Na Bi )TiO - BaTiO publication-title: J. Amer. Ceram. Soc. – volume: 92 start-page: 1719 year: 2009 ident: CR67 article-title: High-energy density capacitors utilizing BaTiO -BiScO ceramics publication-title: J. Am. Ceram. Soc. – volume: 12 start-page: 32834 year: 2020 ident: CR68 article-title: Enhanced energy storage performance of sodium niobate-based relaxor dielectrics by a ramp-to-spike sintering profile publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 8380 year: 2016 ident: CR78 article-title: Lead-free AN antiferroelectric ceramics with an enhanced energy storage performance using MnO modification publication-title: J. Mater. Chem. C – volume: 105 start-page: 55 year: 2006 ident: CR42 article-title: Reactive-templated grain growth processing for lead free piezoelectric ceramics publication-title: Adv. Appl. Ceram. – volume: 311 start-page: 1270 year: 2006 ident: CR92 article-title: Giant electrocaloric effect in thin-film PbZr Ti O publication-title: Science – volume: 28 start-page: 8519 year: 2016 ident: CR19 article-title: Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics publication-title: Adv. Mater. – volume: 12 start-page: 582 year: 2019 ident: CR64 article-title: Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity publication-title: Energy Environ. Sci. – volume: 50 start-page: 09ND10 year: 2011 ident: CR24 article-title: Effects of A-site ions on the phase transition temperatures and dielectric properties of NKN-AZrO solid solutions publication-title: Jpn. J. Appl. Phys. – volume: 43 start-page: 581 year: 2018 ident: CR5 article-title: Lead-free piezoelectrics- The environmental and regulatory issues publication-title: MRS Bull. – year: 2018 ident: CR8 publication-title: Advances in lead-free piezoelectric materials – volume: 63 start-page: 1 year: 2014 ident: CR75 article-title: A comprehensive review on the progress of lead zirconate based antiferroelectric materials publication-title: Prog. Mater Sci. – volume: 195 start-page: 571 year: 2020 ident: CR26 article-title: Structural evidence for the polymorphic phase boundary in NKN based perovskites close to the rhombohedral-tetragonal phase coexistence zone publication-title: Acta Mater. – volume: 29 start-page: 45 year: 2004 ident: CR40 article-title: Templated grain growth of textured piezoelectric ceramics publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 39 start-page: 1103 year: 2019 ident: CR70 article-title: Enhanced energy storage and fast discharge properties of BT based ceramics modified by BMZ publication-title: J. Europ. Ceram. Soc. – volume: 40 start-page: 1779 year: 2020 ident: CR107 article-title: Lead-free (Ba, Sr)TiO based multilayer ceramic capacitors with high energy density publication-title: J. Europ. Ceram. Soc. – volume: 8 start-page: 23724 year: 2020 ident: CR77 article-title: Lead-free antiferroelectric niobates AgNbO and NaNbO for energy storage applications publication-title: J. Mater. Chem. A. – volume: 21 start-page: 1983 year: 2009 ident: CR93 article-title: Electrocaloric materials for solid-state refrigeration publication-title: Adv. Mater. – volume: 1 start-page: 011103 year: 2014 ident: CR91 article-title: Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity publication-title: Appl. Phys. Rev. – volume: 31 start-page: 1904819 year: 2019 ident: CR66 article-title: Multilayer PZT 95/5 Antiferroelectric Film Energy Storage Devices with Giant Power Density publication-title: Adv. Mater. – volume: 2 start-page: 1 year: 2016 ident: CR16 article-title: Lead-free piezoceramics-where to move on? publication-title: J. Materiomics – volume: 101 start-page: 044103 year: 2007 ident: CR32 article-title: Dielectric and piezoelectric properties of lead-free KNN-LN crystals grown by the Bridgman method publication-title: J. Appl. Phys. – volume: 43 start-page: 576 year: 2018 ident: CR15 article-title: Lead-free piezoceramics: status and perspectives publication-title: MRS Bull. – year: 2021 ident: CR108 article-title: High-energy storage performance in BaTiO -based lead-free multilayer ceramic capacitors publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00093-2 – volume: 4 start-page: 13778 year: 2016 ident: CR69 article-title: Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics publication-title: J. Mater. Chem. A – volume: 111 start-page: 022905 year: 2017 ident: CR53 article-title: Hardening of electromechanical properties in piezoceramics using a composite approach publication-title: Appl. Phys. Let. – year: 2021 ident: CR98 article-title: Enhanced electrocaloric effect in compositional driven potassium sodium niobate-based relaxor ferroelectrics publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00081-6 – volume: 3 start-page: 142 year: 2009 ident: CR23 article-title: Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate publication-title: Phys. Status Solidi: Rapid Res. Lett. – volume: 12 start-page: 1414 year: 2021 ident: CR44 article-title: Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range publication-title: Nat. Commun. – volume: 12 start-page: 881 year: 2021 ident: CR28 article-title: The mechanism for the enhanced piezoelectricity in mult-elements doped KNN ceramics publication-title: Nat. Commun. – volume: 19 start-page: 111 year: 2007 ident: CR10 article-title: Lead-free piezoelectric ceramics: alternatives for PZT? publication-title: J. Electroceram. – volume: 385 start-page: 135 year: 2009 ident: CR51 article-title: High power characteristics at large amplitude vibration of BNT-based lead-free ferroelectric ceramics publication-title: Ferroelectrics – volume: 8 start-page: 8117 year: 2015 ident: CR21 article-title: Sintering of lead-free piezoelectric sodium potassium niobate ceramics publication-title: Materials – volume: 94 start-page: 283 year: 2011 ident: CR74 article-title: The antiferroelectric ferroelectric phase transition in lead-containing and lead-free perovskite ceramics publication-title: J. Am. Ceram. Soc. – volume: 136 start-page: 271 year: 2017 ident: CR54 article-title: Stress-induced phase transition in lead-free relaxor ferroelectric composites publication-title: Acta Mater. – volume: 28 start-page: 1801504 year: 2018 ident: CR86 article-title: Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics publication-title: Adv. Funct. Mater. – volume: 432 start-page: 84 year: 2004 ident: CR22 article-title: Lead-free piezoceramics publication-title: Nature – volume: 110 start-page: 064118 year: 2011 ident: CR94 article-title: Influence of the critical point on the electrocaloric response of relaxor ferroelectrics publication-title: J. Appl. Phys. – volume: 105 start-page: 102904 year: 2014 ident: CR97 article-title: Enhanced electrocaloric effect in lead-free BaTiSnO ceramics near room temperature publication-title: Appl. Phys. Lett. – volume: 128 start-page: 070903 year: 2020 ident: CR76 article-title: Lead-free antiferroelectric AgNbO : phase transitions and structure engineering for dielectric energy storage applications publication-title: J. Appl. Phys. – volume: 111 start-page: 57009 year: 2015 ident: CR95 article-title: Electrocaloric cooling: The importance of electric-energy recovery and heat regeneration publication-title: EPL – volume: 102 start-page: 72 year: 2019 ident: CR62 article-title: Perovskite lead-free dielectrics for energy storage applications publication-title: Prog. Mater. Sci. – year: 2012 ident: CR7 publication-title: Advances lead-free piezoelectrics – volume: 20 start-page: 21 year: 2021 ident: CR39 article-title: Microstructure and electrical properties of CuO-doped K Na NbO -based single crystals with low dielectric loss publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00015-2 – volume: 35 start-page: 1659 year: 2015 ident: CR11 article-title: Transferring lead-free piezoelectric ceramics into application publication-title: J. Europ. Ceram. Soc. – volume: 7 start-page: 14118 year: 2019 ident: CR83 article-title: Aliovalent A-site engineered AN lead-free antiferroelectric ceramics toward superior energy storage density publication-title: J. Mater. Chem. A – volume: 19 start-page: 1903877 year: 2019 ident: CR87 article-title: Ultrahigh energy storage density in NN-based lead-free relaxor antiferroelectric ceramics with nanoscale domains publication-title: Adv. Funct. Mater. – volume: 128 start-page: 240904 year: 2020 ident: CR101 article-title: A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials-device integration perspective publication-title: J. Appl. Phys. – volume: 98 start-page: 2988 year: 2015 ident: CR35 article-title: Seed-free solid-state growth of large lead-free piezoelectric single crystals: NKN publication-title: J. Am. Ceram. Soc. – volume: 91 start-page: 1503 year: 2008 ident: CR34 article-title: Growth of dense single crystals of potassium sodium niobate by a combination of solid-state crystal growth and hot pressing publication-title: J. Am. Ceram. Soc. – volume: 4 start-page: 17279 year: 2016 ident: CR80 article-title: High energy density in silver niobate ceramics publication-title: J. Mater. Chem. A – volume: 32 start-page: 3219 year: 2017 ident: CR41 article-title: Texture-engineered ceramics—property enhancements through crystallographic tailoring publication-title: J. Mater. Res. – year: 2021 ident: CR73 article-title: Enhanced energy density and electric cycling reliability via MnO2 modification in sodium niobate-based relaxor dielectric capacitors publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00085-2 – volume: 11 start-page: 4824 year: 2020 ident: CR88 article-title: Constructing phase boundary in AgNbO antiferroelectrics: pathway simultaneously achieving high energy density and efficiency publication-title: Nat. Commun. – volume: 49 start-page: 671 year: 2020 ident: CR27 article-title: Emerging new phase boundary in potassium sodium niobate based ceramics publication-title: Chem. Soc. Rev. – volume: 8 start-page: 7606 year: 2020 ident: CR29 article-title: Solid-state crystal growth of lead-free ferroelectrics publication-title: J. Mater. Chem. C. – volume: 92 start-page: 1153 year: 2009 ident: CR9 article-title: Perspective on the development of lead-free piezoceramics publication-title: J. Am. Ceram. Soc. – volume: 78 start-page: 2551 year: 2001 ident: CR43 article-title: Piezoelectric properties of <001> textured PMN-PT ceramics publication-title: Appl. Phys. Lett. – volume: 96 start-page: 3677 year: 2013 ident: CR17 article-title: KNN-based lead-free piezoceramics: fundamental aspects, processing technologies and remaining challenges publication-title: J. Am. Ceram. Soc. – year: 2021 ident: CR59 article-title: Effects of defect on thermal stability and photoluminescence in quenched Ho-doped 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 lead-free ceramics publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00076-3 – volume: 5 start-page: 17525 year: 2017 ident: CR81 article-title: Phase transitions in bismuth modified silver niobate ceramics for high power energy storage publication-title: J. Mater. Chem. A – volume: 99 start-page: 102903 year: 2011 ident: CR99 article-title: Ferroelectricity in hafnium oxide thin films publication-title: Appl. Phys. Lett. – volume: 37 start-page: 407 year: 2017 ident: 180_CR33 publication-title: J. Europ. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.07.023 – volume: 43 start-page: 576 year: 2018 ident: 180_CR15 publication-title: MRS Bull. doi: 10.1557/mrs.2018.181 – volume: 63 start-page: 1 year: 2014 ident: 180_CR75 publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2014.01.002 – volume: 93 start-page: 4072 year: 2003 ident: 180_CR46 publication-title: J. Appl. Phys. doi: 10.1063/1.1554488 – volume: 105 start-page: 55 year: 2006 ident: 180_CR42 publication-title: Adv. Appl. Ceram. doi: 10.1179/174367606X81650 – year: 2021 ident: 180_CR85 publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00018-z – volume: 4 start-page: 17279 year: 2016 ident: 180_CR80 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06353E – volume: 118 start-page: 050501 year: 2021 ident: 180_CR102 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0035281 – volume: 19 start-page: 111 year: 2007 ident: 180_CR10 publication-title: J. Electroceram. doi: 10.1007/s10832-007-9095-5 – volume: 102 start-page: 72 year: 2019 ident: 180_CR62 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.12.005 – volume: 136 start-page: 271 year: 2017 ident: 180_CR54 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.07.008 – volume-title: Lead-Free Piezoelectric Materials year: 2021 ident: 180_CR6 – volume: 25 start-page: 809 year: 1954 ident: 180_CR3 publication-title: J. Appl. Phys. doi: 10.1063/1.1721741 – volume: 96 start-page: 3677 year: 2013 ident: 180_CR17 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12715 – volume: 5 start-page: 17656 year: 2015 ident: 180_CR36 publication-title: Sci. Rep. doi: 10.1038/srep17656 – volume: 5 start-page: 17525 year: 2017 ident: 180_CR81 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03821F – volume: 35 start-page: 1659 year: 2015 ident: 180_CR11 publication-title: J. Europ. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.12.013 – volume: 1 start-page: 011103 year: 2014 ident: 180_CR91 publication-title: Appl. Phys. Rev. doi: 10.1063/1.4861260 – volume: 8 start-page: 8117 year: 2015 ident: 180_CR21 publication-title: Materials doi: 10.3390/ma8125449 – volume: 3 start-page: 142 year: 2009 ident: 180_CR23 publication-title: Phys. Status Solidi: Rapid Res. Lett. – volume: 6 start-page: eaay5979 year: 2020 ident: 180_CR30 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay5979 – volume: 195 start-page: 571 year: 2020 ident: 180_CR26 publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.06.002 – year: 2021 ident: 180_CR59 publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00076-3 – volume: 20 start-page: 21 year: 2021 ident: 180_CR39 publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00015-2 – volume: 4 start-page: 8380 year: 2016 ident: 180_CR78 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC03289C – volume: 101 start-page: 044103 year: 2007 ident: 180_CR32 publication-title: J. Appl. Phys. doi: 10.1063/1.2562464 – volume: 11 start-page: 4824 year: 2020 ident: 180_CR88 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18665-5 – volume: 5 start-page: 8 year: 2016 ident: 180_CR105 publication-title: Actuators doi: 10.3390/act5010008 – volume: 92 start-page: 1719 year: 2009 ident: 180_CR67 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03104.x – volume: 92 start-page: 283 year: 2009 ident: 180_CR25 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2008.02871.x – volume: 104 start-page: 2021 year: 2021 ident: 180_CR49 publication-title: J. Amer. Ceram. Soc. – volume: 4 start-page: 13778 year: 2016 ident: 180_CR69 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04107H – volume: 28 start-page: 1801504 year: 2018 ident: 180_CR86 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801504 – volume: 50 start-page: 09ND10 year: 2011 ident: 180_CR24 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.50.09ND10 – volume: 103 start-page: 374 year: 2020 ident: 180_CR57 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16755 – volume: 40 start-page: 1779 year: 2020 ident: 180_CR107 publication-title: J. Europ. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.12.009 – volume: 4 start-page: 13 year: 2018 ident: 180_CR13 publication-title: J. Materiomics doi: 10.1016/j.jmat.2018.02.001 – volume: 12 start-page: 582 year: 2019 ident: 180_CR64 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03287D – volume: 7 start-page: 5 year: 1952 ident: 180_CR2 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.7.5 – volume: 92 start-page: 1153 year: 2009 ident: 180_CR9 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03061.x – volume: 29 start-page: 1601727 year: 2017 ident: 180_CR63 publication-title: Adv. Mater. doi: 10.1002/adma.201601727 – volume: 148 start-page: 499 year: 2018 ident: 180_CR31 publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.02.026 – year: 2021 ident: 180_CR98 publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00081-6 – volume: 8 start-page: 615 year: 1953 ident: 180_CR1 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.8.615 – volume: 78 start-page: 2551 year: 2001 ident: 180_CR43 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1367291 – year: 2021 ident: 180_CR108 publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00093-2 – volume: 12 start-page: 881 year: 2021 ident: 180_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21202-7 – volume: 39 start-page: 1103 year: 2019 ident: 180_CR70 publication-title: J. Europ. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.11.025 – volume: 8 start-page: 16648 year: 2020 ident: 180_CR65 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC04381H – volume: 8 start-page: 23724 year: 2020 ident: 180_CR77 publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA08345C – volume: 28 start-page: 8519 year: 2016 ident: 180_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.201601859 – volume: 52 start-page: 09KD07 year: 2013 ident: 180_CR106 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.52.09KD07 – year: 2021 ident: 180_CR61 publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00023-2 – volume: 7 start-page: 14118 year: 2019 ident: 180_CR83 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02053E – volume: 19 start-page: 999 year: 2020 ident: 180_CR90 publication-title: Nature Mater. doi: 10.1038/s41563-020-0704-x – volume: 95 start-page: 3383 year: 2012 ident: 180_CR52 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2012.05462.x – volume: 12 start-page: 1414 year: 2021 ident: 180_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21673-8 – volume: 311 start-page: 1270 year: 2006 ident: 180_CR92 publication-title: Science doi: 10.1126/science.1123811 – volume: 3 start-page: 18146 year: 2015 ident: 180_CR71 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03614C – volume: 30 start-page: 1705171 year: 2018 ident: 180_CR47 publication-title: Adv. Mater. doi: 10.1002/adma.201705171 – ident: 180_CR18 doi: 10.1021/cr5006809 – volume: 2 start-page: 1 year: 2016 ident: 180_CR16 publication-title: J. Materiomics doi: 10.1016/j.jmat.2015.12.002 – volume: 14 start-page: 177 year: 2005 ident: 180_CR104 publication-title: J. Electroceram. doi: 10.1007/s10832-005-0956-5 – volume: 8 start-page: 7606 year: 2020 ident: 180_CR29 publication-title: J. Mater. Chem. C. doi: 10.1039/D0TC01220C – volume: 99 start-page: 102903 year: 2011 ident: 180_CR99 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3634052 – volume: 100 start-page: 5573 year: 2017 ident: 180_CR56 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.15079 – volume: 4 start-page: 277 year: 2018 ident: 180_CR45 publication-title: J. Materiomics. doi: 10.1016/j.jmat.2018.09.006 – year: 2021 ident: 180_CR73 publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00085-2 – volume: 43 start-page: 581 year: 2018 ident: 180_CR5 publication-title: MRS Bull. doi: 10.1557/mrs.2018.154 – volume: 48 start-page: 191 year: 2018 ident: 180_CR4 publication-title: Ann. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070616-124023 – volume: 385 start-page: 135 year: 2009 ident: 180_CR51 publication-title: Ferroelectrics doi: 10.1080/00150190902889036 – year: 2021 ident: 180_CR58 publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00048-7 – volume: 110 start-page: 064118 year: 2011 ident: 180_CR94 publication-title: J. Appl. Phys. doi: 10.1063/1.3641975 – volume: 29 start-page: 71 year: 2012 ident: 180_CR12 publication-title: J. Electroceram doi: 10.1007/s10832-012-9742-3 – volume: 13 start-page: 385 year: 2004 ident: 180_CR14 publication-title: J. Electroceram doi: 10.1007/s10832-004-5130-y – volume: 7 start-page: 2225 year: 2019 ident: 180_CR82 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09353A – volume: 21 start-page: 1983 year: 2009 ident: 180_CR93 publication-title: Adv. Mater. doi: 10.1002/adma.200802902 – volume: 110 start-page: 063904 year: 2017 ident: 180_CR96 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4976026 – year: 2021 ident: 180_CR48 publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00016-1 – volume: 12 start-page: 32834 year: 2020 ident: 180_CR68 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08737 – volume: 31 start-page: 1904819 year: 2019 ident: 180_CR66 publication-title: Adv. Mater. doi: 10.1002/adma.201904819 – volume: 128 start-page: 240904 year: 2020 ident: 180_CR101 publication-title: J. Appl. Phys. doi: 10.1063/5.0035542 – volume: 99 start-page: 112904 year: 2011 ident: 180_CR100 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3636434 – volume: 105 start-page: 102904 year: 2014 ident: 180_CR97 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4895615 – year: 2021 ident: 180_CR103 publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00074-5 – volume: 23 start-page: 4079 year: 2013 ident: 180_CR20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201203754 – volume: 111 start-page: 57009 year: 2015 ident: 180_CR95 publication-title: EPL doi: 10.1209/0295-5075/111/57009 – volume: 20 start-page: 21 year: 2021 ident: 180_CR72 publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00007-2 – volume-title: Advances lead-free piezoelectrics year: 2012 ident: 180_CR7 doi: 10.1007/978-1-4419-9598-8 – volume: 32 start-page: 3219 year: 2017 ident: 180_CR41 publication-title: J. Mater. Res. doi: 10.1557/jmr.2017.207 – volume: 98 start-page: 2988 year: 2015 ident: 180_CR35 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13723 – volume: 432 start-page: 84 year: 2004 ident: 180_CR22 publication-title: Nature doi: 10.1038/nature03028 – volume: 128 start-page: 070903 year: 2020 ident: 180_CR76 publication-title: J. Appl. Phys. doi: 10.1063/5.0018373 – volume-title: Advances in lead-free piezoelectric materials year: 2018 ident: 180_CR8 – volume: 19 start-page: 1903877 year: 2019 ident: 180_CR87 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903877 – year: 2021 ident: 180_CR60 publication-title: J. Mater. Res doi: 10.1557/s43578-020-00078-1 – volume: 55 start-page: 10TB07 year: 2016 ident: 180_CR55 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.55.10TB07 – volume: 29 start-page: 45 year: 2004 ident: 180_CR40 publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408430490490905 – volume: 10 start-page: 819 year: 2018 ident: 180_CR79 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17382 – volume: 29 start-page: 1701824 year: 2017 ident: 180_CR84 publication-title: Adv. Mater. doi: 10.1002/adma.201701824 – volume: 94 start-page: 283 year: 2011 ident: 180_CR74 publication-title: J. Am. Ceram. Soc. – volume: 30 start-page: 1802155 year: 2018 ident: 180_CR89 publication-title: Adv. Mater. doi: 10.1002/adma.201802155 – volume: 52 start-page: 0701 year: 2013 ident: 180_CR50 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.52.07HE01 – volume: 111 start-page: 022905 year: 2017 ident: 180_CR53 publication-title: Appl. Phys. Let. doi: 10.1063/1.4986911 – volume: 49 start-page: 671 year: 2020 ident: 180_CR27 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00432G – volume: 91 start-page: 1503 year: 2008 ident: 180_CR34 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2008.02324.x – volume: 16 start-page: 6586 year: 2016 ident: 180_CR37 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b01287 – volume: 40 start-page: 2970 year: 2020 ident: 180_CR38 publication-title: J. Europ. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.02.038 |
| SSID | ssj0015074 |
| Score | 2.6290703 |
| Snippet | The year of 2021 is the 100th anniversary of the first publication of ferroelectric behaviour in Rochelle salt, focussing on its piezoelectric properties. Over... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 985 |
| SubjectTerms | Applied and Technical Physics Biomaterials Ceramics Charged particles Chemistry and Materials Science Electric fields Energy harvesting Energy storage Ferroelectric materials Ferroelectricity Ferroelectrics Grain boundaries Grain growth Inorganic Chemistry Internet of Things Introduction Lead free Materials Engineering Materials research Materials Science Nanotechnology Phase transitions Piezoelectricity R&D Research & development Single crystals Solid solutions Temperature |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7opqAHf0zF6ZQevGlY0iZNqwdR2fAgY4jKbqVNExjINtsp7L83adNtinrxVkialnwveS95yfcBnBmfyHCCUWyy7pRJ_ZRigbjyFA1SX7CCp_vlgfd6wWAQ9u2GW26PVVZzYjFRp2Nh9sjbOszgRY7Jv568IaMaZbKrVkJjFeqGqYzWoH7b6fUf53kEHe3QMo6kyA0JtddmGOPtnBqiF2SOKBhlOoxmX13TIt78liItPE93-7__vANbNuZ0bkoj2YUVOWrA5hITYQPWi5OgIt-DKyO6iVQmpaNklo1LnZyhcHRoW1rrpdPPxtUNTWc5A74Pz93O0909sgoLSHgBn6Ig1e4IiyCVgtCYkSQmelQq7dhiRYivFGZpmCpfJZIppZdqnki4H8oQB7o6Vt4B1EbjkTwEh7uCcKVbiQOfikSF2gvqySPmMg44VawJpOrcSFj6caOC8RqZZYgGJCoBiTQgUQFINGvC-fydSUm-8WftVoVCZAdiHrnccPRhHoY_Fi8QasJFBfOi-PePHf3d2jFsuIVleYjQFtSm2bs8gTXxMR3m2am10k8RU-xX priority: 102 providerName: ProQuest |
| Title | Lead-free ferroelectric materials: Prospective applications |
| URI | https://link.springer.com/article/10.1557/s43578-021-00180-y https://www.proquest.com/docview/2708280799 https://www.proquest.com/docview/3267437296 |
| Volume | 36 |
| WOSCitedRecordID | wos000645615700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: 7WY dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: M0C dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: KB. dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2044-5326 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2044-5326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015074 issn: 0884-2914 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gh58i-tj6cGbRpJt2qR6ckUR1GXx7am0aQILsivtKvjvnaTt-kAFvZSWpGmZzOSb4UtmALYtJgY0pSSxrDsPNN5lVBFhfMNlFqrA5em-PRedjry_j7rVobCi3u1eU5JupXY1ejBsL7hNzELslgJbSY6S13GYRLiT1hwvr25H3AF6OLz0HTlpRYxXR2W-H-MzHL37mF9oUYc2J_P_-88FmKu8S--wVIdFGNP9JZj9kHNwCabdnk9VLMOBLa9JTK61Z3SeD8qKOD3loRNb6uW-180H9VlM7yPXvQI3J8fXR6ekqqVAlC_FkMgMgYcqmWnFeBKwNGFofwYhLDGMhcbQIIsyE5pUB8ZgUOarVISRjqjE7tT4qzDRH_T1GniipZgwOEoiQ65SEyHe4TKRCJ1IwU3QAFaLNFZVonFb7-IxtgEHiiguRRSjiGInovi1ATujd57KNBu_9t6sZyquTK6IW8Jm46Miir5tRjdVOI4ybMBuPXHvzT9_bP1v3TdgpuXm3ieMb8LEMH_WWzClXoa9Im_CuLh7aMJk-7jTvcSns_YeXi_oUdPp8BumvOY3 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD7q2KbBwy5siELZ8sCemIWd2HECmqaprCqiVH3oEG8mcWwJaWoh6Tb1T-03cpwLBbT1jYe9RbLjKPF3Ls65fAC7ziYKmlKSuKg7FwavMqqJtIHlURZqUfbpPhvI4TA6P49HLfjT1MK4tMpGJ5aKOptq9498H90MWcaYwi9X18SxRrnoakOhUcHixMx_45Gt-Hx8hPv70fd738bdPqlZBYgOIjkjUYYqmOooM5rxRLA0YYhEi8o8sYyF1lKRxZkNbWqEtXg8CXQqw9jENMLp1Aa47hN4yjmKg0sVpN3bqAX6VrzyWjnxY8brIh0h5H7BXVsZ4hIiHA8eJfP7hnDh3T4IyJZ2rvfqf_tCr-Fl7VF7XysReAMtM1mHtTt9FtfheZnnqou3cOgoRYnNjfGsyfNpxQJ0qT103CtZPPBG-bSpP_XuxvffwfdHeY8NWJlMJ2YTPOlrJi2ukkQh16mN0cajakykSSLJrWgDazZT6bq5uuP4-KHcIQsBoCoAKASAKgGg5m3Yu73nqmotsnR2p9l1VauZQvnSdSCkMo7_OrxARBs-NbBaDP_7YVvLV_sAL_rj04EaHA9PtmHVL1EdEMY7sDLLf5odeKZ_zS6L_H0pHx5cPDbcbgDQ20i0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61pSA4UCggFtqSQ3sCa-3EjhMQQoh21arVag882pObOB5pJbRbkgW0f41fxziPbqlobz30FsmOo8TfPJx5fADb3iYqnnOW-ai7VI6uCm6ZxghlUsRW1X26vx7p4TA5Pk5HS_Cnq4XxaZWdTqwVdTG1_h95n9wMXceY4j62aRGj3cGHsx_MM0j5SGtHp9FA5NDNf9PxrXp_sEt7vROGg73Pn_ZZyzDAbJToGUsKUsfcJoWzQmZK5JkgVCIp9gyFiBG5KtICY8ydQqSjSmRzHacu5QlN5xjRustwR3vckyzpbyfnEQzys2TjwUoWpkK2BTtK6X4lfYsZ5pMjPCceZ_N_jeLC070UnK1t3mDtNn-tR_Cw9bSDj41oPIYlN1mHBxf6L67D3Tr_1VZP4J2nGmVYOhegK8tpww40tgE59I2Mvg1G5bSrSw0uxv2fwpcbeY9nsDKZTtxzCHRohUZaJUtiaXNMyfaTysy0yxItUfVAdBtrbNt03XN_fDf-8EVgMA0YDIHB1GAw8x68Pr_nrGk5cu3sjQ4BplU_lQm170zIdZr-d3iBjh686SC2GL76YS-uX-0V3COUmaOD4eFLuB_WAI-YkBuwMit_uk1Ytb9m46rcqkUlgNObRttf98BR0Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lead-free+ferroelectric+materials%3A+Prospective+applications&rft.jtitle=Journal+of+materials+research&rft.au=Zhang%2C+Shujun&rft.au=Mali%C4%8D%2C+Barbara&rft.au=Li%2C+Jing-Feng&rft.au=R%C3%B6del%2C+J%C3%BCrgen&rft.date=2021-03-14&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=36&rft.issue=5&rft.spage=985&rft.epage=995&rft_id=info:doi/10.1557%2Fs43578-021-00180-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1557_s43578_021_00180_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon |