Cerebrovascular network registration via an efficient attributed graph matching technique
•A novel approach that registers vasculatures of arbitrary form from a graph matching-based perspective is presented.•We build abstract graphs from piece-wise linear approximations of the vascular networks’ tubular shape that represent their global connection scheme among the bifurcations and leaves...
Uložené v:
| Vydané v: | Medical image analysis Ročník 46; s. 118 - 129 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.05.2018
Elsevier BV |
| Predmet: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A novel approach that registers vasculatures of arbitrary form from a graph matching-based perspective is presented.•We build abstract graphs from piece-wise linear approximations of the vascular networks’ tubular shape that represent their global connection scheme among the bifurcations and leaves.•To ensure the scalability and computational efficiency of the registration method, we developed a novel feature, termed the “signature,” that captures geometrical attributes of bifurcations and vessel branches in a topologically encoded form.•Using a novel “signature” feature, the graph-based registration method is posed as a Linear Assignment Problem (LAP) rather than the NP-hard quadratic assignment problem (QAP) common in the graph matching literature.•The proposed method’s performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature. Synthetic data sets are produced from the clinical datasets and have been used to show the robustness of method against structural inclusiveness and deformation.
[Display omitted]
Registration of vascular networks is an indispensable element of prognostic and diagnostic studies that require structural analysis and comparison over time, among different samples, and to a gold standard. However, vascular networks manifest low spatial texture and sparse structural content so that even small variations in their location can make the intensity-based registration inefficient and prone to errors. Motivated by geometrical graph-based models developed in our prior work, we use the shape information in the graph topology sense to enhance the registration performance. An efficient feature-based registration is presented that seeks correspondence of the bifurcations and branches in a graph matching scheme. Since the graph matching is originally posed a NP-hard quadratic assignment problem (QAP) in the literature, we have designed a node signature that incorporates edge correspondences indirectly. This allows removing the quadratic term in the QAP to recast the problem as a linear assignment problem (LAP) to relieve the computational burden. The LAP is efficiently solvable and is scalable to data with graph representation of larger size. The performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature as well as synthetic datasets. This method proves to be robust in the face of different structural and algorithm’s parameters. Quality of inter-subject and multimodal matching of clinical data has also been confirmed. |
|---|---|
| AbstractList | Registration of vascular networks is an indispensable element of prognostic and diagnostic studies that require structural analysis and comparison over time, among different samples, and to a gold standard. However, vascular networks manifest low spatial texture and sparse structural content so that even small variations in their location can make the intensity-based registration inefficient and prone to errors. Motivated by geometrical graph-based models developed in our prior work, we use the shape information in the graph topology sense to enhance the registration performance. An efficient feature-based registration is presented that seeks correspondence of the bifurcations and branches in a graph matching scheme. Since the graph matching is originally posed a NP-hard quadratic assignment problem (QAP) in the literature, we have designed a node signature that incorporates edge correspondences indirectly. This allows removing the quadratic term in the QAP to recast the problem as a linear assignment problem (LAP) to relieve the computational burden. The LAP is efficiently solvable and is scalable to data with graph representation of larger size. The performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature as well as synthetic datasets. This method proves to be robust in the face of different structural and algorithm’s parameters. Quality of inter-subject and multimodal matching of clinical data has also been confirmed. Registration of vascular networks is an indispensable element of prognostic and diagnostic studies that require structural analysis and comparison over time, among different samples, and to a gold standard. However, vascular networks manifest low spatial texture and sparse structural content so that even small variations in their location can make the intensity-based registration inefficient and prone to errors. Motivated by geometrical graph-based models developed in our prior work, we use the shape information in the graph topology sense to enhance the registration performance. An efficient feature-based registration is presented that seeks correspondence of the bifurcations and branches in a graph matching scheme. Since the graph matching is originally posed a NP-hard quadratic assignment problem (QAP) in the literature, we have designed a node signature that incorporates edge correspondences indirectly. This allows removing the quadratic term in the QAP to recast the problem as a linear assignment problem (LAP) to relieve the computational burden. The LAP is efficiently solvable and is scalable to data with graph representation of larger size. The performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature as well as synthetic datasets. This method proves to be robust in the face of different structural and algorithm's parameters. Quality of inter-subject and multimodal matching of clinical data has also been confirmed.Registration of vascular networks is an indispensable element of prognostic and diagnostic studies that require structural analysis and comparison over time, among different samples, and to a gold standard. However, vascular networks manifest low spatial texture and sparse structural content so that even small variations in their location can make the intensity-based registration inefficient and prone to errors. Motivated by geometrical graph-based models developed in our prior work, we use the shape information in the graph topology sense to enhance the registration performance. An efficient feature-based registration is presented that seeks correspondence of the bifurcations and branches in a graph matching scheme. Since the graph matching is originally posed a NP-hard quadratic assignment problem (QAP) in the literature, we have designed a node signature that incorporates edge correspondences indirectly. This allows removing the quadratic term in the QAP to recast the problem as a linear assignment problem (LAP) to relieve the computational burden. The LAP is efficiently solvable and is scalable to data with graph representation of larger size. The performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature as well as synthetic datasets. This method proves to be robust in the face of different structural and algorithm's parameters. Quality of inter-subject and multimodal matching of clinical data has also been confirmed. •A novel approach that registers vasculatures of arbitrary form from a graph matching-based perspective is presented.•We build abstract graphs from piece-wise linear approximations of the vascular networks’ tubular shape that represent their global connection scheme among the bifurcations and leaves.•To ensure the scalability and computational efficiency of the registration method, we developed a novel feature, termed the “signature,” that captures geometrical attributes of bifurcations and vessel branches in a topologically encoded form.•Using a novel “signature” feature, the graph-based registration method is posed as a Linear Assignment Problem (LAP) rather than the NP-hard quadratic assignment problem (QAP) common in the graph matching literature.•The proposed method’s performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature. Synthetic data sets are produced from the clinical datasets and have been used to show the robustness of method against structural inclusiveness and deformation. [Display omitted] Registration of vascular networks is an indispensable element of prognostic and diagnostic studies that require structural analysis and comparison over time, among different samples, and to a gold standard. However, vascular networks manifest low spatial texture and sparse structural content so that even small variations in their location can make the intensity-based registration inefficient and prone to errors. Motivated by geometrical graph-based models developed in our prior work, we use the shape information in the graph topology sense to enhance the registration performance. An efficient feature-based registration is presented that seeks correspondence of the bifurcations and branches in a graph matching scheme. Since the graph matching is originally posed a NP-hard quadratic assignment problem (QAP) in the literature, we have designed a node signature that incorporates edge correspondences indirectly. This allows removing the quadratic term in the QAP to recast the problem as a linear assignment problem (LAP) to relieve the computational burden. The LAP is efficiently solvable and is scalable to data with graph representation of larger size. The performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature as well as synthetic datasets. This method proves to be robust in the face of different structural and algorithm’s parameters. Quality of inter-subject and multimodal matching of clinical data has also been confirmed. |
| Author | Lauric, Alexandra Malek, Adel Almasi, Sepideh Miller, Eric L. |
| Author_xml | – sequence: 1 givenname: Sepideh surname: Almasi fullname: Almasi, Sepideh email: s.almasi@stanford.edu organization: Department Electrical and Computer Engineering, Tufts University, Medford, MA, USA – sequence: 2 givenname: Alexandra surname: Lauric fullname: Lauric, Alexandra organization: Department Neurosurgery, Tufts University School of Medicine, Boston, MA, USA – sequence: 3 givenname: Adel surname: Malek fullname: Malek, Adel organization: Department Neurosurgery, Tufts University School of Medicine, Boston, MA, USA – sequence: 4 givenname: Eric L. surname: Miller fullname: Miller, Eric L. organization: Department Electrical and Computer Engineering, Tufts University, Medford, MA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29518676$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vEzEQhi1URD_gFyAhS1y4ZBnvrr3rAwcU0YJUiQscOFleZzZx2NjB9qbi3zNpWg499GJb1vPOjJ65ZGchBmTsrYBKgFAft9UOV95WNYi-groC6F6wC9Eosejbujn7_xbynF3mvAUi2hZesfNaS9GrTl2wX0tMOKR4sNnNk008YLmL6TdPuPa5JFt8DPzgLbeB4zh65zEUbktJfpgLrvg62f2G72xxGx_WvKDbBP9nxtfs5WinjG8e7iv28_rLj-XXxe33m2_Lz7cL1_RdWagBBcCqlUIOkn5waFFKBw6s1g6hpQM7haBVPWiAsW8kJbUCRIVD11yxD6e6-xSpbS5m57PDabIB45wN6am1AC0bQt8_QbdxToGmM7WgKaQmb0S9e6DmgQybffI7m_6aR2kE6BPgUsw54WicL_eiyJefjABzXJDZmvsFHSfoDdSG9FO2eZJ9LP986tMphSTy4DGZfNyDIzChK2YV_bP5f9b8qrw |
| CitedBy_id | crossref_primary_10_1002_tee_23355 crossref_primary_10_1016_j_biomaterials_2022_121514 crossref_primary_10_1007_s10514_019_09872_1 crossref_primary_10_1109_ACCESS_2019_2898754 crossref_primary_10_1016_j_compmedimag_2024_102364 crossref_primary_10_1016_j_cmpb_2020_105922 crossref_primary_10_3390_rs11243026 crossref_primary_10_1007_s10803_023_06068_6 crossref_primary_10_1080_07038992_2021_1937087 |
| Cites_doi | 10.1109/TMI.2013.2259844 10.1016/j.imavis.2006.08.005 10.1214/aoms/1177703591 10.3171/jns.2004.101.1.0108 10.1016/S0031-3203(98)80010-1 10.1007/s11263-011-0442-2 10.1016/S0140-6736(03)13860-3 10.1142/S0218001404003228 10.1109/TPAMI.2014.2343235 10.1109/TPAMI.2005.138 10.1038/jcbfm.2014.203 10.1016/j.compmedimag.2015.05.001 10.1016/j.media.2014.11.007 10.1007/s11548-015-1207-0 10.1109/TPAMI.2008.245 10.1016/j.sigpro.2004.10.016 10.1016/j.imavis.2008.04.002 10.1161/STROKEAHA.114.005393 10.1023/A:1008102926703 10.1109/34.491619 10.1016/S1077-3142(03)00009-2 10.3171/2014.8.JNS1447 10.1007/s00778-012-0292-8 10.1136/neurintsurg-2013-010987 10.1109/TVCG.2006.92 10.1109/TIP.2014.2387386 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. Copyright Elsevier BV May 2018 |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV May 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
| DOI | 10.1016/j.media.2018.02.007 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| EndPage | 129 |
| ExternalDocumentID | 29518676 10_1016_j_media_2018_02_007 S1361841518300318 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c387t-6be100d4515b5387eb4e55c0c0a99ce049cee76e0962b900f835c38960ee6eb73 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432615100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Sun Sep 28 08:25:23 EDT 2025 Tue Oct 07 06:54:52 EDT 2025 Wed Feb 19 02:36:34 EST 2025 Sat Nov 29 04:06:03 EST 2025 Tue Nov 18 21:56:18 EST 2025 Fri Feb 23 02:28:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Vessel registration Geometrical graph-based models Graph matching |
| Language | English |
| License | Copyright © 2018 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c387t-6be100d4515b5387eb4e55c0c0a99ce049cee76e0962b900f835c38960ee6eb73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 29518676 |
| PQID | 2110059423 |
| PQPubID | 2045428 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2012910953 proquest_journals_2110059423 pubmed_primary_29518676 crossref_citationtrail_10_1016_j_media_2018_02_007 crossref_primary_10_1016_j_media_2018_02_007 elsevier_sciencedirect_doi_10_1016_j_media_2018_02_007 |
| PublicationCentury | 2000 |
| PublicationDate | May 2018 2018-05-00 20180501 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Yan, Wang, Zha, Yang, Chu (bib0060) 2015; 24 Bai, Latecki (bib0007) 2008; 30 Cour, Srinivasan, Shi (bib0015) 2007; 19 Ingebrigtsen, Morgan, Faulder, Ingebrigtsen, Sparr, Schirmer (bib0028) 2004; 101 Sonka, Hlavac, Boyle (bib0053) 1993 Jouili, Tabbone (bib0029) 2009 Schellewald, Roth, Schnrr (bib0046) 2007; 25 Czajkowska, Feinen, Grzegorzek, Raspe, Wickenhöfer (bib0016) 2015; 46 Leordeanu, Sukthankar, Hebert (bib0034) 2012; 96 Salmon, Debled-Rennesson, Wendling (bib0044) 2006 Baharoglu, Lauric, Safain, Hippelheuser, Wu, Malek (bib0006) 2014; 45 Sinkhorn (bib0051) 1964 Agostoni, Longoni (bib0001) 2015 Cho, Jungmin, Kyoung (bib0012) 2010 Wong, Foote, Chin, Mackey, Perrine (bib0059) 2006; 12 Chui, Rangarajan (bib0013) 2003; 89 Tutuncu, Schimansky, Baharoglu, Gao, Calnan, Hippelheuser, Safain, Lauric, Malek (bib0055) 2014; 121 Sebastian, Kimia (bib0047) 2005; 85 Gold, Rangarajan (bib0020) 1996; 18 Amin-Hanjani, Du, Pandey, Thulborn, Charbel (bib0004) 2015; 35 Serradell, Pinheiro, Sznitman, Kybic, Moreno-Noguer, Fua (bib0048) 2015; 37 Zass, Shashua. (bib0064) 2008 Benseghir, Malandain, Vaillant (bib0008) 2015; 10 Burkard (bib0010) 2013 Lauric, Safain, Hippelheuser, Malek (bib0032) 2014; 6 Gold, Rangarajan, Lu, Pappu, Mjolsness (bib0021) 1998; 31 Metzen, Kroger, Schenk, Zidowitz, Peitgen, Jiang (bib0037) 2009; 27 Zhu, Qin, Yu, Ke, Lin (bib0065) 2013; 22 Zaslavskiy, Bach, Vert (bib0063) 2009; 31 Conte, Foggia, Sansone, Vento (bib0014) 2004; 18 Almasi, Xu, Ben-Zvi, Lacoste, Gu, Miller (bib0002) 2015; Vol. 20 Wiebers (bib0058) 2003; 362 Horn, Johnson (bib0025) 2012 Rangarajan, Chui, Bookstein (bib0041) 1997 Leordeanu, Hebert, Sukthankar (bib0019) 2009 Hu, Rustamov, Guibas (bib0026) 2013 Gori, Maggini, Sarti (bib0023) 2005; 27 Siddiqi, Shokoufandeh, Dickinson, Zucker (bib0049) 1999; 35 Leordeanu, Hebert (bib0033) 2005; 2 Mitrovic, Spiclin, Likar, Pernus (bib0038) 2013; 32 Smeets, Bruyninckx, Keustermans, Vandermeulen, Suetens (bib0052) 2010 Benseghir (10.1016/j.media.2018.02.007_bib0008) 2015; 10 Gold (10.1016/j.media.2018.02.007_bib0020) 1996; 18 Serradell (10.1016/j.media.2018.02.007_bib0048) 2015; 37 Chui (10.1016/j.media.2018.02.007_bib0013) 2003; 89 Gori (10.1016/j.media.2018.02.007_bib0023) 2005; 27 Bai (10.1016/j.media.2018.02.007_bib0007) 2008; 30 Smeets (10.1016/j.media.2018.02.007_bib0052) 2010 Tutuncu (10.1016/j.media.2018.02.007_bib0055) 2014; 121 Czajkowska (10.1016/j.media.2018.02.007_bib0016) 2015; 46 Horn (10.1016/j.media.2018.02.007_bib0025) 2012 Yan (10.1016/j.media.2018.02.007_bib0060) 2015; 24 Metzen (10.1016/j.media.2018.02.007_bib0037) 2009; 27 Salmon (10.1016/j.media.2018.02.007_bib0044) 2006 Leordeanu (10.1016/j.media.2018.02.007_bib0034) 2012; 96 Baharoglu (10.1016/j.media.2018.02.007_bib0006) 2014; 45 Cour (10.1016/j.media.2018.02.007_sbref0015) 2007; 19 Schellewald (10.1016/j.media.2018.02.007_bib0046) 2007; 25 Agostoni (10.1016/j.media.2018.02.007_bib0001) 2015 Leordeanu (10.1016/j.media.2018.02.007_bib0033) 2005; 2 Cho (10.1016/j.media.2018.02.007_bib0012) 2010 Sebastian (10.1016/j.media.2018.02.007_bib0047) 2005; 85 Mitrovic (10.1016/j.media.2018.02.007_bib0038) 2013; 32 Burkard (10.1016/j.media.2018.02.007_bib0010) 2013 Conte (10.1016/j.media.2018.02.007_bib0014) 2004; 18 Hu (10.1016/j.media.2018.02.007_bib0026) 2013 Wong (10.1016/j.media.2018.02.007_bib0059) 2006; 12 Sonka (10.1016/j.media.2018.02.007_bib0053) 1993 Amin-Hanjani (10.1016/j.media.2018.02.007_bib0004) 2015; 35 Jouili (10.1016/j.media.2018.02.007_bib0029) 2009 Sinkhorn (10.1016/j.media.2018.02.007_bib0051) 1964 Almasi (10.1016/j.media.2018.02.007_bib0002) 2015; Vol. 20 Rangarajan (10.1016/j.media.2018.02.007_bib0041) 1997 Wiebers (10.1016/j.media.2018.02.007_bib0058) 2003; 362 Zaslavskiy (10.1016/j.media.2018.02.007_bib0063) 2009; 31 Gold (10.1016/j.media.2018.02.007_bib0021) 1998; 31 Zhu (10.1016/j.media.2018.02.007_bib0065) 2013; 22 Siddiqi (10.1016/j.media.2018.02.007_bib0049) 1999; 35 Zass (10.1016/j.media.2018.02.007_bib0064) 2008 Leordeanu (10.1016/j.media.2018.02.007_bib0019) 2009 Ingebrigtsen (10.1016/j.media.2018.02.007_bib0028) 2004; 101 Lauric (10.1016/j.media.2018.02.007_bib0032) 2014; 6 |
| References_xml | – volume: 362 start-page: 103 year: 2003 end-page: 110 ident: bib0058 article-title: International study of unruptured intracranial aneurysms investigators, unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment publication-title: The Lancet – start-page: 333 year: 2015 end-page: 345 ident: bib0001 article-title: Cerebrovascular interactions in cerebral disorders (stroke, transient ischaemic attacks, microvascular disease, migraine) publication-title: Arterial Disorders – volume: 30 start-page: 1282 year: 2008 end-page: 1292 ident: bib0007 article-title: Path similarity skeleton graph matching, pattern analysis and machine intelligence publication-title: Trans. IEEE – volume: 10 start-page: 1 year: 2015 end-page: 11 ident: bib0008 article-title: A tree-topology preserving pairing for 3d/2d registration publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 25 start-page: 1301 year: 2007 end-page: 1314 ident: bib0046 article-title: Evaluation of a convex relaxation to a quadratic assignment matching approach for relational object views publication-title: Image Vis. Comput. – year: 2010 ident: bib0052 article-title: Robust matching of 3d lung vessel trees publication-title: In: Proceedings of the MICCAI Workshop on Pulmonary Image Analysis – volume: 121 start-page: 1401 year: 2014 end-page: 1410 ident: bib0055 article-title: Widening of the basilar bifurcation angle: association with presence of intracranial aneurysm, age, and female sex publication-title: Clin. Article. J. Neurosurg. – volume: 2 start-page: 1482 year: 2005 end-page: 1489 ident: bib0033 article-title: A spectral technique for correspondence problems using pairwise constraints publication-title: IEEE Int. Conf. Comput. Vis. (ICCV) – volume: 32 start-page: 1550 year: 2013 end-page: 1563 ident: bib0038 article-title: 3D-2d registration of cerebral angiograms: a method and evaluation on clinical images publication-title: IEEE Trans. Med. Imaging – volume: 96 start-page: 28 year: 2012 end-page: 45 ident: bib0034 article-title: Unsupervised learning for graph matching publication-title: Int. J. Comput. Vis. – start-page: 29 year: 1997 end-page: 42 ident: bib0041 article-title: The softassign procrustes matching algorithm publication-title: Information Processing in Medical Imaging – volume: 101 start-page: 108 year: 2004 end-page: 113 ident: bib0028 article-title: Bifurcation geometry and the presence of cerebral artery aneurysms publication-title: J. Neurosurg. – volume: 85 start-page: 247 year: 2005 end-page: 263 ident: bib0047 article-title: Curves vs. skeletons in object recognition publication-title: Signal Process. – year: 2012 ident: bib0025 publication-title: Matrix Analysis – start-page: 1 year: 2008 end-page: 8 ident: bib0064 article-title: Probabilistic graph and hypergraph matching publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 1993 ident: bib0053 publication-title: Image Processing, Analysis and Machine Vision – volume: 6 start-page: 733 year: 2014 end-page: 739 ident: bib0032 article-title: High curvature of the internal carotid artery is associated with the presence of intracranial aneurysms publication-title: J. Neurointerv. Surg. – volume: 37 start-page: 625 year: 2015 end-page: 638 ident: bib0048 article-title: Non-rigid graph registration using active testing search publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 22 start-page: 345 year: 2013 end-page: 368 ident: bib0065 article-title: High efficiency and quality: large graphs matching publication-title: VLDB J. – volume: 31 start-page: 1019 year: 1998 end-page: 1031 ident: bib0021 article-title: New algorithms for 2d and 3d point matching: pose estimation and correspondence publication-title: Pattern Recognit. – start-page: 492 year: 2010 end-page: 505 ident: bib0012 article-title: Reweighted random walks for graph matching publication-title: Computer Vision, ECCV – volume: 12 start-page: 1399 year: 2006 end-page: 1413 ident: bib0059 article-title: Graph signatures for visual analytics publication-title: IEEE Trans. Vis. Comput. Graph. – volume: 24 start-page: 994 year: 2015 end-page: 1009 ident: bib0060 article-title: Consistency-driven alternating optimization for multigraph matching: A unified approach publication-title: IEEE Trans. Image Process. – start-page: 154 year: 2009 end-page: 163 ident: bib0029 article-title: Graph matching based on node signatures publication-title: Proceedings of the International Workshop on Graph-Based Representations in Pattern Recognition – start-page: 387 year: 2006 end-page: 390 ident: bib0044 article-title: A new method to detect arcs and segments from curvature profiles publication-title: In: Proceedings of the International Conference on Pattern Recognition, ICPR – start-page: 2906 year: 2013 end-page: 2913 ident: bib0026 article-title: Graph matching with anchor nodes: a learning approach publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 19 year: 2007 ident: bib0015 article-title: Balanced graph matching publication-title: Adv. Neural Inf. Process. Syst. – volume: 31 start-page: 2227 year: 2009 end-page: 2242 ident: bib0063 article-title: A path following algorithm for the graph matching problem publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: Vol. 20 start-page: 208 year: 2015 end-page: 223 ident: bib0002 article-title: A novel method for identifying a graph-based representation of 3-D microvascular networks from fluorescence microscopy image stacks publication-title: Med. Image Anal. – volume: 27 start-page: 1100 year: 2005 end-page: 1111 ident: bib0023 article-title: Exact and approximate graph matching using random walks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 89 start-page: 114 year: 2003 end-page: 141 ident: bib0013 article-title: A new point matching algorithm for non-rigid registration publication-title: Comput. Vis. Image Underst. – volume: 35 start-page: 312 year: 2015 end-page: 318 ident: bib0004 article-title: Effect of age and vascular anatomy on blood flow in major cerebral vessels publication-title: J. Cereb. Blood Flow Metabol. – volume: 18 start-page: 377 year: 1996 end-page: 388 ident: bib0020 article-title: A graduated assignment algorithm for graph matching publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 2741 year: 2013 end-page: 2814 ident: bib0010 publication-title: Quadratic Assignment Problems – start-page: 876 year: 1964 end-page: 879 ident: bib0051 article-title: A relationship between arbitrary positive matrices and doubly stochastic matrices publication-title: Ann. Math. Stat. – volume: 35 start-page: 13 year: 1999 end-page: 32 ident: bib0049 article-title: Shock graphs and shape matching publication-title: Int. J. Comput. Vis. – volume: 18 start-page: 265 year: 2004 end-page: 298 ident: bib0014 article-title: Thirty years of graph matching in pattern recognition publication-title: Int. J. Pattern Recognit. Artif. Intell. – volume: 46 start-page: 142 year: 2015 end-page: 152 ident: bib0016 article-title: Skeleton graph matching vs. maximum weight cliques aorta registration techniques publication-title: Comput. Med. Imaging Graph – volume: 27 start-page: 923 year: 2009 end-page: 933 ident: bib0037 article-title: Matching of anatomical tree structures for registration of medical images publication-title: Image Vis. Comput. – volume: 45 start-page: 2649 year: 2014 end-page: 2655 ident: bib0006 article-title: Widening and high inclination of the middle cerebral artery bifurcation are associated with presence of aneurysms publication-title: Stroke – start-page: 1114 year: 2009 end-page: 1122 ident: bib0019 article-title: An integer projected fixed point method for graph matching and map inference publication-title: Advances in neural information processing systems – volume: 32 start-page: 1550 issue: 8 year: 2013 ident: 10.1016/j.media.2018.02.007_bib0038 article-title: 3D-2d registration of cerebral angiograms: a method and evaluation on clinical images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2259844 – volume: 25 start-page: 1301 issue: 8 year: 2007 ident: 10.1016/j.media.2018.02.007_bib0046 article-title: Evaluation of a convex relaxation to a quadratic assignment matching approach for relational object views publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2006.08.005 – start-page: 876 year: 1964 ident: 10.1016/j.media.2018.02.007_bib0051 article-title: A relationship between arbitrary positive matrices and doubly stochastic matrices publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177703591 – year: 1993 ident: 10.1016/j.media.2018.02.007_bib0053 – year: 2012 ident: 10.1016/j.media.2018.02.007_bib0025 – start-page: 1 year: 2008 ident: 10.1016/j.media.2018.02.007_bib0064 article-title: Probabilistic graph and hypergraph matching publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 101 start-page: 108 issue: 1 year: 2004 ident: 10.1016/j.media.2018.02.007_bib0028 article-title: Bifurcation geometry and the presence of cerebral artery aneurysms publication-title: J. Neurosurg. doi: 10.3171/jns.2004.101.1.0108 – volume: 31 start-page: 1019 issue: 8 year: 1998 ident: 10.1016/j.media.2018.02.007_bib0021 article-title: New algorithms for 2d and 3d point matching: pose estimation and correspondence publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(98)80010-1 – volume: 96 start-page: 28 issue: 1 year: 2012 ident: 10.1016/j.media.2018.02.007_bib0034 article-title: Unsupervised learning for graph matching publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-011-0442-2 – volume: 362 start-page: 103 issue: 9378 year: 2003 ident: 10.1016/j.media.2018.02.007_bib0058 article-title: International study of unruptured intracranial aneurysms investigators, unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment publication-title: The Lancet doi: 10.1016/S0140-6736(03)13860-3 – start-page: 333 year: 2015 ident: 10.1016/j.media.2018.02.007_bib0001 article-title: Cerebrovascular interactions in cerebral disorders (stroke, transient ischaemic attacks, microvascular disease, migraine) – volume: 18 start-page: 265 year: 2004 ident: 10.1016/j.media.2018.02.007_bib0014 article-title: Thirty years of graph matching in pattern recognition publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001404003228 – volume: 37 start-page: 625 issue: 3 year: 2015 ident: 10.1016/j.media.2018.02.007_bib0048 article-title: Non-rigid graph registration using active testing search publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2343235 – start-page: 2741 year: 2013 ident: 10.1016/j.media.2018.02.007_bib0010 – year: 2010 ident: 10.1016/j.media.2018.02.007_bib0052 article-title: Robust matching of 3d lung vessel trees publication-title: In: Proceedings of the MICCAI Workshop on Pulmonary Image Analysis – start-page: 154 year: 2009 ident: 10.1016/j.media.2018.02.007_bib0029 article-title: Graph matching based on node signatures – volume: 2 start-page: 1482 year: 2005 ident: 10.1016/j.media.2018.02.007_bib0033 article-title: A spectral technique for correspondence problems using pairwise constraints publication-title: IEEE Int. Conf. Comput. Vis. (ICCV) – volume: 19 issue: 313 year: 2007 ident: 10.1016/j.media.2018.02.007_sbref0015 article-title: Balanced graph matching publication-title: Adv. Neural Inf. Process. Syst. – volume: 27 start-page: 1100 issue: 7 year: 2005 ident: 10.1016/j.media.2018.02.007_bib0023 article-title: Exact and approximate graph matching using random walks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.138 – volume: 35 start-page: 312 issue: 2 year: 2015 ident: 10.1016/j.media.2018.02.007_bib0004 article-title: Effect of age and vascular anatomy on blood flow in major cerebral vessels publication-title: J. Cereb. Blood Flow Metabol. doi: 10.1038/jcbfm.2014.203 – volume: 30 start-page: 1282 issue: 7 year: 2008 ident: 10.1016/j.media.2018.02.007_bib0007 article-title: Path similarity skeleton graph matching, pattern analysis and machine intelligence publication-title: Trans. IEEE – volume: 46 start-page: 142 year: 2015 ident: 10.1016/j.media.2018.02.007_bib0016 article-title: Skeleton graph matching vs. maximum weight cliques aorta registration techniques publication-title: Comput. Med. Imaging Graph doi: 10.1016/j.compmedimag.2015.05.001 – volume: Vol. 20 start-page: 208 year: 2015 ident: 10.1016/j.media.2018.02.007_bib0002 article-title: A novel method for identifying a graph-based representation of 3-D microvascular networks from fluorescence microscopy image stacks publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.11.007 – start-page: 29 year: 1997 ident: 10.1016/j.media.2018.02.007_bib0041 article-title: The softassign procrustes matching algorithm – start-page: 1114 year: 2009 ident: 10.1016/j.media.2018.02.007_bib0019 article-title: An integer projected fixed point method for graph matching and map inference – start-page: 387 issue: 3 year: 2006 ident: 10.1016/j.media.2018.02.007_bib0044 article-title: A new method to detect arcs and segments from curvature profiles publication-title: In: Proceedings of the International Conference on Pattern Recognition, ICPR – volume: 10 start-page: 1 issue: 6 year: 2015 ident: 10.1016/j.media.2018.02.007_bib0008 article-title: A tree-topology preserving pairing for 3d/2d registration publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-015-1207-0 – volume: 31 start-page: 2227 issue: 12 year: 2009 ident: 10.1016/j.media.2018.02.007_bib0063 article-title: A path following algorithm for the graph matching problem publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.245 – volume: 85 start-page: 247 issue: 2 year: 2005 ident: 10.1016/j.media.2018.02.007_bib0047 article-title: Curves vs. skeletons in object recognition publication-title: Signal Process. doi: 10.1016/j.sigpro.2004.10.016 – volume: 27 start-page: 923 issue: 7 year: 2009 ident: 10.1016/j.media.2018.02.007_bib0037 article-title: Matching of anatomical tree structures for registration of medical images publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2008.04.002 – start-page: 2906 year: 2013 ident: 10.1016/j.media.2018.02.007_bib0026 article-title: Graph matching with anchor nodes: a learning approach – volume: 45 start-page: 2649 issue: 9 year: 2014 ident: 10.1016/j.media.2018.02.007_bib0006 article-title: Widening and high inclination of the middle cerebral artery bifurcation are associated with presence of aneurysms publication-title: Stroke doi: 10.1161/STROKEAHA.114.005393 – volume: 35 start-page: 13 issue: 1 year: 1999 ident: 10.1016/j.media.2018.02.007_bib0049 article-title: Shock graphs and shape matching publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1008102926703 – volume: 18 start-page: 377 issue: 4 year: 1996 ident: 10.1016/j.media.2018.02.007_bib0020 article-title: A graduated assignment algorithm for graph matching publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.491619 – volume: 89 start-page: 114 issue: 2 year: 2003 ident: 10.1016/j.media.2018.02.007_bib0013 article-title: A new point matching algorithm for non-rigid registration publication-title: Comput. Vis. Image Underst. doi: 10.1016/S1077-3142(03)00009-2 – start-page: 492 year: 2010 ident: 10.1016/j.media.2018.02.007_bib0012 article-title: Reweighted random walks for graph matching – volume: 121 start-page: 1401 issue: 6 year: 2014 ident: 10.1016/j.media.2018.02.007_bib0055 article-title: Widening of the basilar bifurcation angle: association with presence of intracranial aneurysm, age, and female sex publication-title: Clin. Article. J. Neurosurg. doi: 10.3171/2014.8.JNS1447 – volume: 22 start-page: 345 issue: 3 year: 2013 ident: 10.1016/j.media.2018.02.007_bib0065 article-title: High efficiency and quality: large graphs matching publication-title: VLDB J. doi: 10.1007/s00778-012-0292-8 – volume: 6 start-page: 733 issue: 10 year: 2014 ident: 10.1016/j.media.2018.02.007_bib0032 article-title: High curvature of the internal carotid artery is associated with the presence of intracranial aneurysms publication-title: J. Neurointerv. Surg. doi: 10.1136/neurintsurg-2013-010987 – volume: 12 start-page: 1399 issue: 6 year: 2006 ident: 10.1016/j.media.2018.02.007_bib0059 article-title: Graph signatures for visual analytics publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2006.92 – volume: 24 start-page: 994 issue: 3 year: 2015 ident: 10.1016/j.media.2018.02.007_bib0060 article-title: Consistency-driven alternating optimization for multigraph matching: A unified approach publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2387386 |
| SSID | ssj0007440 |
| Score | 2.2820346 |
| Snippet | •A novel approach that registers vasculatures of arbitrary form from a graph matching-based perspective is presented.•We build abstract graphs from piece-wise... Registration of vascular networks is an indispensable element of prognostic and diagnostic studies that require structural analysis and comparison over time,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 118 |
| SubjectTerms | Algorithms Angiography Assignment problem Bifurcations Cerebral Angiography - methods Cerebrovascular Circulation Computer applications Data processing Diagnostic systems Geometrical graph-based models Graph matching Graphical representations Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Matching concept Operations research Reproducibility of Results Sensitivity and Specificity Structural analysis Topology Vascular surgery Vessel registration |
| Title | Cerebrovascular network registration via an efficient attributed graph matching technique |
| URI | https://dx.doi.org/10.1016/j.media.2018.02.007 https://www.ncbi.nlm.nih.gov/pubmed/29518676 https://www.proquest.com/docview/2110059423 https://www.proquest.com/docview/2012910953 |
| Volume | 46 |
| WOSCitedRecordID | wos000432615100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFB5iKqIPotVqtJYRfFu3zF4yM_sYSkUlLYIV4tMy2T2BlHRbkjT0D_i_PXPdpaXBPviyhL0Muznfnsvsd74h5BPkeiVKNouV4CzOEwaxymsZQ8IxuWdZpipj6bE4PZWTSfGj1_vje2E2C9E08uamuPqvpsZ9aGzdOvsAc4dBcQf-RqPjFs2O238y_BEssc5tKaaNJXpHegkGL5IbbUwvlmZzzE1HZKTWdukrzD-NhnWEmaylWQaV124e67_vzC8050c5ZZOAnsWFWhmawE_QK9CGKeexETHqNNYsQ1Q4wUhlPPOohparGDoVtb-OxofdSYpEtpRA51cznsQyt52b3vHmXc-ZODdsg3Bip0Hu-Hc71XB-aNpqNDFPWsVV0YYz_wn_VpQL3ENPazsvzSClHqRkaWk0CXZSMSxkn-yMvh1PvoeQrlUUbQOffQovX2WIgnfu5b4U574SxqQyZy_Ic1eD0JHFzkvSg2aXPOsoU-6SJyeOc_GK_L4FKOoARbuAoggoqhoaAEVbQFEDKOoBRQOgXpNfX47Pjr7GbkGOuMqkWMd8CgljdY458BQDpYBpDsNhxSqmiqICLDYx5RIcsCxOp-gDZpje45VYJANwmIpsj_SbywbeEqoUq1KMswzqWjfWK1mnLFdVkuUzqPlsQFL_H5aVU6vXi6Ysyi32G5DP4aIrK9ay_XTujVO6fNPmkSXCbfuF-96UpXvzV6WeSdHiR2k2IB_DYXTW-gucauDyeqXHSDE_L4Z4zhsLgXCjKdY6kgv-7mEP8Z48bV-4fdJfL6_hA3lcbdbz1fKAPBITeeDg_BcG4MMG |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerebrovascular+network+registration+via+an+efficient+attributed+graph+matching+technique&rft.jtitle=Medical+image+analysis&rft.au=Almasi%2C+Sepideh&rft.au=Lauric%2C+Alexandra&rft.au=Malek%2C+Adel&rft.au=Miller%2C+Eric+L.&rft.date=2018-05-01&rft.issn=1361-8415&rft.volume=46&rft.spage=118&rft.epage=129&rft_id=info:doi/10.1016%2Fj.media.2018.02.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2018_02_007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |