Cerebrovascular network registration via an efficient attributed graph matching technique

•A novel approach that registers vasculatures of arbitrary form from a graph matching-based perspective is presented.•We build abstract graphs from piece-wise linear approximations of the vascular networks’ tubular shape that represent their global connection scheme among the bifurcations and leaves...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Medical image analysis Ročník 46; s. 118 - 129
Hlavní autori: Almasi, Sepideh, Lauric, Alexandra, Malek, Adel, Miller, Eric L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.05.2018
Elsevier BV
Predmet:
ISSN:1361-8415, 1361-8423, 1361-8423
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A novel approach that registers vasculatures of arbitrary form from a graph matching-based perspective is presented.•We build abstract graphs from piece-wise linear approximations of the vascular networks’ tubular shape that represent their global connection scheme among the bifurcations and leaves.•To ensure the scalability and computational efficiency of the registration method, we developed a novel feature, termed the “signature,” that captures geometrical attributes of bifurcations and vessel branches in a topologically encoded form.•Using a novel “signature” feature, the graph-based registration method is posed as a Linear Assignment Problem (LAP) rather than the NP-hard quadratic assignment problem (QAP) common in the graph matching literature.•The proposed method’s performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature. Synthetic data sets are produced from the clinical datasets and have been used to show the robustness of method against structural inclusiveness and deformation. [Display omitted] Registration of vascular networks is an indispensable element of prognostic and diagnostic studies that require structural analysis and comparison over time, among different samples, and to a gold standard. However, vascular networks manifest low spatial texture and sparse structural content so that even small variations in their location can make the intensity-based registration inefficient and prone to errors. Motivated by geometrical graph-based models developed in our prior work, we use the shape information in the graph topology sense to enhance the registration performance. An efficient feature-based registration is presented that seeks correspondence of the bifurcations and branches in a graph matching scheme. Since the graph matching is originally posed a NP-hard quadratic assignment problem (QAP) in the literature, we have designed a node signature that incorporates edge correspondences indirectly. This allows removing the quadratic term in the QAP to recast the problem as a linear assignment problem (LAP) to relieve the computational burden. The LAP is efficiently solvable and is scalable to data with graph representation of larger size. The performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature as well as synthetic datasets. This method proves to be robust in the face of different structural and algorithm’s parameters. Quality of inter-subject and multimodal matching of clinical data has also been confirmed.
AbstractList Registration of vascular networks is an indispensable element of prognostic and diagnostic studies that require structural analysis and comparison over time, among different samples, and to a gold standard. However, vascular networks manifest low spatial texture and sparse structural content so that even small variations in their location can make the intensity-based registration inefficient and prone to errors. Motivated by geometrical graph-based models developed in our prior work, we use the shape information in the graph topology sense to enhance the registration performance. An efficient feature-based registration is presented that seeks correspondence of the bifurcations and branches in a graph matching scheme. Since the graph matching is originally posed a NP-hard quadratic assignment problem (QAP) in the literature, we have designed a node signature that incorporates edge correspondences indirectly. This allows removing the quadratic term in the QAP to recast the problem as a linear assignment problem (LAP) to relieve the computational burden. The LAP is efficiently solvable and is scalable to data with graph representation of larger size. The performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature as well as synthetic datasets. This method proves to be robust in the face of different structural and algorithm’s parameters. Quality of inter-subject and multimodal matching of clinical data has also been confirmed.
Registration of vascular networks is an indispensable element of prognostic and diagnostic studies that require structural analysis and comparison over time, among different samples, and to a gold standard. However, vascular networks manifest low spatial texture and sparse structural content so that even small variations in their location can make the intensity-based registration inefficient and prone to errors. Motivated by geometrical graph-based models developed in our prior work, we use the shape information in the graph topology sense to enhance the registration performance. An efficient feature-based registration is presented that seeks correspondence of the bifurcations and branches in a graph matching scheme. Since the graph matching is originally posed a NP-hard quadratic assignment problem (QAP) in the literature, we have designed a node signature that incorporates edge correspondences indirectly. This allows removing the quadratic term in the QAP to recast the problem as a linear assignment problem (LAP) to relieve the computational burden. The LAP is efficiently solvable and is scalable to data with graph representation of larger size. The performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature as well as synthetic datasets. This method proves to be robust in the face of different structural and algorithm's parameters. Quality of inter-subject and multimodal matching of clinical data has also been confirmed.Registration of vascular networks is an indispensable element of prognostic and diagnostic studies that require structural analysis and comparison over time, among different samples, and to a gold standard. However, vascular networks manifest low spatial texture and sparse structural content so that even small variations in their location can make the intensity-based registration inefficient and prone to errors. Motivated by geometrical graph-based models developed in our prior work, we use the shape information in the graph topology sense to enhance the registration performance. An efficient feature-based registration is presented that seeks correspondence of the bifurcations and branches in a graph matching scheme. Since the graph matching is originally posed a NP-hard quadratic assignment problem (QAP) in the literature, we have designed a node signature that incorporates edge correspondences indirectly. This allows removing the quadratic term in the QAP to recast the problem as a linear assignment problem (LAP) to relieve the computational burden. The LAP is efficiently solvable and is scalable to data with graph representation of larger size. The performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature as well as synthetic datasets. This method proves to be robust in the face of different structural and algorithm's parameters. Quality of inter-subject and multimodal matching of clinical data has also been confirmed.
•A novel approach that registers vasculatures of arbitrary form from a graph matching-based perspective is presented.•We build abstract graphs from piece-wise linear approximations of the vascular networks’ tubular shape that represent their global connection scheme among the bifurcations and leaves.•To ensure the scalability and computational efficiency of the registration method, we developed a novel feature, termed the “signature,” that captures geometrical attributes of bifurcations and vessel branches in a topologically encoded form.•Using a novel “signature” feature, the graph-based registration method is posed as a Linear Assignment Problem (LAP) rather than the NP-hard quadratic assignment problem (QAP) common in the graph matching literature.•The proposed method’s performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature. Synthetic data sets are produced from the clinical datasets and have been used to show the robustness of method against structural inclusiveness and deformation. [Display omitted] Registration of vascular networks is an indispensable element of prognostic and diagnostic studies that require structural analysis and comparison over time, among different samples, and to a gold standard. However, vascular networks manifest low spatial texture and sparse structural content so that even small variations in their location can make the intensity-based registration inefficient and prone to errors. Motivated by geometrical graph-based models developed in our prior work, we use the shape information in the graph topology sense to enhance the registration performance. An efficient feature-based registration is presented that seeks correspondence of the bifurcations and branches in a graph matching scheme. Since the graph matching is originally posed a NP-hard quadratic assignment problem (QAP) in the literature, we have designed a node signature that incorporates edge correspondences indirectly. This allows removing the quadratic term in the QAP to recast the problem as a linear assignment problem (LAP) to relieve the computational burden. The LAP is efficiently solvable and is scalable to data with graph representation of larger size. The performance is tested and validated using clinical 3-D angiography images of the human cerebrovasculature as well as synthetic datasets. This method proves to be robust in the face of different structural and algorithm’s parameters. Quality of inter-subject and multimodal matching of clinical data has also been confirmed.
Author Lauric, Alexandra
Malek, Adel
Almasi, Sepideh
Miller, Eric L.
Author_xml – sequence: 1
  givenname: Sepideh
  surname: Almasi
  fullname: Almasi, Sepideh
  email: s.almasi@stanford.edu
  organization: Department Electrical and Computer Engineering, Tufts University, Medford, MA, USA
– sequence: 2
  givenname: Alexandra
  surname: Lauric
  fullname: Lauric, Alexandra
  organization: Department Neurosurgery, Tufts University School of Medicine, Boston, MA, USA
– sequence: 3
  givenname: Adel
  surname: Malek
  fullname: Malek, Adel
  organization: Department Neurosurgery, Tufts University School of Medicine, Boston, MA, USA
– sequence: 4
  givenname: Eric L.
  surname: Miller
  fullname: Miller, Eric L.
  organization: Department Electrical and Computer Engineering, Tufts University, Medford, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29518676$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URD_gFyAhS1y4ZBnvrr3rAwcU0YJUiQscOFleZzZx2NjB9qbi3zNpWg499GJb1vPOjJ65ZGchBmTsrYBKgFAft9UOV95WNYi-groC6F6wC9Eosejbujn7_xbynF3mvAUi2hZesfNaS9GrTl2wX0tMOKR4sNnNk008YLmL6TdPuPa5JFt8DPzgLbeB4zh65zEUbktJfpgLrvg62f2G72xxGx_WvKDbBP9nxtfs5WinjG8e7iv28_rLj-XXxe33m2_Lz7cL1_RdWagBBcCqlUIOkn5waFFKBw6s1g6hpQM7haBVPWiAsW8kJbUCRIVD11yxD6e6-xSpbS5m57PDabIB45wN6am1AC0bQt8_QbdxToGmM7WgKaQmb0S9e6DmgQybffI7m_6aR2kE6BPgUsw54WicL_eiyJefjABzXJDZmvsFHSfoDdSG9FO2eZJ9LP986tMphSTy4DGZfNyDIzChK2YV_bP5f9b8qrw
CitedBy_id crossref_primary_10_1002_tee_23355
crossref_primary_10_1016_j_biomaterials_2022_121514
crossref_primary_10_1007_s10514_019_09872_1
crossref_primary_10_1109_ACCESS_2019_2898754
crossref_primary_10_1016_j_compmedimag_2024_102364
crossref_primary_10_1016_j_cmpb_2020_105922
crossref_primary_10_3390_rs11243026
crossref_primary_10_1007_s10803_023_06068_6
crossref_primary_10_1080_07038992_2021_1937087
Cites_doi 10.1109/TMI.2013.2259844
10.1016/j.imavis.2006.08.005
10.1214/aoms/1177703591
10.3171/jns.2004.101.1.0108
10.1016/S0031-3203(98)80010-1
10.1007/s11263-011-0442-2
10.1016/S0140-6736(03)13860-3
10.1142/S0218001404003228
10.1109/TPAMI.2014.2343235
10.1109/TPAMI.2005.138
10.1038/jcbfm.2014.203
10.1016/j.compmedimag.2015.05.001
10.1016/j.media.2014.11.007
10.1007/s11548-015-1207-0
10.1109/TPAMI.2008.245
10.1016/j.sigpro.2004.10.016
10.1016/j.imavis.2008.04.002
10.1161/STROKEAHA.114.005393
10.1023/A:1008102926703
10.1109/34.491619
10.1016/S1077-3142(03)00009-2
10.3171/2014.8.JNS1447
10.1007/s00778-012-0292-8
10.1136/neurintsurg-2013-010987
10.1109/TVCG.2006.92
10.1109/TIP.2014.2387386
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright Elsevier BV May 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV May 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2018.02.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 129
ExternalDocumentID 29518676
10_1016_j_media_2018_02_007
S1361841518300318
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c387t-6be100d4515b5387eb4e55c0c0a99ce049cee76e0962b900f835c38960ee6eb73
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432615100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Sun Sep 28 08:25:23 EDT 2025
Tue Oct 07 06:54:52 EDT 2025
Wed Feb 19 02:36:34 EST 2025
Sat Nov 29 04:06:03 EST 2025
Tue Nov 18 21:56:18 EST 2025
Fri Feb 23 02:28:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Vessel registration
Geometrical graph-based models
Graph matching
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-6be100d4515b5387eb4e55c0c0a99ce049cee76e0962b900f835c38960ee6eb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29518676
PQID 2110059423
PQPubID 2045428
PageCount 12
ParticipantIDs proquest_miscellaneous_2012910953
proquest_journals_2110059423
pubmed_primary_29518676
crossref_citationtrail_10_1016_j_media_2018_02_007
crossref_primary_10_1016_j_media_2018_02_007
elsevier_sciencedirect_doi_10_1016_j_media_2018_02_007
PublicationCentury 2000
PublicationDate May 2018
2018-05-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Yan, Wang, Zha, Yang, Chu (bib0060) 2015; 24
Bai, Latecki (bib0007) 2008; 30
Cour, Srinivasan, Shi (bib0015) 2007; 19
Ingebrigtsen, Morgan, Faulder, Ingebrigtsen, Sparr, Schirmer (bib0028) 2004; 101
Sonka, Hlavac, Boyle (bib0053) 1993
Jouili, Tabbone (bib0029) 2009
Schellewald, Roth, Schnrr (bib0046) 2007; 25
Czajkowska, Feinen, Grzegorzek, Raspe, Wickenhöfer (bib0016) 2015; 46
Leordeanu, Sukthankar, Hebert (bib0034) 2012; 96
Salmon, Debled-Rennesson, Wendling (bib0044) 2006
Baharoglu, Lauric, Safain, Hippelheuser, Wu, Malek (bib0006) 2014; 45
Sinkhorn (bib0051) 1964
Agostoni, Longoni (bib0001) 2015
Cho, Jungmin, Kyoung (bib0012) 2010
Wong, Foote, Chin, Mackey, Perrine (bib0059) 2006; 12
Chui, Rangarajan (bib0013) 2003; 89
Tutuncu, Schimansky, Baharoglu, Gao, Calnan, Hippelheuser, Safain, Lauric, Malek (bib0055) 2014; 121
Sebastian, Kimia (bib0047) 2005; 85
Gold, Rangarajan (bib0020) 1996; 18
Amin-Hanjani, Du, Pandey, Thulborn, Charbel (bib0004) 2015; 35
Serradell, Pinheiro, Sznitman, Kybic, Moreno-Noguer, Fua (bib0048) 2015; 37
Zass, Shashua. (bib0064) 2008
Benseghir, Malandain, Vaillant (bib0008) 2015; 10
Burkard (bib0010) 2013
Lauric, Safain, Hippelheuser, Malek (bib0032) 2014; 6
Gold, Rangarajan, Lu, Pappu, Mjolsness (bib0021) 1998; 31
Metzen, Kroger, Schenk, Zidowitz, Peitgen, Jiang (bib0037) 2009; 27
Zhu, Qin, Yu, Ke, Lin (bib0065) 2013; 22
Zaslavskiy, Bach, Vert (bib0063) 2009; 31
Conte, Foggia, Sansone, Vento (bib0014) 2004; 18
Almasi, Xu, Ben-Zvi, Lacoste, Gu, Miller (bib0002) 2015; Vol. 20
Wiebers (bib0058) 2003; 362
Horn, Johnson (bib0025) 2012
Rangarajan, Chui, Bookstein (bib0041) 1997
Leordeanu, Hebert, Sukthankar (bib0019) 2009
Hu, Rustamov, Guibas (bib0026) 2013
Gori, Maggini, Sarti (bib0023) 2005; 27
Siddiqi, Shokoufandeh, Dickinson, Zucker (bib0049) 1999; 35
Leordeanu, Hebert (bib0033) 2005; 2
Mitrovic, Spiclin, Likar, Pernus (bib0038) 2013; 32
Smeets, Bruyninckx, Keustermans, Vandermeulen, Suetens (bib0052) 2010
Benseghir (10.1016/j.media.2018.02.007_bib0008) 2015; 10
Gold (10.1016/j.media.2018.02.007_bib0020) 1996; 18
Serradell (10.1016/j.media.2018.02.007_bib0048) 2015; 37
Chui (10.1016/j.media.2018.02.007_bib0013) 2003; 89
Gori (10.1016/j.media.2018.02.007_bib0023) 2005; 27
Bai (10.1016/j.media.2018.02.007_bib0007) 2008; 30
Smeets (10.1016/j.media.2018.02.007_bib0052) 2010
Tutuncu (10.1016/j.media.2018.02.007_bib0055) 2014; 121
Czajkowska (10.1016/j.media.2018.02.007_bib0016) 2015; 46
Horn (10.1016/j.media.2018.02.007_bib0025) 2012
Yan (10.1016/j.media.2018.02.007_bib0060) 2015; 24
Metzen (10.1016/j.media.2018.02.007_bib0037) 2009; 27
Salmon (10.1016/j.media.2018.02.007_bib0044) 2006
Leordeanu (10.1016/j.media.2018.02.007_bib0034) 2012; 96
Baharoglu (10.1016/j.media.2018.02.007_bib0006) 2014; 45
Cour (10.1016/j.media.2018.02.007_sbref0015) 2007; 19
Schellewald (10.1016/j.media.2018.02.007_bib0046) 2007; 25
Agostoni (10.1016/j.media.2018.02.007_bib0001) 2015
Leordeanu (10.1016/j.media.2018.02.007_bib0033) 2005; 2
Cho (10.1016/j.media.2018.02.007_bib0012) 2010
Sebastian (10.1016/j.media.2018.02.007_bib0047) 2005; 85
Mitrovic (10.1016/j.media.2018.02.007_bib0038) 2013; 32
Burkard (10.1016/j.media.2018.02.007_bib0010) 2013
Conte (10.1016/j.media.2018.02.007_bib0014) 2004; 18
Hu (10.1016/j.media.2018.02.007_bib0026) 2013
Wong (10.1016/j.media.2018.02.007_bib0059) 2006; 12
Sonka (10.1016/j.media.2018.02.007_bib0053) 1993
Amin-Hanjani (10.1016/j.media.2018.02.007_bib0004) 2015; 35
Jouili (10.1016/j.media.2018.02.007_bib0029) 2009
Sinkhorn (10.1016/j.media.2018.02.007_bib0051) 1964
Almasi (10.1016/j.media.2018.02.007_bib0002) 2015; Vol. 20
Rangarajan (10.1016/j.media.2018.02.007_bib0041) 1997
Wiebers (10.1016/j.media.2018.02.007_bib0058) 2003; 362
Zaslavskiy (10.1016/j.media.2018.02.007_bib0063) 2009; 31
Gold (10.1016/j.media.2018.02.007_bib0021) 1998; 31
Zhu (10.1016/j.media.2018.02.007_bib0065) 2013; 22
Siddiqi (10.1016/j.media.2018.02.007_bib0049) 1999; 35
Zass (10.1016/j.media.2018.02.007_bib0064) 2008
Leordeanu (10.1016/j.media.2018.02.007_bib0019) 2009
Ingebrigtsen (10.1016/j.media.2018.02.007_bib0028) 2004; 101
Lauric (10.1016/j.media.2018.02.007_bib0032) 2014; 6
References_xml – volume: 362
  start-page: 103
  year: 2003
  end-page: 110
  ident: bib0058
  article-title: International study of unruptured intracranial aneurysms investigators, unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment
  publication-title: The Lancet
– start-page: 333
  year: 2015
  end-page: 345
  ident: bib0001
  article-title: Cerebrovascular interactions in cerebral disorders (stroke, transient ischaemic attacks, microvascular disease, migraine)
  publication-title: Arterial Disorders
– volume: 30
  start-page: 1282
  year: 2008
  end-page: 1292
  ident: bib0007
  article-title: Path similarity skeleton graph matching, pattern analysis and machine intelligence
  publication-title: Trans. IEEE
– volume: 10
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib0008
  article-title: A tree-topology preserving pairing for 3d/2d registration
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 25
  start-page: 1301
  year: 2007
  end-page: 1314
  ident: bib0046
  article-title: Evaluation of a convex relaxation to a quadratic assignment matching approach for relational object views
  publication-title: Image Vis. Comput.
– year: 2010
  ident: bib0052
  article-title: Robust matching of 3d lung vessel trees
  publication-title: In: Proceedings of the MICCAI Workshop on Pulmonary Image Analysis
– volume: 121
  start-page: 1401
  year: 2014
  end-page: 1410
  ident: bib0055
  article-title: Widening of the basilar bifurcation angle: association with presence of intracranial aneurysm, age, and female sex
  publication-title: Clin. Article. J. Neurosurg.
– volume: 2
  start-page: 1482
  year: 2005
  end-page: 1489
  ident: bib0033
  article-title: A spectral technique for correspondence problems using pairwise constraints
  publication-title: IEEE Int. Conf. Comput. Vis. (ICCV)
– volume: 32
  start-page: 1550
  year: 2013
  end-page: 1563
  ident: bib0038
  article-title: 3D-2d registration of cerebral angiograms: a method and evaluation on clinical images
  publication-title: IEEE Trans. Med. Imaging
– volume: 96
  start-page: 28
  year: 2012
  end-page: 45
  ident: bib0034
  article-title: Unsupervised learning for graph matching
  publication-title: Int. J. Comput. Vis.
– start-page: 29
  year: 1997
  end-page: 42
  ident: bib0041
  article-title: The softassign procrustes matching algorithm
  publication-title: Information Processing in Medical Imaging
– volume: 101
  start-page: 108
  year: 2004
  end-page: 113
  ident: bib0028
  article-title: Bifurcation geometry and the presence of cerebral artery aneurysms
  publication-title: J. Neurosurg.
– volume: 85
  start-page: 247
  year: 2005
  end-page: 263
  ident: bib0047
  article-title: Curves vs. skeletons in object recognition
  publication-title: Signal Process.
– year: 2012
  ident: bib0025
  publication-title: Matrix Analysis
– start-page: 1
  year: 2008
  end-page: 8
  ident: bib0064
  article-title: Probabilistic graph and hypergraph matching
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 1993
  ident: bib0053
  publication-title: Image Processing, Analysis and Machine Vision
– volume: 6
  start-page: 733
  year: 2014
  end-page: 739
  ident: bib0032
  article-title: High curvature of the internal carotid artery is associated with the presence of intracranial aneurysms
  publication-title: J. Neurointerv. Surg.
– volume: 37
  start-page: 625
  year: 2015
  end-page: 638
  ident: bib0048
  article-title: Non-rigid graph registration using active testing search
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 22
  start-page: 345
  year: 2013
  end-page: 368
  ident: bib0065
  article-title: High efficiency and quality: large graphs matching
  publication-title: VLDB J.
– volume: 31
  start-page: 1019
  year: 1998
  end-page: 1031
  ident: bib0021
  article-title: New algorithms for 2d and 3d point matching: pose estimation and correspondence
  publication-title: Pattern Recognit.
– start-page: 492
  year: 2010
  end-page: 505
  ident: bib0012
  article-title: Reweighted random walks for graph matching
  publication-title: Computer Vision, ECCV
– volume: 12
  start-page: 1399
  year: 2006
  end-page: 1413
  ident: bib0059
  article-title: Graph signatures for visual analytics
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 24
  start-page: 994
  year: 2015
  end-page: 1009
  ident: bib0060
  article-title: Consistency-driven alternating optimization for multigraph matching: A unified approach
  publication-title: IEEE Trans. Image Process.
– start-page: 154
  year: 2009
  end-page: 163
  ident: bib0029
  article-title: Graph matching based on node signatures
  publication-title: Proceedings of the International Workshop on Graph-Based Representations in Pattern Recognition
– start-page: 387
  year: 2006
  end-page: 390
  ident: bib0044
  article-title: A new method to detect arcs and segments from curvature profiles
  publication-title: In: Proceedings of the International Conference on Pattern Recognition, ICPR
– start-page: 2906
  year: 2013
  end-page: 2913
  ident: bib0026
  article-title: Graph matching with anchor nodes: a learning approach
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 19
  year: 2007
  ident: bib0015
  article-title: Balanced graph matching
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 2227
  year: 2009
  end-page: 2242
  ident: bib0063
  article-title: A path following algorithm for the graph matching problem
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: Vol. 20
  start-page: 208
  year: 2015
  end-page: 223
  ident: bib0002
  article-title: A novel method for identifying a graph-based representation of 3-D microvascular networks from fluorescence microscopy image stacks
  publication-title: Med. Image Anal.
– volume: 27
  start-page: 1100
  year: 2005
  end-page: 1111
  ident: bib0023
  article-title: Exact and approximate graph matching using random walks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 89
  start-page: 114
  year: 2003
  end-page: 141
  ident: bib0013
  article-title: A new point matching algorithm for non-rigid registration
  publication-title: Comput. Vis. Image Underst.
– volume: 35
  start-page: 312
  year: 2015
  end-page: 318
  ident: bib0004
  article-title: Effect of age and vascular anatomy on blood flow in major cerebral vessels
  publication-title: J. Cereb. Blood Flow Metabol.
– volume: 18
  start-page: 377
  year: 1996
  end-page: 388
  ident: bib0020
  article-title: A graduated assignment algorithm for graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2741
  year: 2013
  end-page: 2814
  ident: bib0010
  publication-title: Quadratic Assignment Problems
– start-page: 876
  year: 1964
  end-page: 879
  ident: bib0051
  article-title: A relationship between arbitrary positive matrices and doubly stochastic matrices
  publication-title: Ann. Math. Stat.
– volume: 35
  start-page: 13
  year: 1999
  end-page: 32
  ident: bib0049
  article-title: Shock graphs and shape matching
  publication-title: Int. J. Comput. Vis.
– volume: 18
  start-page: 265
  year: 2004
  end-page: 298
  ident: bib0014
  article-title: Thirty years of graph matching in pattern recognition
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– volume: 46
  start-page: 142
  year: 2015
  end-page: 152
  ident: bib0016
  article-title: Skeleton graph matching vs. maximum weight cliques aorta registration techniques
  publication-title: Comput. Med. Imaging Graph
– volume: 27
  start-page: 923
  year: 2009
  end-page: 933
  ident: bib0037
  article-title: Matching of anatomical tree structures for registration of medical images
  publication-title: Image Vis. Comput.
– volume: 45
  start-page: 2649
  year: 2014
  end-page: 2655
  ident: bib0006
  article-title: Widening and high inclination of the middle cerebral artery bifurcation are associated with presence of aneurysms
  publication-title: Stroke
– start-page: 1114
  year: 2009
  end-page: 1122
  ident: bib0019
  article-title: An integer projected fixed point method for graph matching and map inference
  publication-title: Advances in neural information processing systems
– volume: 32
  start-page: 1550
  issue: 8
  year: 2013
  ident: 10.1016/j.media.2018.02.007_bib0038
  article-title: 3D-2d registration of cerebral angiograms: a method and evaluation on clinical images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2259844
– volume: 25
  start-page: 1301
  issue: 8
  year: 2007
  ident: 10.1016/j.media.2018.02.007_bib0046
  article-title: Evaluation of a convex relaxation to a quadratic assignment matching approach for relational object views
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2006.08.005
– start-page: 876
  year: 1964
  ident: 10.1016/j.media.2018.02.007_bib0051
  article-title: A relationship between arbitrary positive matrices and doubly stochastic matrices
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177703591
– year: 1993
  ident: 10.1016/j.media.2018.02.007_bib0053
– year: 2012
  ident: 10.1016/j.media.2018.02.007_bib0025
– start-page: 1
  year: 2008
  ident: 10.1016/j.media.2018.02.007_bib0064
  article-title: Probabilistic graph and hypergraph matching
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 101
  start-page: 108
  issue: 1
  year: 2004
  ident: 10.1016/j.media.2018.02.007_bib0028
  article-title: Bifurcation geometry and the presence of cerebral artery aneurysms
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.2004.101.1.0108
– volume: 31
  start-page: 1019
  issue: 8
  year: 1998
  ident: 10.1016/j.media.2018.02.007_bib0021
  article-title: New algorithms for 2d and 3d point matching: pose estimation and correspondence
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(98)80010-1
– volume: 96
  start-page: 28
  issue: 1
  year: 2012
  ident: 10.1016/j.media.2018.02.007_bib0034
  article-title: Unsupervised learning for graph matching
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-011-0442-2
– volume: 362
  start-page: 103
  issue: 9378
  year: 2003
  ident: 10.1016/j.media.2018.02.007_bib0058
  article-title: International study of unruptured intracranial aneurysms investigators, unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(03)13860-3
– start-page: 333
  year: 2015
  ident: 10.1016/j.media.2018.02.007_bib0001
  article-title: Cerebrovascular interactions in cerebral disorders (stroke, transient ischaemic attacks, microvascular disease, migraine)
– volume: 18
  start-page: 265
  year: 2004
  ident: 10.1016/j.media.2018.02.007_bib0014
  article-title: Thirty years of graph matching in pattern recognition
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001404003228
– volume: 37
  start-page: 625
  issue: 3
  year: 2015
  ident: 10.1016/j.media.2018.02.007_bib0048
  article-title: Non-rigid graph registration using active testing search
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2343235
– start-page: 2741
  year: 2013
  ident: 10.1016/j.media.2018.02.007_bib0010
– year: 2010
  ident: 10.1016/j.media.2018.02.007_bib0052
  article-title: Robust matching of 3d lung vessel trees
  publication-title: In: Proceedings of the MICCAI Workshop on Pulmonary Image Analysis
– start-page: 154
  year: 2009
  ident: 10.1016/j.media.2018.02.007_bib0029
  article-title: Graph matching based on node signatures
– volume: 2
  start-page: 1482
  year: 2005
  ident: 10.1016/j.media.2018.02.007_bib0033
  article-title: A spectral technique for correspondence problems using pairwise constraints
  publication-title: IEEE Int. Conf. Comput. Vis. (ICCV)
– volume: 19
  issue: 313
  year: 2007
  ident: 10.1016/j.media.2018.02.007_sbref0015
  article-title: Balanced graph matching
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 27
  start-page: 1100
  issue: 7
  year: 2005
  ident: 10.1016/j.media.2018.02.007_bib0023
  article-title: Exact and approximate graph matching using random walks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.138
– volume: 35
  start-page: 312
  issue: 2
  year: 2015
  ident: 10.1016/j.media.2018.02.007_bib0004
  article-title: Effect of age and vascular anatomy on blood flow in major cerebral vessels
  publication-title: J. Cereb. Blood Flow Metabol.
  doi: 10.1038/jcbfm.2014.203
– volume: 30
  start-page: 1282
  issue: 7
  year: 2008
  ident: 10.1016/j.media.2018.02.007_bib0007
  article-title: Path similarity skeleton graph matching, pattern analysis and machine intelligence
  publication-title: Trans. IEEE
– volume: 46
  start-page: 142
  year: 2015
  ident: 10.1016/j.media.2018.02.007_bib0016
  article-title: Skeleton graph matching vs. maximum weight cliques aorta registration techniques
  publication-title: Comput. Med. Imaging Graph
  doi: 10.1016/j.compmedimag.2015.05.001
– volume: Vol. 20
  start-page: 208
  year: 2015
  ident: 10.1016/j.media.2018.02.007_bib0002
  article-title: A novel method for identifying a graph-based representation of 3-D microvascular networks from fluorescence microscopy image stacks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.11.007
– start-page: 29
  year: 1997
  ident: 10.1016/j.media.2018.02.007_bib0041
  article-title: The softassign procrustes matching algorithm
– start-page: 1114
  year: 2009
  ident: 10.1016/j.media.2018.02.007_bib0019
  article-title: An integer projected fixed point method for graph matching and map inference
– start-page: 387
  issue: 3
  year: 2006
  ident: 10.1016/j.media.2018.02.007_bib0044
  article-title: A new method to detect arcs and segments from curvature profiles
  publication-title: In: Proceedings of the International Conference on Pattern Recognition, ICPR
– volume: 10
  start-page: 1
  issue: 6
  year: 2015
  ident: 10.1016/j.media.2018.02.007_bib0008
  article-title: A tree-topology preserving pairing for 3d/2d registration
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-015-1207-0
– volume: 31
  start-page: 2227
  issue: 12
  year: 2009
  ident: 10.1016/j.media.2018.02.007_bib0063
  article-title: A path following algorithm for the graph matching problem
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.245
– volume: 85
  start-page: 247
  issue: 2
  year: 2005
  ident: 10.1016/j.media.2018.02.007_bib0047
  article-title: Curves vs. skeletons in object recognition
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2004.10.016
– volume: 27
  start-page: 923
  issue: 7
  year: 2009
  ident: 10.1016/j.media.2018.02.007_bib0037
  article-title: Matching of anatomical tree structures for registration of medical images
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.04.002
– start-page: 2906
  year: 2013
  ident: 10.1016/j.media.2018.02.007_bib0026
  article-title: Graph matching with anchor nodes: a learning approach
– volume: 45
  start-page: 2649
  issue: 9
  year: 2014
  ident: 10.1016/j.media.2018.02.007_bib0006
  article-title: Widening and high inclination of the middle cerebral artery bifurcation are associated with presence of aneurysms
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.114.005393
– volume: 35
  start-page: 13
  issue: 1
  year: 1999
  ident: 10.1016/j.media.2018.02.007_bib0049
  article-title: Shock graphs and shape matching
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1008102926703
– volume: 18
  start-page: 377
  issue: 4
  year: 1996
  ident: 10.1016/j.media.2018.02.007_bib0020
  article-title: A graduated assignment algorithm for graph matching
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.491619
– volume: 89
  start-page: 114
  issue: 2
  year: 2003
  ident: 10.1016/j.media.2018.02.007_bib0013
  article-title: A new point matching algorithm for non-rigid registration
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/S1077-3142(03)00009-2
– start-page: 492
  year: 2010
  ident: 10.1016/j.media.2018.02.007_bib0012
  article-title: Reweighted random walks for graph matching
– volume: 121
  start-page: 1401
  issue: 6
  year: 2014
  ident: 10.1016/j.media.2018.02.007_bib0055
  article-title: Widening of the basilar bifurcation angle: association with presence of intracranial aneurysm, age, and female sex
  publication-title: Clin. Article. J. Neurosurg.
  doi: 10.3171/2014.8.JNS1447
– volume: 22
  start-page: 345
  issue: 3
  year: 2013
  ident: 10.1016/j.media.2018.02.007_bib0065
  article-title: High efficiency and quality: large graphs matching
  publication-title: VLDB J.
  doi: 10.1007/s00778-012-0292-8
– volume: 6
  start-page: 733
  issue: 10
  year: 2014
  ident: 10.1016/j.media.2018.02.007_bib0032
  article-title: High curvature of the internal carotid artery is associated with the presence of intracranial aneurysms
  publication-title: J. Neurointerv. Surg.
  doi: 10.1136/neurintsurg-2013-010987
– volume: 12
  start-page: 1399
  issue: 6
  year: 2006
  ident: 10.1016/j.media.2018.02.007_bib0059
  article-title: Graph signatures for visual analytics
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2006.92
– volume: 24
  start-page: 994
  issue: 3
  year: 2015
  ident: 10.1016/j.media.2018.02.007_bib0060
  article-title: Consistency-driven alternating optimization for multigraph matching: A unified approach
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2387386
SSID ssj0007440
Score 2.2820346
Snippet •A novel approach that registers vasculatures of arbitrary form from a graph matching-based perspective is presented.•We build abstract graphs from piece-wise...
Registration of vascular networks is an indispensable element of prognostic and diagnostic studies that require structural analysis and comparison over time,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118
SubjectTerms Algorithms
Angiography
Assignment problem
Bifurcations
Cerebral Angiography - methods
Cerebrovascular Circulation
Computer applications
Data processing
Diagnostic systems
Geometrical graph-based models
Graph matching
Graphical representations
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Matching concept
Operations research
Reproducibility of Results
Sensitivity and Specificity
Structural analysis
Topology
Vascular surgery
Vessel registration
Title Cerebrovascular network registration via an efficient attributed graph matching technique
URI https://dx.doi.org/10.1016/j.media.2018.02.007
https://www.ncbi.nlm.nih.gov/pubmed/29518676
https://www.proquest.com/docview/2110059423
https://www.proquest.com/docview/2012910953
Volume 46
WOSCitedRecordID wos000432615100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFB5iKqIPotVqtJYRfFu3zF4yM_sYSkUlLYIV4tMy2T2BlHRbkjT0D_i_PXPdpaXBPviyhL0Muznfnsvsd74h5BPkeiVKNouV4CzOEwaxymsZQ8IxuWdZpipj6bE4PZWTSfGj1_vje2E2C9E08uamuPqvpsZ9aGzdOvsAc4dBcQf-RqPjFs2O238y_BEssc5tKaaNJXpHegkGL5IbbUwvlmZzzE1HZKTWdukrzD-NhnWEmaylWQaV124e67_vzC8050c5ZZOAnsWFWhmawE_QK9CGKeexETHqNNYsQ1Q4wUhlPPOohparGDoVtb-OxofdSYpEtpRA51cznsQyt52b3vHmXc-ZODdsg3Bip0Hu-Hc71XB-aNpqNDFPWsVV0YYz_wn_VpQL3ENPazsvzSClHqRkaWk0CXZSMSxkn-yMvh1PvoeQrlUUbQOffQovX2WIgnfu5b4U574SxqQyZy_Ic1eD0JHFzkvSg2aXPOsoU-6SJyeOc_GK_L4FKOoARbuAoggoqhoaAEVbQFEDKOoBRQOgXpNfX47Pjr7GbkGOuMqkWMd8CgljdY458BQDpYBpDsNhxSqmiqICLDYx5RIcsCxOp-gDZpje45VYJANwmIpsj_SbywbeEqoUq1KMswzqWjfWK1mnLFdVkuUzqPlsQFL_H5aVU6vXi6Ysyi32G5DP4aIrK9ay_XTujVO6fNPmkSXCbfuF-96UpXvzV6WeSdHiR2k2IB_DYXTW-gucauDyeqXHSDE_L4Z4zhsLgXCjKdY6kgv-7mEP8Z48bV-4fdJfL6_hA3lcbdbz1fKAPBITeeDg_BcG4MMG
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerebrovascular+network+registration+via+an+efficient+attributed+graph+matching+technique&rft.jtitle=Medical+image+analysis&rft.au=Almasi%2C+Sepideh&rft.au=Lauric%2C+Alexandra&rft.au=Malek%2C+Adel&rft.au=Miller%2C+Eric+L.&rft.date=2018-05-01&rft.issn=1361-8415&rft.volume=46&rft.spage=118&rft.epage=129&rft_id=info:doi/10.1016%2Fj.media.2018.02.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2018_02_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon