Quantum Optimization with Arbitrary Connectivity Using Rydberg Atom Arrays
Programmable quantum systems based on Rydberg atom arrays have recently been used for hardware-efficient tests of quantum optimization algorithms [Ebadi et al., Science, 376, 1209 (2022)] with hundreds of qubits. In particular, the maximum independent set problem on so-called unit-disk graphs, was s...
Uloženo v:
| Vydáno v: | PRX quantum Ročník 4; číslo 1; s. 010316 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Physical Society (APS)
14.02.2023
American Physical Society |
| Témata: | |
| ISSN: | 2691-3399, 2691-3399 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Programmable quantum systems based on Rydberg atom arrays have recently been used for hardware-efficient tests of quantum optimization algorithms [Ebadi et al., Science, 376, 1209 (2022)] with hundreds of qubits. In particular, the maximum independent set problem on so-called unit-disk graphs, was shown to be efficiently encodable in such a quantum system. Here, we extend the classes of problems that can be efficiently encoded in Rydberg arrays by constructing explicit mappings from a wide class of problems to maximum-weighted independent set problems on unit-disk graphs, with at most a quadratic overhead in the number of qubits. We analyze several examples, including maximum-weighted independent set on graphs with arbitrary connectivity, quadratic unconstrained binary optimization problems with arbitrary or restricted connectivity, and integer factorization. Numerical simulations on small system sizes indicate that the adiabatic time scale for solving the mapped problems is strongly correlated with that of the original problems. Our work provides a blueprint for using Rydberg atom arrays to solve a wide range of combinatorial optimization problems with arbitrary connectivity, beyond the restrictions imposed by the hardware geometry. |
|---|---|
| AbstractList | Programmable quantum systems based on Rydberg atom arrays have recently been used for hardware-efficient tests of quantum optimization algorithms [Ebadi et al., Science, 376, 1209 (2022)] with hundreds of qubits. In particular, the maximum independent set problem on so-called unit-disk graphs, was shown to be efficiently encodable in such a quantum system. Here, we extend the classes of problems that can be efficiently encoded in Rydberg arrays by constructing explicit mappings from a wide class of problems to maximum-weighted independent set problems on unit-disk graphs, with at most a quadratic overhead in the number of qubits. We analyze several examples, including maximum-weighted independent set on graphs with arbitrary connectivity, quadratic unconstrained binary optimization problems with arbitrary or restricted connectivity, and integer factorization. Numerical simulations on small system sizes indicate that the adiabatic time scale for solving the mapped problems is strongly correlated with that of the original problems. Our work provides a blueprint for using Rydberg atom arrays to solve a wide range of combinatorial optimization problems with arbitrary connectivity, beyond the restrictions imposed by the hardware geometry. Programmable quantum systems based on Rydberg atom arrays have recently been used for hardware-efficient tests of quantum optimization algorithms [Ebadi et al., Science, 376, 1209 (2022)] with hundreds of qubits. In particular, the maximum independent set problem on so-called unit-disk graphs, was shown to be efficiently encodable in such a quantum system. Here, we extend the classes of problems that can be efficiently encoded in Rydberg arrays by constructing explicit mappings from a wide class of problems to maximum-weighted independent set problems on unit-disk graphs, with at most a quadratic overhead in the number of qubits. We analyze several examples, including maximum-weighted independent set on graphs with arbitrary connectivity, quadratic unconstrained binary optimization problems with arbitrary or restricted connectivity, and integer factorization. Numerical simulations on small system sizes indicate that the adiabatic time scale for solving the mapped problems is strongly correlated with that of the original problems. Our work provides a blueprint for using Rydberg atom arrays to solve a wide range of combinatorial optimization problems with arbitrary connectivity, beyond the restrictions imposed by the hardware geometry. |
| ArticleNumber | 010316 |
| Author | Nguyen, Minh-Thi Wurtz, Jonathan Lukin, Mikhail D. Wang, Sheng-Tao Liu, Jin-Guo Pichler, Hannes |
| Author_xml | – sequence: 1 givenname: Minh-Thi surname: Nguyen fullname: Nguyen, Minh-Thi – sequence: 2 givenname: Jin-Guo orcidid: 0000-0003-1635-2679 surname: Liu fullname: Liu, Jin-Guo – sequence: 3 givenname: Jonathan orcidid: 0000-0001-7237-0789 surname: Wurtz fullname: Wurtz, Jonathan – sequence: 4 givenname: Mikhail D. surname: Lukin fullname: Lukin, Mikhail D. – sequence: 5 givenname: Sheng-Tao surname: Wang fullname: Wang, Sheng-Tao – sequence: 6 givenname: Hannes orcidid: 0000-0003-2144-536X surname: Pichler fullname: Pichler, Hannes |
| BackLink | https://www.osti.gov/biblio/1924557$$D View this record in Osti.gov |
| BookMark | eNp9UU1LAzEQDaKg1v4CL4v31mTz0c2xFD8qhWqx4C0k2aSNtJuSpEr99cZuUfHgaYbhvTcz752D48Y3BoBLBPsIQXz9OHt52sombdd90od5gtgROCsZRz2MOT_-1Z-CboyvEMKSIowIPwMPB2ox3SS3dh8yOd8U7y4ti2FQLgUZdsXIN43Ryb25tCvm0TWLYrarlQmLYpj8OiOD3MULcGLlKpruoXbA_PbmeXTfm0zvxqPhpKdxNUg9VhGJbWUUrTRRVFZQGcaswQpWXNbaSkYoR7hUVcmVQrWllmrNoWaGaVjjDhi3urWXr2IT3DrfKLx0Yj_wYSFkSE6vjNDIZDdKSUpkSWWgYhRZYxlDmA9KrLLWVavlY3IiapeMXur2XYF4SSgdZBBuQTr4GIOx30sRFF8RiJ8IBBFtBJnF_7Cy-t7ebKpb_cv9BAwekgg |
| CitedBy_id | crossref_primary_10_1103_PhysRevResearch_6_013271 crossref_primary_10_1103_PhysRevResearch_6_013293 crossref_primary_10_1002_qute_202300398 crossref_primary_10_1103_dtlf_2q82 crossref_primary_10_1103_PhysRevResearch_7_013034 crossref_primary_10_1134_S0021364023603056 crossref_primary_10_1016_j_physa_2024_130001 crossref_primary_10_1103_PhysRevA_110_052435 crossref_primary_10_1103_PhysRevResearch_6_023231 crossref_primary_10_1103_PRXQuantum_6_010301 crossref_primary_10_1140_epja_s10050_024_01385_5 crossref_primary_10_1088_1674_1056_adbee2 crossref_primary_10_1103_PhysRevA_111_032611 crossref_primary_10_1103_7dkh_crjj crossref_primary_10_1145_3691350 crossref_primary_10_1103_PhysRevResearch_6_023241 crossref_primary_10_1287_ijoc_2024_0587 crossref_primary_10_1007_s44214_024_00069_x crossref_primary_10_1038_s42005_023_01391_x crossref_primary_10_1103_PhysRevApplied_22_044074 crossref_primary_10_1038_s42005_025_02226_7 crossref_primary_10_1088_1361_648X_adbb9b crossref_primary_10_1088_2632_2153_addb97 crossref_primary_10_1103_PRXQuantum_6_020306 crossref_primary_10_1103_PhysRevResearch_5_043277 crossref_primary_10_1002_qute_202400291 crossref_primary_10_1140_epjqt_s40507_023_00211_z crossref_primary_10_1103_PhysRevResearch_5_043037 crossref_primary_10_1134_S0021364023604256 crossref_primary_10_1103_PhysRevResearch_7_L012006 crossref_primary_10_1134_S1063776123080046 crossref_primary_10_3390_photonics12030204 crossref_primary_10_3389_fphy_2025_1544623 crossref_primary_10_1016_j_ejor_2025_07_063 crossref_primary_10_1038_s41467_024_50744_9 crossref_primary_10_1103_PRXQuantum_5_020313 crossref_primary_10_1103_5qhh_322q crossref_primary_10_1038_s42005_023_01470_z crossref_primary_10_1103_56qk_rmsz crossref_primary_10_1103_PhysRevResearch_6_023031 crossref_primary_10_1088_1751_8121_acd5bd crossref_primary_10_1088_2058_9565_ad9177 crossref_primary_10_5802_crphys_229 crossref_primary_10_1002_qute_202500070 |
| Cites_doi | 10.1103/RevModPhys.82.2313 10.1038/s41586-022-04603-6 10.1038/s41586-020-3009-y 10.1038/s41567-022-01629-5 10.1038/s41567-019-0733-z 10.1038/s41567-021-01357-2 10.1103/PhysRevX.12.011040 10.1038/srep43048 10.1038/nphys1614 10.1103/physreve.58.5355 10.1103/PhysRevLett.128.120503 10.1103/RevModPhys.90.015002 10.1126/sciadv.1500838 10.1016/0012-365X(90)90358-O 10.1007/s11128-010-0200-3 10.1038/s41586-021-03582-4 10.1126/science.aax9743 10.1103/PhysRevLett.85.2208 10.1088/2058-9565/ac676c 10.1093/acprof:oso/9780199233212.001.0001 10.1103/RevModPhys.80.1061 10.1126/science.1057726 10.1038/s41567-020-0903-z 10.1038/s41586-021-03585-1 10.1103/PRXQuantum.1.020311 10.3389/fphy.2014.00005 10.1126/science.abo6587 10.1103/PRXQuantum.3.030305 |
| ContentType | Journal Article |
| CorporateAuthor | Harvard Univ., Cambridge, MA (United States) |
| CorporateAuthor_xml | – name: Harvard Univ., Cambridge, MA (United States) |
| DBID | AAYXX CITATION OTOTI DOA |
| DOI | 10.1103/PRXQuantum.4.010316 |
| DatabaseName | CrossRef OSTI.GOV DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2691-3399 |
| ExternalDocumentID | oai_doaj_org_article_c1e3162a421f48e0b651fef66139723b 1924557 10_1103_PRXQuantum_4_010316 |
| GroupedDBID | 3MX AAFWJ AAYXX AECSF AFGMR AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E OK1 ROL OTOTI |
| ID | FETCH-LOGICAL-c387t-684a3f8eb58c4b5a80be66fe3b089adcfa6459132b829bb1df5f5cc90c6e6c0d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000934013000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2691-3399 |
| IngestDate | Fri Oct 03 12:48:28 EDT 2025 Mon Mar 24 04:17:56 EDT 2025 Sat Nov 29 05:13:42 EST 2025 Tue Nov 18 21:35:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c387t-684a3f8eb58c4b5a80be66fe3b089adcfa6459132b829bb1df5f5cc90c6e6c0d3 |
| Notes | USDOE SC0021013; 101041435 USDOE Office of Science (SC) |
| ORCID | 0000-0003-1635-2679 0000-0001-7237-0789 0000-0003-2144-536X 0000000172370789 000000032144536X 0000000316352679 |
| OpenAccessLink | https://doaj.org/article/c1e3162a421f48e0b651fef66139723b |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c1e3162a421f48e0b651fef66139723b osti_scitechconnect_1924557 crossref_primary_10_1103_PRXQuantum_4_010316 crossref_citationtrail_10_1103_PRXQuantum_4_010316 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-14 |
| PublicationDateYYYYMMDD | 2023-02-14 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | PRX quantum |
| PublicationYear | 2023 |
| Publisher | American Physical Society (APS) American Physical Society |
| Publisher_xml | – name: American Physical Society (APS) – name: American Physical Society |
| References | PRXQuantum.4.010316Cc30R1 PRXQuantum.4.010316Cc31R1 PRXQuantum.4.010316Cc10R1 PRXQuantum.4.010316Cc32R1 PRXQuantum.4.010316Cc11R1 PRXQuantum.4.010316Cc12R1 PRXQuantum.4.010316Cc34R1 PRXQuantum.4.010316Cc14R1 PRXQuantum.4.010316Cc7R1 PRXQuantum.4.010316Cc6R1 PRXQuantum.4.010316Cc5R1 PRXQuantum.4.010316Cc9R1 PRXQuantum.4.010316Cc16R1 PRXQuantum.4.010316Cc39R1 PRXQuantum.4.010316Cc17R1 PRXQuantum.4.010316Cc18R1 PRXQuantum.4.010316Cc19R1 PRXQuantum.4.010316Cc4R1 PRXQuantum.4.010316Cc20R1 PRXQuantum.4.010316Cc43R1 PRXQuantum.4.010316Cc23R1 PRXQuantum.4.010316Cc24R1 PRXQuantum.4.010316Cc25R1 PRXQuantum.4.010316Cc26R1 B. Korte (PRXQuantum.4.010316Cc2R1) 2008 PRXQuantum.4.010316Cc27R1 PRXQuantum.4.010316Cc28R1 PRXQuantum.4.010316Cc29R1 C. Moore (PRXQuantum.4.010316Cc38R1) 2011 A. Schrijver (PRXQuantum.4.010316Cc1R1) 2003 |
| References_xml | – ident: PRXQuantum.4.010316Cc12R1 doi: 10.1103/RevModPhys.82.2313 – ident: PRXQuantum.4.010316Cc28R1 doi: 10.1038/s41586-022-04603-6 – ident: PRXQuantum.4.010316Cc30R1 doi: 10.1038/s41586-020-3009-y – volume-title: Combinatorial Optimization: Theory and Algorithms year: 2008 ident: PRXQuantum.4.010316Cc2R1 – volume-title: Combinatorial Optimization: Polyhedra and Efficiency year: 2003 ident: PRXQuantum.4.010316Cc1R1 – ident: PRXQuantum.4.010316Cc14R1 doi: 10.1038/s41567-022-01629-5 – ident: PRXQuantum.4.010316Cc24R1 doi: 10.1038/s41567-019-0733-z – ident: PRXQuantum.4.010316Cc25R1 doi: 10.1038/s41567-021-01357-2 – ident: PRXQuantum.4.010316Cc31R1 doi: 10.1103/PhysRevX.12.011040 – ident: PRXQuantum.4.010316Cc43R1 doi: 10.1038/srep43048 – ident: PRXQuantum.4.010316Cc23R1 doi: 10.1038/nphys1614 – ident: PRXQuantum.4.010316Cc5R1 doi: 10.1103/physreve.58.5355 – ident: PRXQuantum.4.010316Cc19R1 doi: 10.1103/PhysRevLett.128.120503 – ident: PRXQuantum.4.010316Cc7R1 doi: 10.1103/RevModPhys.90.015002 – ident: PRXQuantum.4.010316Cc17R1 doi: 10.1126/sciadv.1500838 – ident: PRXQuantum.4.010316Cc20R1 doi: 10.1016/0012-365X(90)90358-O – ident: PRXQuantum.4.010316Cc39R1 doi: 10.1007/s11128-010-0200-3 – ident: PRXQuantum.4.010316Cc26R1 doi: 10.1038/s41586-021-03582-4 – ident: PRXQuantum.4.010316Cc34R1 doi: 10.1126/science.aax9743 – ident: PRXQuantum.4.010316Cc11R1 doi: 10.1103/PhysRevLett.85.2208 – ident: PRXQuantum.4.010316Cc32R1 doi: 10.1088/2058-9565/ac676c – volume-title: The Nature of Computation year: 2011 ident: PRXQuantum.4.010316Cc38R1 doi: 10.1093/acprof:oso/9780199233212.001.0001 – ident: PRXQuantum.4.010316Cc6R1 doi: 10.1103/RevModPhys.80.1061 – ident: PRXQuantum.4.010316Cc4R1 doi: 10.1126/science.1057726 – ident: PRXQuantum.4.010316Cc29R1 doi: 10.1038/s41567-020-0903-z – ident: PRXQuantum.4.010316Cc27R1 doi: 10.1038/s41586-021-03585-1 – ident: PRXQuantum.4.010316Cc18R1 doi: 10.1103/PRXQuantum.1.020311 – ident: PRXQuantum.4.010316Cc9R1 doi: 10.3389/fphy.2014.00005 – ident: PRXQuantum.4.010316Cc10R1 doi: 10.1126/science.abo6587 – ident: PRXQuantum.4.010316Cc16R1 doi: 10.1103/PRXQuantum.3.030305 |
| SSID | ssj0002513149 |
| Score | 2.5776885 |
| Snippet | Programmable quantum systems based on Rydberg atom arrays have recently been used for hardware-efficient tests of quantum optimization algorithms [Ebadi et... Programmable quantum systems based on Rydberg atom arrays have recently been used for hardware-efficient tests of quantum optimization algorithms [Ebadi... |
| SourceID | doaj osti crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 010316 |
| SubjectTerms | Atoms Boolean satisfiability problem CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS NP-hard problems Quantum information architectures & platforms Quantum software Rydberg atoms & molecules |
| Title | Quantum Optimization with Arbitrary Connectivity Using Rydberg Atom Arrays |
| URI | https://www.osti.gov/biblio/1924557 https://doaj.org/article/c1e3162a421f48e0b651fef66139723b |
| Volume | 4 |
| WOSCitedRecordID | wos000934013000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2691-3399 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513149 issn: 2691-3399 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2691-3399 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513149 issn: 2691-3399 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yFLyIP3FOpQePdmubH02PUyYiOudQ2C0kWQoDt8nWCbv4t_teWue86MVLCyVpw_eSvPfKl-8RcmE5EhO1CznmJsymJoRZIkIGaVgGDguCcq8ze592u3IwyHprpb6QE1bKA5fAtWzsaCwSzZI4Z9JFRvA4dzm4FYoFswzuvhD1rCVTuAeD16bwmUpmKI5oq9cfPC1gsItxkzV9cQPxwxV5xX64TWFlrXmYm12yU4WGQbsc0h7ZcJN9suUpmnZ-QO6qFwePsMrH1fHJAP-jQhcz8sfnA89bsWVFiMDTAYL-cogcrqBdTMfQcqaX80PyctN5vr4Nq0oIoaUyLUIhmaa5dIZLywzXMjJOiNxRE8lMD22uURMGEksjk8yYeJjznFubRVY4YaMhPSK1yXTijkkA8MmUycQysJKAnjxlELI5jTo1TOg6Sb5AUbaSCcdqFa_KpwsRVd9IKqZKJOvkctXprVTJ-L35FaK9aooS1_4BGF5Vhld_Gb5OGmgrBZECyt3aEl-FCSXn6cl_fKJBtrG6PJK0Y3ZKasVs4c7Ipn0vRvPZuZ9xcH346HwCi7jawA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Optimization+with+Arbitrary+Connectivity+Using+Rydberg+Atom+Arrays&rft.jtitle=PRX+quantum&rft.au=Nguyen%2C+Minh-Thi&rft.au=Liu%2C+Jin-Guo&rft.au=Wurtz%2C+Jonathan&rft.au=Lukin%2C+Mikhail+D.&rft.date=2023-02-14&rft.pub=American+Physical+Society+%28APS%29&rft.issn=2691-3399&rft.eissn=2691-3399&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1103%2Fprxquantum.4.010316&rft.externalDocID=1924557 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3399&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3399&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3399&client=summon |