Topology-Guided Graph Masked Autoencoder Learning for Population-Based Neurodevelopmental Disorder Diagnosis

Exploring the pathogenic mechanisms of brain disorders within population is an important research in the field of neuroscience. Existing methods either combine clinical information to assist analysis or use data augmentation for sample expansion, ignoring the mining of individual information and the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural systems and rehabilitation engineering Ročník 33; s. 1550 - 1561
Hlavní autoři: Li, Yueying, Zhang, Xiaotong, Guan, Shihan, Ma, Guolin, Kong, Youyong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2025
Témata:
ISSN:1534-4320, 1558-0210, 1558-0210
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Exploring the pathogenic mechanisms of brain disorders within population is an important research in the field of neuroscience. Existing methods either combine clinical information to assist analysis or use data augmentation for sample expansion, ignoring the mining of individual information and the exploration of inter-individual associations in population. To solve these problems, this work proposes a novel approach for detecting abnormal neural circuits associated with brain diseases, named Topology-guided Graph Masked autoencoder Learning method (TGML), which focuses on individual representation and intra-population association, to achieve the effective diagnosis of brain diseases within the population. Concretely, the TGML comprises 1) the t opology- g uided g roup a ssociation m odule (T<inline-formula> <tex-math notation="LaTeX">{G}^{{2}} </tex-math></inline-formula>AM) that reconstructs the edges and update the initial population graph, 2) the i ntra- p opulation i nteraction m asked a uto e ncoder network (IPI_MAE) captures the discriminative characteristics of subjects based on the novel Masked Autoencoder, which incorporates traditional masked autoencoders into a task-related process. The proposed method is evaluated on two neurodevelopmental disorder diagnosis tasks of Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). The results show that the proposed TGML achieves significant improvements and surpasses the state-of-the-art methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2025.3562662