Designing and planning the downstream oil supply chain under uncertainty using a fuzzy programming approach
•We develop a mixed-integer linear programming model to design and plan the downstream sector of the oil supply chain.•We use fuzzy mathematical programming to represent uncertainty in the optimization problem.•We consider uncertainty in logistics costs and demand for liquid fuels.•We establish a ne...
Uloženo v:
| Vydáno v: | Computers & chemical engineering Ročník 151; s. 107373 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2021
|
| Témata: | |
| ISSN: | 0098-1354, 1873-4375 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •We develop a mixed-integer linear programming model to design and plan the downstream sector of the oil supply chain.•We use fuzzy mathematical programming to represent uncertainty in the optimization problem.•We consider uncertainty in logistics costs and demand for liquid fuels.•We establish a new real-life case study to validate the proposed model.
This paper addresses the strategic and tactical planning of a downstream oil supply chain (DOSC) subject to different sources of uncertainty. This problem is formulated as a mixed-integer linear programming (MILP) model, whereas uncertainty is tackled using chance constrained programming with fuzzy parameters. The MILP model aims at determining the network design and the products distribution plan in a cost-effective way. A real case study on the Brazilian oil industry is used to validate the model. The proposed model shows to be a valuable decision-support tool in order to aid the decision-making process in the strategic and tactical planning of real-life problems. |
|---|---|
| AbstractList | •We develop a mixed-integer linear programming model to design and plan the downstream sector of the oil supply chain.•We use fuzzy mathematical programming to represent uncertainty in the optimization problem.•We consider uncertainty in logistics costs and demand for liquid fuels.•We establish a new real-life case study to validate the proposed model.
This paper addresses the strategic and tactical planning of a downstream oil supply chain (DOSC) subject to different sources of uncertainty. This problem is formulated as a mixed-integer linear programming (MILP) model, whereas uncertainty is tackled using chance constrained programming with fuzzy parameters. The MILP model aims at determining the network design and the products distribution plan in a cost-effective way. A real case study on the Brazilian oil industry is used to validate the model. The proposed model shows to be a valuable decision-support tool in order to aid the decision-making process in the strategic and tactical planning of real-life problems. |
| ArticleNumber | 107373 |
| Author | Lima, Camilo Barbosa-Póvoa, Ana Relvas, Susana |
| Author_xml | – sequence: 1 givenname: Camilo surname: Lima fullname: Lima, Camilo email: camilolima@enautica.pt organization: ENIDH, Escola Superior Náutica Infante D. Henrique, Av. Engenheiro Bonneville Franco, 2770-058 Paço de Arcos, Portugal – sequence: 2 givenname: Susana surname: Relvas fullname: Relvas, Susana organization: CEG – IST, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal – sequence: 3 givenname: Ana surname: Barbosa-Póvoa fullname: Barbosa-Póvoa, Ana organization: CEG – IST, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal |
| BookMark | eNqNkMtOwzAQRS1UJErhH8wHpPiR1M4KofKUKrGBteXak9YlcSLbBaVfT9qyQKy6mdG90hxpziUa-dYDQjeUTCmhs9vN1LRNZ9bQgF9NGWF06AUX_AyNqRQ8y7koRmhMSCkzyov8Al3GuCGEsFzKMfp8gOhW3vkV1t7irtb-ENIasG2_fUwBdINbV-O47bq6x2atncdbbyEM00BIQ0493sYDBFfb3a7HXWhXQTfNoeuGpM36Cp1Xuo5w_bsn6OPp8X3-ki3enl_n94vMcClSVljKRFGV5RJKQYBqwYzMWW65NTMmjbCF5qUdfjVLa4uK0DLnUprCspkwDPgElUeuCW2MASrVBdfo0CtK1N6a2qg_1tTemjpaG27v_t0al3RyrU9Bu_okwvxIgOHFLwdBReNgEGVdAJOUbd0JlB8u8JYi |
| CitedBy_id | crossref_primary_10_1016_j_cie_2024_110374 crossref_primary_10_1016_j_compchemeng_2023_108281 crossref_primary_10_1007_s10668_024_05162_8 crossref_primary_10_1016_j_cie_2022_107949 crossref_primary_10_1016_j_cor_2025_106978 crossref_primary_10_3390_math11173800 crossref_primary_10_1016_j_compchemeng_2023_108435 crossref_primary_10_1007_s40974_024_00318_8 crossref_primary_10_1016_j_jpse_2021_12_004 crossref_primary_10_3390_math11234753 crossref_primary_10_1016_j_compchemeng_2024_108879 crossref_primary_10_1016_j_cie_2023_109176 crossref_primary_10_1108_JAMR_08_2021_0285 crossref_primary_10_1016_j_cie_2022_108840 crossref_primary_10_1016_j_ces_2022_117607 crossref_primary_10_1051_smdo_2023010 crossref_primary_10_1108_JQME_06_2024_0055 crossref_primary_10_1016_j_renene_2025_122854 crossref_primary_10_1093_imaman_dpae028 crossref_primary_10_3233_JIFS_211568 crossref_primary_10_3390_en16041775 crossref_primary_10_1061_JPSEA2_PSENG_1590 crossref_primary_10_1016_j_compchemeng_2023_108548 crossref_primary_10_1016_j_petsci_2023_12_008 crossref_primary_10_1080_17509653_2025_2483523 crossref_primary_10_1016_j_compchemeng_2022_107659 |
| Cites_doi | 10.1016/j.compchemeng.2017.09.012 10.1016/j.compchemeng.2019.106606 10.1021/ie9504516 10.1016/0165-0114(78)90029-5 10.1016/j.compchemeng.2014.05.003 10.1016/j.engappai.2009.01.003 10.1142/S0218488508005583 10.1016/j.compchemeng.2003.09.017 10.1016/j.ejor.2017.10.036 10.1016/j.mcm.2006.11.017 10.1021/ie901265n 10.3390/pr7080507 10.1016/j.cherd.2019.03.009 10.1016/j.compchemeng.2016.05.002 10.1016/j.compchemeng.2014.05.008 10.1016/j.petrol.2011.03.009 10.1111/j.1475-3995.2009.00756.x 10.1016/B978-044450263-6/50037-3 10.1021/ie2013339 10.1016/j.compchemeng.2012.10.012 10.1016/j.cor.2014.03.021 10.1109/ACCESS.2019.2938326 10.1016/j.cie.2017.04.012 10.1016/S0165-0114(98)00449-7 10.1109/TPWRS.2014.2357714 10.1016/j.biombioe.2013.10.023 10.1021/sc400267t 10.1109/TFUZZ.2002.800692 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compchemeng.2021.107373 |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4375 |
| ExternalDocumentID | 10_1016_j_compchemeng_2021_107373 S0098135421001514 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SST SSZ T5K VH1 WUQ ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c387t-5d1275f99be970e1a72c8424d3dc628c7d5a39d202cbdd5f0194388c5d267c2e3 |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659842800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-1354 |
| IngestDate | Sat Nov 29 05:10:56 EST 2025 Tue Nov 18 22:12:43 EST 2025 Fri Feb 23 02:44:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Uncertainty Downstream oil supply chain Fuzzy programming Optimization Strategic and tactical planning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c387t-5d1275f99be970e1a72c8424d3dc628c7d5a39d202cbdd5f0194388c5d267c2e3 |
| ParticipantIDs | crossref_primary_10_1016_j_compchemeng_2021_107373 crossref_citationtrail_10_1016_j_compchemeng_2021_107373 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2021_107373 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & chemical engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Google Inc., consulted in January 2020. Petrobras – Petróleo Brasileiro S.A., consulted in January 2020. (bib0010) 2019 Ribas, Hamacher, Street (bib0032) 2010; 17 Dehghan, Ghatee, Hashemi (bib0009) 2008; 16 (bib0011) 2020 Ghatee, Hashemi (bib0015) 2009; 22 Wang, Liang, Zheng, Yuan, Zhang (bib0039) 2019; 145 Oliveira, Gupta, Hamacher, Grossmann (bib0028) 2013; 53 MirHassani, Noori (bib0026) 2011; 77 Dubois, Prade (bib0012) 1988 KPMG, 2018. KPMG experience in the oil & gas sector. "KPMG Tax and Advisory" LLC, pp. 1–36. Das, Maity, Maiti (bib0008) 2007; 46 Carneiro, Ribas, Hamacher (bib0007) 2010; 49 Zhang, Li, Liao, Zhang, Wang, Huang, Liang (bib0041) 2019; 7 Lima, Relvas, Barbosa-Póvoa (bib0020) 2018; 108 Lima, Relvas, Barbosa-Póvoa (bib0019) 2016; 92 (bib0002) 2013 Liu, Liu (bib0023) 2002; 10 Oliveira, Grossmann, Hamacher (bib0029) 2014; 49 Liu, Iwamura (bib0022) 1998; 100 Sahinidis (bib0034) 2004; 28 Barbosa-Póvoa, da Silva, Carvalho (bib0005) 2018; 268 ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, consulted in January 2020. Sahebi, Nickel, Ashayeri (bib0033) 2014; 68 Pham, Yenradee (bib0030) 2017; 108 Dubois, D., Prade, H., 2002. Qualitative possibility functions and integrals. In: Handbook of measure theory (Pap, E., ed.), Vol. 2, Elsevier, 1469–1521. Transpetro – Petrobras Transporte S.A., consulted in January 2020. (bib0001) 2011 (bib0003) 2019 Lorca, Sun (bib0025) 2015; 30 . Liu, Sahinidis (bib0024) 1996; 35 Oliveira, Hamacher (bib0027) 2012; 51 Zadeh (bib0040) 1978; 100 Tong, Gong, Yue, You (bib0036) 2014; 2 (bib0014) 2019 Lima, Relvas, Barbosa-Póvoa, Morales (bib0021) 2019; 7 Barbosa-Povoa, Pinto (bib0006) 2020; 132 Tong, Gleeson, Rong, You (bib0035) 2014; 60 Tong, You, Rong (bib0037) 2014; 68 Inuiguchi, Ramik (bib0017) 2000; 111 Oliveira (10.1016/j.compchemeng.2021.107373_bib0028) 2013; 53 Das (10.1016/j.compchemeng.2021.107373_bib0008) 2007; 46 (10.1016/j.compchemeng.2021.107373_bib0001) 2011 Ribas (10.1016/j.compchemeng.2021.107373_bib0032) 2010; 17 (10.1016/j.compchemeng.2021.107373_bib0010) 2019 10.1016/j.compchemeng.2021.107373_bib0013 Wang (10.1016/j.compchemeng.2021.107373_bib0039) 2019; 145 10.1016/j.compchemeng.2021.107373_bib0016 10.1016/j.compchemeng.2021.107373_bib0038 Inuiguchi (10.1016/j.compchemeng.2021.107373_bib0017) 2000; 111 10.1016/j.compchemeng.2021.107373_bib0018 Pham (10.1016/j.compchemeng.2021.107373_bib0030) 2017; 108 Barbosa-Póvoa (10.1016/j.compchemeng.2021.107373_bib0005) 2018; 268 Barbosa-Povoa (10.1016/j.compchemeng.2021.107373_bib0006) 2020; 132 Zhang (10.1016/j.compchemeng.2021.107373_bib0041) 2019; 7 (10.1016/j.compchemeng.2021.107373_bib0003) 2019 Lima (10.1016/j.compchemeng.2021.107373_bib0021) 2019; 7 10.1016/j.compchemeng.2021.107373_bib0031 (10.1016/j.compchemeng.2021.107373_bib0011) 2020 (10.1016/j.compchemeng.2021.107373_bib0002) 2013 Lorca (10.1016/j.compchemeng.2021.107373_bib0025) 2015; 30 (10.1016/j.compchemeng.2021.107373_bib0014) 2019 Sahebi (10.1016/j.compchemeng.2021.107373_bib0033) 2014; 68 Lima (10.1016/j.compchemeng.2021.107373_bib0020) 2018; 108 Lima (10.1016/j.compchemeng.2021.107373_bib0019) 2016; 92 Liu (10.1016/j.compchemeng.2021.107373_bib0023) 2002; 10 Tong (10.1016/j.compchemeng.2021.107373_bib0037) 2014; 68 Oliveira (10.1016/j.compchemeng.2021.107373_bib0027) 2012; 51 Liu (10.1016/j.compchemeng.2021.107373_bib0022) 1998; 100 10.1016/j.compchemeng.2021.107373_bib0004 Dubois (10.1016/j.compchemeng.2021.107373_bib0012) 1988 Carneiro (10.1016/j.compchemeng.2021.107373_bib0007) 2010; 49 Liu (10.1016/j.compchemeng.2021.107373_bib0024) 1996; 35 Tong (10.1016/j.compchemeng.2021.107373_bib0036) 2014; 2 Ghatee (10.1016/j.compchemeng.2021.107373_bib0015) 2009; 22 Oliveira (10.1016/j.compchemeng.2021.107373_bib0029) 2014; 49 Zadeh (10.1016/j.compchemeng.2021.107373_bib0040) 1978; 100 MirHassani (10.1016/j.compchemeng.2021.107373_bib0026) 2011; 77 Dehghan (10.1016/j.compchemeng.2021.107373_bib0009) 2008; 16 Tong (10.1016/j.compchemeng.2021.107373_bib0035) 2014; 60 Sahinidis (10.1016/j.compchemeng.2021.107373_bib0034) 2004; 28 |
| References_xml | – reference: Google Inc., consulted in January 2020. – start-page: 1 year: 2020 end-page: 16 ident: bib0011 article-title: 2020 oil, gas, and chemical industry outlook – volume: 108 start-page: 314 year: 2018 end-page: 336 ident: bib0020 article-title: Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain publication-title: Comput. Chem. Eng. – volume: 49 start-page: 47 year: 2014 end-page: 58 ident: bib0029 article-title: Accelerating Benders stochastic decomposition for the optimization under uncertainty of the petroleum product supply chain publication-title: Comput. Oper. Res. – volume: 68 start-page: 128 year: 2014 end-page: 139 ident: bib0037 article-title: Robust design and operations of hydrocarbon biofuel supply chain integrating with existing petroleum refineries considering unit cost objective publication-title: Comput. Chem. Eng. – start-page: 1 year: 2019 end-page: 24 ident: bib0010 article-title: One downstream – Strategic imperatives for the involving refining and chemical sectors – volume: 53 start-page: 184 year: 2013 end-page: 195 ident: bib0028 article-title: A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations publication-title: Comput. Chem. Eng. – volume: 2 start-page: 49 year: 2014 end-page: 61 ident: bib0036 article-title: Stochastic programming approach to optimal design and operations of integrated hydrocarbon biofuel and petroleum supply chains publication-title: ACS Sustain. Chem. Eng. – volume: 16 start-page: 715 year: 2008 end-page: 733 ident: bib0009 article-title: Some computations on fuzzy matrices: an application in fuzzy analytical hierarchy process publication-title: Int. J. Uncertain. Fuzz. – reference: Dubois, D., Prade, H., 2002. Qualitative possibility functions and integrals. In: Handbook of measure theory (Pap, E., ed.), Vol. 2, Elsevier, 1469–1521. – volume: 77 start-page: 194 year: 2011 end-page: 199 ident: bib0026 article-title: Implications of capacity expansion under uncertainty in oil industry publication-title: J. Petrol. Sci. Eng. – reference: Transpetro – Petrobras Transporte S.A., consulted in January 2020. – volume: 49 start-page: 3286 year: 2010 end-page: 3294 ident: bib0007 article-title: Risk management in the oil supply chain: a CVaR approach publication-title: Ind. Eng. Chem. Res. – volume: 268 start-page: 399 year: 2018 end-page: 431 ident: bib0005 article-title: Opportunities and challenges in sustainable supply chain: An operations research perspective publication-title: Eur. J. Oper. Res. – volume: 51 start-page: 4279 year: 2012 end-page: 4287 ident: bib0027 article-title: Optimization of the petroleum product supply chain under uncertainty: a case study in Northern Brazil publication-title: Ind. Eng. Chem. Res. – reference: ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, consulted in January 2020. – volume: 17 start-page: 777 year: 2010 end-page: 796 ident: bib0032 article-title: Optimization under uncertainty of the integrated oil supply chain using stochastic and robust programming publication-title: Int. Trans. Oper. Res. – volume: 30 start-page: 1702 year: 2015 end-page: 1713 ident: bib0025 article-title: Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind publication-title: IEEE Trans. Power Syst. – volume: 68 start-page: 56 year: 2014 end-page: 77 ident: bib0033 article-title: Strategic and tactical mathematical programming models within the crude oil supply chain context – a review publication-title: Comput. Chem. Eng. – start-page: 1 year: 2013 end-page: 12 ident: bib0002 article-title: Supply chain improvements in oil and gas: building an operations factory – volume: 111 start-page: 3 year: 2000 end-page: 28 ident: bib0017 article-title: Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem publication-title: Fuzzy Set. Syst. – volume: 145 start-page: 300 year: 2019 end-page: 313 ident: bib0039 article-title: Optimisation of a downstream oil supply chain with new pipeline route planning publication-title: Chem. Eng. Res. Des. – volume: 132 year: 2020 ident: bib0006 article-title: Process supply chains: Perspectives from academia and industry publication-title: Comput. Chem. Eng. – volume: 28 start-page: 971 year: 2004 end-page: 983 ident: bib0034 article-title: Optimization under uncertainty: State-of-the-art and opportunities publication-title: Comput. Chem. Eng. – volume: 92 start-page: 78 year: 2016 end-page: 92 ident: bib0019 article-title: Downstream oil supply chain management: A critical review and future directions publication-title: Comput. Chem. Eng. – year: 1988 ident: bib0012 article-title: Possibility theory: an approach to computerized processing of uncertainty – reference: KPMG, 2018. KPMG experience in the oil & gas sector. "KPMG Tax and Advisory" LLC, pp. 1–36. – volume: 108 start-page: 177 year: 2017 end-page: 191 ident: bib0030 article-title: Optimal supply chain network design with process network and BOM under uncertainties: A case study in toothbrush industry publication-title: Comput. Ind. Eng. – volume: 100 start-page: 229 year: 1998 end-page: 233 ident: bib0022 article-title: A note on chance constrained programming with fuzzy coefficients publication-title: Fuzzy Set. Syst. – volume: 7 start-page: 124329 year: 2019 end-page: 124340 ident: bib0041 article-title: A stochastic linear programming method for the reliable oil products supply chain system with hub disruption publication-title: IEEE Access – start-page: 1 year: 2019 end-page: 37 ident: bib0003 article-title: Fueling the energy future – Reinventing oil and gas for a new purpose – volume: 60 start-page: 108 year: 2014 end-page: 120 ident: bib0035 article-title: Optimal design of advanced drop-in hydrocarbon biofuel supply chain integrating with existing petroleum refineries under uncertainty publication-title: Biomass Bioenergy – reference: . – volume: 46 start-page: 398 year: 2007 end-page: 409 ident: bib0008 article-title: A two warehouse supply-chain model under possibility/necessity/credibility measures publication-title: Math. Comput. Model – start-page: 1 year: 2019 end-page: 20 ident: bib0014 article-title: Should oil and gas invest in what it knows or what it thinks will be? – volume: 7 start-page: 507 year: 2019 end-page: 538 ident: bib0021 article-title: Adjustable robust optimization for planning logistics operations in downstream oil networks publication-title: Process – start-page: 1 year: 2011 end-page: 20 ident: bib0001 article-title: Downstream energy transformation – Achieving high performance in a low-carbon economy – reference: Petrobras – Petróleo Brasileiro S.A., consulted in January 2020. – volume: 10 start-page: 445 year: 2002 end-page: 450 ident: bib0023 article-title: Expected value of fuzzy variable and fuzzy expected value models publication-title: IEEE Trans. Fuzzy Syst. – volume: 22 start-page: 796 year: 2009 end-page: 807 ident: bib0015 article-title: Optimal network design and storage management in petroleum distribution network under uncertainty publication-title: Eng. Appl. Artif. Intell. – volume: 100 start-page: 3 year: 1978 end-page: 28 ident: bib0040 article-title: Fuzzy sets as a basis for a theory of possibility publication-title: Fuzz. Set. Syst. 1 – volume: 35 start-page: 4154 year: 1996 end-page: 4165 ident: bib0024 article-title: Optimization in process planning under uncertainty publication-title: Ind. Eng. Chem. Res. – volume: 108 start-page: 314 year: 2018 ident: 10.1016/j.compchemeng.2021.107373_bib0020 article-title: Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.09.012 – ident: 10.1016/j.compchemeng.2021.107373_bib0031 – volume: 132 year: 2020 ident: 10.1016/j.compchemeng.2021.107373_bib0006 article-title: Process supply chains: Perspectives from academia and industry publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106606 – start-page: 1 year: 2020 ident: 10.1016/j.compchemeng.2021.107373_bib0011 – volume: 35 start-page: 4154 year: 1996 ident: 10.1016/j.compchemeng.2021.107373_bib0024 article-title: Optimization in process planning under uncertainty publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9504516 – start-page: 1 year: 2019 ident: 10.1016/j.compchemeng.2021.107373_bib0010 – volume: 100 start-page: 3 year: 1978 ident: 10.1016/j.compchemeng.2021.107373_bib0040 article-title: Fuzzy sets as a basis for a theory of possibility publication-title: Fuzz. Set. Syst. 1 doi: 10.1016/0165-0114(78)90029-5 – volume: 68 start-page: 128 year: 2014 ident: 10.1016/j.compchemeng.2021.107373_bib0037 article-title: Robust design and operations of hydrocarbon biofuel supply chain integrating with existing petroleum refineries considering unit cost objective publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.05.003 – ident: 10.1016/j.compchemeng.2021.107373_bib0004 – volume: 22 start-page: 796 issue: 4/5 year: 2009 ident: 10.1016/j.compchemeng.2021.107373_bib0015 article-title: Optimal network design and storage management in petroleum distribution network under uncertainty publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2009.01.003 – volume: 16 start-page: 715 year: 2008 ident: 10.1016/j.compchemeng.2021.107373_bib0009 article-title: Some computations on fuzzy matrices: an application in fuzzy analytical hierarchy process publication-title: Int. J. Uncertain. Fuzz. doi: 10.1142/S0218488508005583 – volume: 28 start-page: 971 year: 2004 ident: 10.1016/j.compchemeng.2021.107373_bib0034 article-title: Optimization under uncertainty: State-of-the-art and opportunities publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2003.09.017 – start-page: 1 year: 2019 ident: 10.1016/j.compchemeng.2021.107373_bib0003 – volume: 268 start-page: 399 issue: 2 year: 2018 ident: 10.1016/j.compchemeng.2021.107373_bib0005 article-title: Opportunities and challenges in sustainable supply chain: An operations research perspective publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.10.036 – volume: 46 start-page: 398 issue: 3–4 year: 2007 ident: 10.1016/j.compchemeng.2021.107373_bib0008 article-title: A two warehouse supply-chain model under possibility/necessity/credibility measures publication-title: Math. Comput. Model doi: 10.1016/j.mcm.2006.11.017 – start-page: 1 year: 2019 ident: 10.1016/j.compchemeng.2021.107373_bib0014 – volume: 49 start-page: 3286 issue: 7 year: 2010 ident: 10.1016/j.compchemeng.2021.107373_bib0007 article-title: Risk management in the oil supply chain: a CVaR approach publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie901265n – volume: 7 start-page: 507 issue: 8 year: 2019 ident: 10.1016/j.compchemeng.2021.107373_bib0021 article-title: Adjustable robust optimization for planning logistics operations in downstream oil networks publication-title: Process doi: 10.3390/pr7080507 – volume: 145 start-page: 300 year: 2019 ident: 10.1016/j.compchemeng.2021.107373_bib0039 article-title: Optimisation of a downstream oil supply chain with new pipeline route planning publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.03.009 – volume: 100 start-page: 229 issue: 1–3 year: 1998 ident: 10.1016/j.compchemeng.2021.107373_bib0022 article-title: A note on chance constrained programming with fuzzy coefficients publication-title: Fuzzy Set. Syst. – volume: 92 start-page: 78 year: 2016 ident: 10.1016/j.compchemeng.2021.107373_bib0019 article-title: Downstream oil supply chain management: A critical review and future directions publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2016.05.002 – volume: 68 start-page: 56 year: 2014 ident: 10.1016/j.compchemeng.2021.107373_bib0033 article-title: Strategic and tactical mathematical programming models within the crude oil supply chain context – a review publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.05.008 – volume: 77 start-page: 194 issue: 2 year: 2011 ident: 10.1016/j.compchemeng.2021.107373_bib0026 article-title: Implications of capacity expansion under uncertainty in oil industry publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2011.03.009 – ident: 10.1016/j.compchemeng.2021.107373_bib0038 – volume: 17 start-page: 777 issue: 6 year: 2010 ident: 10.1016/j.compchemeng.2021.107373_bib0032 article-title: Optimization under uncertainty of the integrated oil supply chain using stochastic and robust programming publication-title: Int. Trans. Oper. Res. doi: 10.1111/j.1475-3995.2009.00756.x – ident: 10.1016/j.compchemeng.2021.107373_bib0013 doi: 10.1016/B978-044450263-6/50037-3 – start-page: 1 year: 2013 ident: 10.1016/j.compchemeng.2021.107373_bib0002 – volume: 51 start-page: 4279 issue: 11 year: 2012 ident: 10.1016/j.compchemeng.2021.107373_bib0027 article-title: Optimization of the petroleum product supply chain under uncertainty: a case study in Northern Brazil publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie2013339 – start-page: 1 year: 2011 ident: 10.1016/j.compchemeng.2021.107373_bib0001 – ident: 10.1016/j.compchemeng.2021.107373_bib0018 – volume: 53 start-page: 184 year: 2013 ident: 10.1016/j.compchemeng.2021.107373_bib0028 article-title: A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.10.012 – volume: 49 start-page: 47 year: 2014 ident: 10.1016/j.compchemeng.2021.107373_bib0029 article-title: Accelerating Benders stochastic decomposition for the optimization under uncertainty of the petroleum product supply chain publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2014.03.021 – volume: 7 start-page: 124329 year: 2019 ident: 10.1016/j.compchemeng.2021.107373_bib0041 article-title: A stochastic linear programming method for the reliable oil products supply chain system with hub disruption publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2938326 – volume: 108 start-page: 177 year: 2017 ident: 10.1016/j.compchemeng.2021.107373_bib0030 article-title: Optimal supply chain network design with process network and BOM under uncertainties: A case study in toothbrush industry publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.04.012 – volume: 111 start-page: 3 issue: 1 year: 2000 ident: 10.1016/j.compchemeng.2021.107373_bib0017 article-title: Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem publication-title: Fuzzy Set. Syst. doi: 10.1016/S0165-0114(98)00449-7 – year: 1988 ident: 10.1016/j.compchemeng.2021.107373_bib0012 – ident: 10.1016/j.compchemeng.2021.107373_bib0016 – volume: 30 start-page: 1702 year: 2015 ident: 10.1016/j.compchemeng.2021.107373_bib0025 article-title: Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2014.2357714 – volume: 60 start-page: 108 year: 2014 ident: 10.1016/j.compchemeng.2021.107373_bib0035 article-title: Optimal design of advanced drop-in hydrocarbon biofuel supply chain integrating with existing petroleum refineries under uncertainty publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.10.023 – volume: 2 start-page: 49 issue: 1 year: 2014 ident: 10.1016/j.compchemeng.2021.107373_bib0036 article-title: Stochastic programming approach to optimal design and operations of integrated hydrocarbon biofuel and petroleum supply chains publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc400267t – volume: 10 start-page: 445 issue: 4 year: 2002 ident: 10.1016/j.compchemeng.2021.107373_bib0023 article-title: Expected value of fuzzy variable and fuzzy expected value models publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2002.800692 |
| SSID | ssj0002488 |
| Score | 2.5052977 |
| Snippet | •We develop a mixed-integer linear programming model to design and plan the downstream sector of the oil supply chain.•We use fuzzy mathematical programming to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107373 |
| SubjectTerms | Downstream oil supply chain Fuzzy programming Optimization Strategic and tactical planning Uncertainty |
| Title | Designing and planning the downstream oil supply chain under uncertainty using a fuzzy programming approach |
| URI | https://dx.doi.org/10.1016/j.compchemeng.2021.107373 |
| Volume | 151 |
| WOSCitedRecordID | wos000659842800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2021 customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: AIEXJ dateStart: 19950611 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTSntofRJkz5QobfFoSv5IUEvaZvSlhJySGFvRpZkcOq1l32R5GfkF3ckWbL7ImmhF7GIlWztfCvPjD99g9CrJBXgJk_LKKUUAhReppEoVRwVtCwBQoJNtVXX_5IdHbHZjB-PRpf-LMy2zpqGnZ3xxX81NfSBsc3R2b8wd5gUOuAzGB1aMDu01zL8e8vJ8GcPF11RIutgKpNKNtTy-aSt6snKVPQ8N2d_q8bWw11CKx1HAHzzjU0jiEm5ubg490Suue3rhMiHnq0vD7GyYJJeh0D3eoeB-1PNheOazKu6DW98dL11h8ssUajPE4hl0a5EdGxe6b-l29YlgrsvdPkKMg1subAHc4hbqZOODntwpzrrdlEISakrcPLLBu9yDafGPguzFFjFvrnKfj_mR1Htnx52gYLo2W2n-WCq3EyVu6luoB2SJZyN0c7Bp8PZ5_B8JzFjXonVrOMWetmzBv9wX7_3egaezMk9dLcLQfCBg859NNLNA3RnIEz5EH0LIMIAIuxBhAFEuAcRBhBhByJsQYQtiPAARNiCCAtsQYQHIMIeRI_Q1w-HJ-8-Rl1ZjkhSlq2jRJmiACXnhebZaz0VGZEsJrGiSqaEyUwlgnIFq5eFUkkJQURMGZOJImkmiaaP0bhpG_0E4ZiUiWKUFSU3NV-kMAUjCw4udqGZFGIXMf-z5bLTrDelU-r8SvPtIhKGLpxwy3UGvfG2yTsP1HmWOeDv6uF7_3LNp-h2_zd5hsbr5UY_Rzfldl2tli868H0HwyGy0Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+and+planning+the+downstream+oil+supply+chain+under+uncertainty+using+a+fuzzy+programming+approach&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Lima%2C+Camilo&rft.au=Relvas%2C+Susana&rft.au=Barbosa-P%C3%B3voa%2C+Ana&rft.date=2021-08-01&rft.issn=0098-1354&rft.volume=151&rft.spage=107373&rft_id=info:doi/10.1016%2Fj.compchemeng.2021.107373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2021_107373 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |