Designing and planning the downstream oil supply chain under uncertainty using a fuzzy programming approach

•We develop a mixed-integer linear programming model to design and plan the downstream sector of the oil supply chain.•We use fuzzy mathematical programming to represent uncertainty in the optimization problem.•We consider uncertainty in logistics costs and demand for liquid fuels.•We establish a ne...

Full description

Saved in:
Bibliographic Details
Published in:Computers & chemical engineering Vol. 151; p. 107373
Main Authors: Lima, Camilo, Relvas, Susana, Barbosa-Póvoa, Ana
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2021
Subjects:
ISSN:0098-1354, 1873-4375
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We develop a mixed-integer linear programming model to design and plan the downstream sector of the oil supply chain.•We use fuzzy mathematical programming to represent uncertainty in the optimization problem.•We consider uncertainty in logistics costs and demand for liquid fuels.•We establish a new real-life case study to validate the proposed model. This paper addresses the strategic and tactical planning of a downstream oil supply chain (DOSC) subject to different sources of uncertainty. This problem is formulated as a mixed-integer linear programming (MILP) model, whereas uncertainty is tackled using chance constrained programming with fuzzy parameters. The MILP model aims at determining the network design and the products distribution plan in a cost-effective way. A real case study on the Brazilian oil industry is used to validate the model. The proposed model shows to be a valuable decision-support tool in order to aid the decision-making process in the strategic and tactical planning of real-life problems.
AbstractList •We develop a mixed-integer linear programming model to design and plan the downstream sector of the oil supply chain.•We use fuzzy mathematical programming to represent uncertainty in the optimization problem.•We consider uncertainty in logistics costs and demand for liquid fuels.•We establish a new real-life case study to validate the proposed model. This paper addresses the strategic and tactical planning of a downstream oil supply chain (DOSC) subject to different sources of uncertainty. This problem is formulated as a mixed-integer linear programming (MILP) model, whereas uncertainty is tackled using chance constrained programming with fuzzy parameters. The MILP model aims at determining the network design and the products distribution plan in a cost-effective way. A real case study on the Brazilian oil industry is used to validate the model. The proposed model shows to be a valuable decision-support tool in order to aid the decision-making process in the strategic and tactical planning of real-life problems.
ArticleNumber 107373
Author Lima, Camilo
Barbosa-Póvoa, Ana
Relvas, Susana
Author_xml – sequence: 1
  givenname: Camilo
  surname: Lima
  fullname: Lima, Camilo
  email: camilolima@enautica.pt
  organization: ENIDH, Escola Superior Náutica Infante D. Henrique, Av. Engenheiro Bonneville Franco, 2770-058 Paço de Arcos, Portugal
– sequence: 2
  givenname: Susana
  surname: Relvas
  fullname: Relvas, Susana
  organization: CEG – IST, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
– sequence: 3
  givenname: Ana
  surname: Barbosa-Póvoa
  fullname: Barbosa-Póvoa, Ana
  organization: CEG – IST, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
BookMark eNqNkMtOwzAQRS1UJErhH8wHpPiR1M4KofKUKrGBteXak9YlcSLbBaVfT9qyQKy6mdG90hxpziUa-dYDQjeUTCmhs9vN1LRNZ9bQgF9NGWF06AUX_AyNqRQ8y7koRmhMSCkzyov8Al3GuCGEsFzKMfp8gOhW3vkV1t7irtb-ENIasG2_fUwBdINbV-O47bq6x2atncdbbyEM00BIQ0493sYDBFfb3a7HXWhXQTfNoeuGpM36Cp1Xuo5w_bsn6OPp8X3-ki3enl_n94vMcClSVljKRFGV5RJKQYBqwYzMWW65NTMmjbCF5qUdfjVLa4uK0DLnUprCspkwDPgElUeuCW2MASrVBdfo0CtK1N6a2qg_1tTemjpaG27v_t0al3RyrU9Bu_okwvxIgOHFLwdBReNgEGVdAJOUbd0JlB8u8JYi
CitedBy_id crossref_primary_10_1016_j_cie_2024_110374
crossref_primary_10_1016_j_compchemeng_2023_108281
crossref_primary_10_1007_s10668_024_05162_8
crossref_primary_10_1016_j_cie_2022_107949
crossref_primary_10_1016_j_cor_2025_106978
crossref_primary_10_3390_math11173800
crossref_primary_10_1016_j_compchemeng_2023_108435
crossref_primary_10_1007_s40974_024_00318_8
crossref_primary_10_1016_j_jpse_2021_12_004
crossref_primary_10_3390_math11234753
crossref_primary_10_1016_j_compchemeng_2024_108879
crossref_primary_10_1016_j_cie_2023_109176
crossref_primary_10_1108_JAMR_08_2021_0285
crossref_primary_10_1016_j_cie_2022_108840
crossref_primary_10_1016_j_ces_2022_117607
crossref_primary_10_1051_smdo_2023010
crossref_primary_10_1108_JQME_06_2024_0055
crossref_primary_10_1016_j_renene_2025_122854
crossref_primary_10_1093_imaman_dpae028
crossref_primary_10_3233_JIFS_211568
crossref_primary_10_3390_en16041775
crossref_primary_10_1061_JPSEA2_PSENG_1590
crossref_primary_10_1016_j_compchemeng_2023_108548
crossref_primary_10_1016_j_petsci_2023_12_008
crossref_primary_10_1080_17509653_2025_2483523
crossref_primary_10_1016_j_compchemeng_2022_107659
Cites_doi 10.1016/j.compchemeng.2017.09.012
10.1016/j.compchemeng.2019.106606
10.1021/ie9504516
10.1016/0165-0114(78)90029-5
10.1016/j.compchemeng.2014.05.003
10.1016/j.engappai.2009.01.003
10.1142/S0218488508005583
10.1016/j.compchemeng.2003.09.017
10.1016/j.ejor.2017.10.036
10.1016/j.mcm.2006.11.017
10.1021/ie901265n
10.3390/pr7080507
10.1016/j.cherd.2019.03.009
10.1016/j.compchemeng.2016.05.002
10.1016/j.compchemeng.2014.05.008
10.1016/j.petrol.2011.03.009
10.1111/j.1475-3995.2009.00756.x
10.1016/B978-044450263-6/50037-3
10.1021/ie2013339
10.1016/j.compchemeng.2012.10.012
10.1016/j.cor.2014.03.021
10.1109/ACCESS.2019.2938326
10.1016/j.cie.2017.04.012
10.1016/S0165-0114(98)00449-7
10.1109/TPWRS.2014.2357714
10.1016/j.biombioe.2013.10.023
10.1021/sc400267t
10.1109/TFUZZ.2002.800692
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compchemeng.2021.107373
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
ExternalDocumentID 10_1016_j_compchemeng_2021_107373
S0098135421001514
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c387t-5d1275f99be970e1a72c8424d3dc628c7d5a39d202cbdd5f0194388c5d267c2e3
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659842800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-1354
IngestDate Sat Nov 29 05:10:56 EST 2025
Tue Nov 18 22:12:43 EST 2025
Fri Feb 23 02:44:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty
Downstream oil supply chain
Fuzzy programming
Optimization
Strategic and tactical planning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-5d1275f99be970e1a72c8424d3dc628c7d5a39d202cbdd5f0194388c5d267c2e3
ParticipantIDs crossref_primary_10_1016_j_compchemeng_2021_107373
crossref_citationtrail_10_1016_j_compchemeng_2021_107373
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2021_107373
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Google Inc., consulted in January 2020.
Petrobras – Petróleo Brasileiro S.A., consulted in January 2020.
(bib0010) 2019
Ribas, Hamacher, Street (bib0032) 2010; 17
Dehghan, Ghatee, Hashemi (bib0009) 2008; 16
(bib0011) 2020
Ghatee, Hashemi (bib0015) 2009; 22
Wang, Liang, Zheng, Yuan, Zhang (bib0039) 2019; 145
Oliveira, Gupta, Hamacher, Grossmann (bib0028) 2013; 53
MirHassani, Noori (bib0026) 2011; 77
Dubois, Prade (bib0012) 1988
KPMG, 2018. KPMG experience in the oil & gas sector. "KPMG Tax and Advisory" LLC, pp. 1–36.
Das, Maity, Maiti (bib0008) 2007; 46
Carneiro, Ribas, Hamacher (bib0007) 2010; 49
Zhang, Li, Liao, Zhang, Wang, Huang, Liang (bib0041) 2019; 7
Lima, Relvas, Barbosa-Póvoa (bib0020) 2018; 108
Lima, Relvas, Barbosa-Póvoa (bib0019) 2016; 92
(bib0002) 2013
Liu, Liu (bib0023) 2002; 10
Oliveira, Grossmann, Hamacher (bib0029) 2014; 49
Liu, Iwamura (bib0022) 1998; 100
Sahinidis (bib0034) 2004; 28
Barbosa-Póvoa, da Silva, Carvalho (bib0005) 2018; 268
ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, consulted in January 2020.
Sahebi, Nickel, Ashayeri (bib0033) 2014; 68
Pham, Yenradee (bib0030) 2017; 108
Dubois, D., Prade, H., 2002. Qualitative possibility functions and integrals. In: Handbook of measure theory (Pap, E., ed.), Vol. 2, Elsevier, 1469–1521.
Transpetro – Petrobras Transporte S.A., consulted in January 2020.
(bib0001) 2011
(bib0003) 2019
Lorca, Sun (bib0025) 2015; 30
.
Liu, Sahinidis (bib0024) 1996; 35
Oliveira, Hamacher (bib0027) 2012; 51
Zadeh (bib0040) 1978; 100
Tong, Gong, Yue, You (bib0036) 2014; 2
(bib0014) 2019
Lima, Relvas, Barbosa-Póvoa, Morales (bib0021) 2019; 7
Barbosa-Povoa, Pinto (bib0006) 2020; 132
Tong, Gleeson, Rong, You (bib0035) 2014; 60
Tong, You, Rong (bib0037) 2014; 68
Inuiguchi, Ramik (bib0017) 2000; 111
Oliveira (10.1016/j.compchemeng.2021.107373_bib0028) 2013; 53
Das (10.1016/j.compchemeng.2021.107373_bib0008) 2007; 46
(10.1016/j.compchemeng.2021.107373_bib0001) 2011
Ribas (10.1016/j.compchemeng.2021.107373_bib0032) 2010; 17
(10.1016/j.compchemeng.2021.107373_bib0010) 2019
10.1016/j.compchemeng.2021.107373_bib0013
Wang (10.1016/j.compchemeng.2021.107373_bib0039) 2019; 145
10.1016/j.compchemeng.2021.107373_bib0016
10.1016/j.compchemeng.2021.107373_bib0038
Inuiguchi (10.1016/j.compchemeng.2021.107373_bib0017) 2000; 111
10.1016/j.compchemeng.2021.107373_bib0018
Pham (10.1016/j.compchemeng.2021.107373_bib0030) 2017; 108
Barbosa-Póvoa (10.1016/j.compchemeng.2021.107373_bib0005) 2018; 268
Barbosa-Povoa (10.1016/j.compchemeng.2021.107373_bib0006) 2020; 132
Zhang (10.1016/j.compchemeng.2021.107373_bib0041) 2019; 7
(10.1016/j.compchemeng.2021.107373_bib0003) 2019
Lima (10.1016/j.compchemeng.2021.107373_bib0021) 2019; 7
10.1016/j.compchemeng.2021.107373_bib0031
(10.1016/j.compchemeng.2021.107373_bib0011) 2020
(10.1016/j.compchemeng.2021.107373_bib0002) 2013
Lorca (10.1016/j.compchemeng.2021.107373_bib0025) 2015; 30
(10.1016/j.compchemeng.2021.107373_bib0014) 2019
Sahebi (10.1016/j.compchemeng.2021.107373_bib0033) 2014; 68
Lima (10.1016/j.compchemeng.2021.107373_bib0020) 2018; 108
Lima (10.1016/j.compchemeng.2021.107373_bib0019) 2016; 92
Liu (10.1016/j.compchemeng.2021.107373_bib0023) 2002; 10
Tong (10.1016/j.compchemeng.2021.107373_bib0037) 2014; 68
Oliveira (10.1016/j.compchemeng.2021.107373_bib0027) 2012; 51
Liu (10.1016/j.compchemeng.2021.107373_bib0022) 1998; 100
10.1016/j.compchemeng.2021.107373_bib0004
Dubois (10.1016/j.compchemeng.2021.107373_bib0012) 1988
Carneiro (10.1016/j.compchemeng.2021.107373_bib0007) 2010; 49
Liu (10.1016/j.compchemeng.2021.107373_bib0024) 1996; 35
Tong (10.1016/j.compchemeng.2021.107373_bib0036) 2014; 2
Ghatee (10.1016/j.compchemeng.2021.107373_bib0015) 2009; 22
Oliveira (10.1016/j.compchemeng.2021.107373_bib0029) 2014; 49
Zadeh (10.1016/j.compchemeng.2021.107373_bib0040) 1978; 100
MirHassani (10.1016/j.compchemeng.2021.107373_bib0026) 2011; 77
Dehghan (10.1016/j.compchemeng.2021.107373_bib0009) 2008; 16
Tong (10.1016/j.compchemeng.2021.107373_bib0035) 2014; 60
Sahinidis (10.1016/j.compchemeng.2021.107373_bib0034) 2004; 28
References_xml – reference: Google Inc., consulted in January 2020.
– start-page: 1
  year: 2020
  end-page: 16
  ident: bib0011
  article-title: 2020 oil, gas, and chemical industry outlook
– volume: 108
  start-page: 314
  year: 2018
  end-page: 336
  ident: bib0020
  article-title: Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain
  publication-title: Comput. Chem. Eng.
– volume: 49
  start-page: 47
  year: 2014
  end-page: 58
  ident: bib0029
  article-title: Accelerating Benders stochastic decomposition for the optimization under uncertainty of the petroleum product supply chain
  publication-title: Comput. Oper. Res.
– volume: 68
  start-page: 128
  year: 2014
  end-page: 139
  ident: bib0037
  article-title: Robust design and operations of hydrocarbon biofuel supply chain integrating with existing petroleum refineries considering unit cost objective
  publication-title: Comput. Chem. Eng.
– start-page: 1
  year: 2019
  end-page: 24
  ident: bib0010
  article-title: One downstream – Strategic imperatives for the involving refining and chemical sectors
– volume: 53
  start-page: 184
  year: 2013
  end-page: 195
  ident: bib0028
  article-title: A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations
  publication-title: Comput. Chem. Eng.
– volume: 2
  start-page: 49
  year: 2014
  end-page: 61
  ident: bib0036
  article-title: Stochastic programming approach to optimal design and operations of integrated hydrocarbon biofuel and petroleum supply chains
  publication-title: ACS Sustain. Chem. Eng.
– volume: 16
  start-page: 715
  year: 2008
  end-page: 733
  ident: bib0009
  article-title: Some computations on fuzzy matrices: an application in fuzzy analytical hierarchy process
  publication-title: Int. J. Uncertain. Fuzz.
– reference: Dubois, D., Prade, H., 2002. Qualitative possibility functions and integrals. In: Handbook of measure theory (Pap, E., ed.), Vol. 2, Elsevier, 1469–1521.
– volume: 77
  start-page: 194
  year: 2011
  end-page: 199
  ident: bib0026
  article-title: Implications of capacity expansion under uncertainty in oil industry
  publication-title: J. Petrol. Sci. Eng.
– reference: Transpetro – Petrobras Transporte S.A., consulted in January 2020.
– volume: 49
  start-page: 3286
  year: 2010
  end-page: 3294
  ident: bib0007
  article-title: Risk management in the oil supply chain: a CVaR approach
  publication-title: Ind. Eng. Chem. Res.
– volume: 268
  start-page: 399
  year: 2018
  end-page: 431
  ident: bib0005
  article-title: Opportunities and challenges in sustainable supply chain: An operations research perspective
  publication-title: Eur. J. Oper. Res.
– volume: 51
  start-page: 4279
  year: 2012
  end-page: 4287
  ident: bib0027
  article-title: Optimization of the petroleum product supply chain under uncertainty: a case study in Northern Brazil
  publication-title: Ind. Eng. Chem. Res.
– reference: ANP – Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, consulted in January 2020.
– volume: 17
  start-page: 777
  year: 2010
  end-page: 796
  ident: bib0032
  article-title: Optimization under uncertainty of the integrated oil supply chain using stochastic and robust programming
  publication-title: Int. Trans. Oper. Res.
– volume: 30
  start-page: 1702
  year: 2015
  end-page: 1713
  ident: bib0025
  article-title: Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind
  publication-title: IEEE Trans. Power Syst.
– volume: 68
  start-page: 56
  year: 2014
  end-page: 77
  ident: bib0033
  article-title: Strategic and tactical mathematical programming models within the crude oil supply chain context – a review
  publication-title: Comput. Chem. Eng.
– start-page: 1
  year: 2013
  end-page: 12
  ident: bib0002
  article-title: Supply chain improvements in oil and gas: building an operations factory
– volume: 111
  start-page: 3
  year: 2000
  end-page: 28
  ident: bib0017
  article-title: Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem
  publication-title: Fuzzy Set. Syst.
– volume: 145
  start-page: 300
  year: 2019
  end-page: 313
  ident: bib0039
  article-title: Optimisation of a downstream oil supply chain with new pipeline route planning
  publication-title: Chem. Eng. Res. Des.
– volume: 132
  year: 2020
  ident: bib0006
  article-title: Process supply chains: Perspectives from academia and industry
  publication-title: Comput. Chem. Eng.
– volume: 28
  start-page: 971
  year: 2004
  end-page: 983
  ident: bib0034
  article-title: Optimization under uncertainty: State-of-the-art and opportunities
  publication-title: Comput. Chem. Eng.
– volume: 92
  start-page: 78
  year: 2016
  end-page: 92
  ident: bib0019
  article-title: Downstream oil supply chain management: A critical review and future directions
  publication-title: Comput. Chem. Eng.
– year: 1988
  ident: bib0012
  article-title: Possibility theory: an approach to computerized processing of uncertainty
– reference: KPMG, 2018. KPMG experience in the oil & gas sector. "KPMG Tax and Advisory" LLC, pp. 1–36.
– volume: 108
  start-page: 177
  year: 2017
  end-page: 191
  ident: bib0030
  article-title: Optimal supply chain network design with process network and BOM under uncertainties: A case study in toothbrush industry
  publication-title: Comput. Ind. Eng.
– volume: 100
  start-page: 229
  year: 1998
  end-page: 233
  ident: bib0022
  article-title: A note on chance constrained programming with fuzzy coefficients
  publication-title: Fuzzy Set. Syst.
– volume: 7
  start-page: 124329
  year: 2019
  end-page: 124340
  ident: bib0041
  article-title: A stochastic linear programming method for the reliable oil products supply chain system with hub disruption
  publication-title: IEEE Access
– start-page: 1
  year: 2019
  end-page: 37
  ident: bib0003
  article-title: Fueling the energy future – Reinventing oil and gas for a new purpose
– volume: 60
  start-page: 108
  year: 2014
  end-page: 120
  ident: bib0035
  article-title: Optimal design of advanced drop-in hydrocarbon biofuel supply chain integrating with existing petroleum refineries under uncertainty
  publication-title: Biomass Bioenergy
– reference: .
– volume: 46
  start-page: 398
  year: 2007
  end-page: 409
  ident: bib0008
  article-title: A two warehouse supply-chain model under possibility/necessity/credibility measures
  publication-title: Math. Comput. Model
– start-page: 1
  year: 2019
  end-page: 20
  ident: bib0014
  article-title: Should oil and gas invest in what it knows or what it thinks will be?
– volume: 7
  start-page: 507
  year: 2019
  end-page: 538
  ident: bib0021
  article-title: Adjustable robust optimization for planning logistics operations in downstream oil networks
  publication-title: Process
– start-page: 1
  year: 2011
  end-page: 20
  ident: bib0001
  article-title: Downstream energy transformation – Achieving high performance in a low-carbon economy
– reference: Petrobras – Petróleo Brasileiro S.A., consulted in January 2020.
– volume: 10
  start-page: 445
  year: 2002
  end-page: 450
  ident: bib0023
  article-title: Expected value of fuzzy variable and fuzzy expected value models
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 22
  start-page: 796
  year: 2009
  end-page: 807
  ident: bib0015
  article-title: Optimal network design and storage management in petroleum distribution network under uncertainty
  publication-title: Eng. Appl. Artif. Intell.
– volume: 100
  start-page: 3
  year: 1978
  end-page: 28
  ident: bib0040
  article-title: Fuzzy sets as a basis for a theory of possibility
  publication-title: Fuzz. Set. Syst. 1
– volume: 35
  start-page: 4154
  year: 1996
  end-page: 4165
  ident: bib0024
  article-title: Optimization in process planning under uncertainty
  publication-title: Ind. Eng. Chem. Res.
– volume: 108
  start-page: 314
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107373_bib0020
  article-title: Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.09.012
– ident: 10.1016/j.compchemeng.2021.107373_bib0031
– volume: 132
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107373_bib0006
  article-title: Process supply chains: Perspectives from academia and industry
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106606
– start-page: 1
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107373_bib0011
– volume: 35
  start-page: 4154
  year: 1996
  ident: 10.1016/j.compchemeng.2021.107373_bib0024
  article-title: Optimization in process planning under uncertainty
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9504516
– start-page: 1
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107373_bib0010
– volume: 100
  start-page: 3
  year: 1978
  ident: 10.1016/j.compchemeng.2021.107373_bib0040
  article-title: Fuzzy sets as a basis for a theory of possibility
  publication-title: Fuzz. Set. Syst. 1
  doi: 10.1016/0165-0114(78)90029-5
– volume: 68
  start-page: 128
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107373_bib0037
  article-title: Robust design and operations of hydrocarbon biofuel supply chain integrating with existing petroleum refineries considering unit cost objective
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.05.003
– ident: 10.1016/j.compchemeng.2021.107373_bib0004
– volume: 22
  start-page: 796
  issue: 4/5
  year: 2009
  ident: 10.1016/j.compchemeng.2021.107373_bib0015
  article-title: Optimal network design and storage management in petroleum distribution network under uncertainty
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2009.01.003
– volume: 16
  start-page: 715
  year: 2008
  ident: 10.1016/j.compchemeng.2021.107373_bib0009
  article-title: Some computations on fuzzy matrices: an application in fuzzy analytical hierarchy process
  publication-title: Int. J. Uncertain. Fuzz.
  doi: 10.1142/S0218488508005583
– volume: 28
  start-page: 971
  year: 2004
  ident: 10.1016/j.compchemeng.2021.107373_bib0034
  article-title: Optimization under uncertainty: State-of-the-art and opportunities
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2003.09.017
– start-page: 1
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107373_bib0003
– volume: 268
  start-page: 399
  issue: 2
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107373_bib0005
  article-title: Opportunities and challenges in sustainable supply chain: An operations research perspective
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.10.036
– volume: 46
  start-page: 398
  issue: 3–4
  year: 2007
  ident: 10.1016/j.compchemeng.2021.107373_bib0008
  article-title: A two warehouse supply-chain model under possibility/necessity/credibility measures
  publication-title: Math. Comput. Model
  doi: 10.1016/j.mcm.2006.11.017
– start-page: 1
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107373_bib0014
– volume: 49
  start-page: 3286
  issue: 7
  year: 2010
  ident: 10.1016/j.compchemeng.2021.107373_bib0007
  article-title: Risk management in the oil supply chain: a CVaR approach
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie901265n
– volume: 7
  start-page: 507
  issue: 8
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107373_bib0021
  article-title: Adjustable robust optimization for planning logistics operations in downstream oil networks
  publication-title: Process
  doi: 10.3390/pr7080507
– volume: 145
  start-page: 300
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107373_bib0039
  article-title: Optimisation of a downstream oil supply chain with new pipeline route planning
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.03.009
– volume: 100
  start-page: 229
  issue: 1–3
  year: 1998
  ident: 10.1016/j.compchemeng.2021.107373_bib0022
  article-title: A note on chance constrained programming with fuzzy coefficients
  publication-title: Fuzzy Set. Syst.
– volume: 92
  start-page: 78
  year: 2016
  ident: 10.1016/j.compchemeng.2021.107373_bib0019
  article-title: Downstream oil supply chain management: A critical review and future directions
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2016.05.002
– volume: 68
  start-page: 56
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107373_bib0033
  article-title: Strategic and tactical mathematical programming models within the crude oil supply chain context – a review
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.05.008
– volume: 77
  start-page: 194
  issue: 2
  year: 2011
  ident: 10.1016/j.compchemeng.2021.107373_bib0026
  article-title: Implications of capacity expansion under uncertainty in oil industry
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2011.03.009
– ident: 10.1016/j.compchemeng.2021.107373_bib0038
– volume: 17
  start-page: 777
  issue: 6
  year: 2010
  ident: 10.1016/j.compchemeng.2021.107373_bib0032
  article-title: Optimization under uncertainty of the integrated oil supply chain using stochastic and robust programming
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/j.1475-3995.2009.00756.x
– ident: 10.1016/j.compchemeng.2021.107373_bib0013
  doi: 10.1016/B978-044450263-6/50037-3
– start-page: 1
  year: 2013
  ident: 10.1016/j.compchemeng.2021.107373_bib0002
– volume: 51
  start-page: 4279
  issue: 11
  year: 2012
  ident: 10.1016/j.compchemeng.2021.107373_bib0027
  article-title: Optimization of the petroleum product supply chain under uncertainty: a case study in Northern Brazil
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie2013339
– start-page: 1
  year: 2011
  ident: 10.1016/j.compchemeng.2021.107373_bib0001
– ident: 10.1016/j.compchemeng.2021.107373_bib0018
– volume: 53
  start-page: 184
  year: 2013
  ident: 10.1016/j.compchemeng.2021.107373_bib0028
  article-title: A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.10.012
– volume: 49
  start-page: 47
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107373_bib0029
  article-title: Accelerating Benders stochastic decomposition for the optimization under uncertainty of the petroleum product supply chain
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2014.03.021
– volume: 7
  start-page: 124329
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107373_bib0041
  article-title: A stochastic linear programming method for the reliable oil products supply chain system with hub disruption
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2938326
– volume: 108
  start-page: 177
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107373_bib0030
  article-title: Optimal supply chain network design with process network and BOM under uncertainties: A case study in toothbrush industry
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.04.012
– volume: 111
  start-page: 3
  issue: 1
  year: 2000
  ident: 10.1016/j.compchemeng.2021.107373_bib0017
  article-title: Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem
  publication-title: Fuzzy Set. Syst.
  doi: 10.1016/S0165-0114(98)00449-7
– year: 1988
  ident: 10.1016/j.compchemeng.2021.107373_bib0012
– ident: 10.1016/j.compchemeng.2021.107373_bib0016
– volume: 30
  start-page: 1702
  year: 2015
  ident: 10.1016/j.compchemeng.2021.107373_bib0025
  article-title: Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2014.2357714
– volume: 60
  start-page: 108
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107373_bib0035
  article-title: Optimal design of advanced drop-in hydrocarbon biofuel supply chain integrating with existing petroleum refineries under uncertainty
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.10.023
– volume: 2
  start-page: 49
  issue: 1
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107373_bib0036
  article-title: Stochastic programming approach to optimal design and operations of integrated hydrocarbon biofuel and petroleum supply chains
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/sc400267t
– volume: 10
  start-page: 445
  issue: 4
  year: 2002
  ident: 10.1016/j.compchemeng.2021.107373_bib0023
  article-title: Expected value of fuzzy variable and fuzzy expected value models
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2002.800692
SSID ssj0002488
Score 2.5052977
Snippet •We develop a mixed-integer linear programming model to design and plan the downstream sector of the oil supply chain.•We use fuzzy mathematical programming to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107373
SubjectTerms Downstream oil supply chain
Fuzzy programming
Optimization
Strategic and tactical planning
Uncertainty
Title Designing and planning the downstream oil supply chain under uncertainty using a fuzzy programming approach
URI https://dx.doi.org/10.1016/j.compchemeng.2021.107373
Volume 151
WOSCitedRecordID wos000659842800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIEXJ
  dateStart: 19950611
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTSnNofRJkz5QobfFYVe21xL0krYpbSkhh7TszciSDE699rIvkvyM_uKOnnZfJC30Ioyw5NXOZ2lm_M0MQi-LUig46YqoICWPEi6KiBfjLALNtqRMsiw1tQi-fMqOj-lsxk4Gg28-FmZbZ01Dz8_Z4r-KGvpA2Dp09i_EHSaFDrgGoUMLYof2WoJ_azgZPvZw4YoSGQVTaleyppbPR21Vj1a6oueFjv2tGlMPdwmtsBwB0M03xo3AR-Xm8vLCE7nmps8lIu9rtr48xMqASfg8BKrLdxi4P9WcW67JvKrb8MVH1VsbXGaIQp2fgC-LdsWjE_1J_3W8ba0j2N3g_BVkEthyYQ9mYLfGNnV02INd1lm7i4JJGtsCJ79s8NbXcKbls9BLgVUc6KccdGN-TKr902EXKIie3XaW96bK9VS5neoG2iFZyugQ7Rx-OJp9DOc7SSj1mVj1Om6hFx1r8A-_6_daT0-TOb2L7jgTBB9a6NxDA9XcR7u9xJQP0NcAIgwgwh5EGECEOxBhABG2IMIGRNiACPdAhA2IMMcGRLgHIuxB9BB9fnd0-uZ95MpyRCKm2TpKpS4KUDJWKJaN1YRnRNCEJDKWYkqoyGTKYyZh9aKQMi3BiEhiSkUqyTQTRMWP0LBpG_UY4ZSP4c7JlKdSJUUMynJSiFhOxuNSlGAL7CHq_7ZcuJz1unRKnV8pvj1EwtCFTdxynUGvvGxyp4FazTIH_F09fP9fnvkE3e5ek6douF5u1DN0U2zX1Wr53IHvO4vDs3g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+and+planning+the+downstream+oil+supply+chain+under+uncertainty+using+a+fuzzy+programming+approach&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Lima%2C+Camilo&rft.au=Relvas%2C+Susana&rft.au=Barbosa-P%C3%B3voa%2C+Ana&rft.date=2021-08-01&rft.issn=0098-1354&rft.volume=151&rft.spage=107373&rft_id=info:doi/10.1016%2Fj.compchemeng.2021.107373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2021_107373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon