Phymastichus–Hypothenemus Algorithm for Minimizing and Determining the Number of Pinned Nodes in Pinning Control of Complex Networks
Pinning control is a key strategy for stabilizing complex networks through a limited set of nodes. However, determining the optimal number and location of pinned nodes under dynamic and structural constraints remains a computational challenge. This work proposes an improved version of the Phymastich...
Uložené v:
| Vydané v: | Algorithms Ročník 18; číslo 10; s. 637 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.10.2025
|
| Predmet: | |
| ISSN: | 1999-4893, 1999-4893 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Pinning control is a key strategy for stabilizing complex networks through a limited set of nodes. However, determining the optimal number and location of pinned nodes under dynamic and structural constraints remains a computational challenge. This work proposes an improved version of the Phymastichus–Hypothenemus Algorithm—Minimized and Determinated (PHA-MD) to solve multi-constraint, hybrid optimization problems in pinning control without requiring a predefined number of control nodes. Inspired by the parasitic behavior of Phymastichus coffea on Hypothenemus hampei, the algorithm models each agent as a parasitoid capable of propagating influence across a network, inheriting node importance and dynamically expanding search dimensions through its “offspring.” Unlike its original formulation, PHA-MD integrates variable-length encoding and V-stability assessment to autonomously identify a minimal yet effective pinning set. The method was evaluated on benchmark network topologies and compared against state-of-the-art heuristic algorithms. The results show that PHA-MD consistently achieves asymptotic stability using fewer pinned nodes while maintaining energy efficiency and convergence robustness. These findings highlight the potential of biologically inspired, dimension-adaptive algorithms in solving high-dimensional, combinatorial control problems in complex dynamical systems. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1999-4893 1999-4893 |
| DOI: | 10.3390/a18100637 |