Phymastichus–Hypothenemus Algorithm for Minimizing and Determining the Number of Pinned Nodes in Pinning Control of Complex Networks

Pinning control is a key strategy for stabilizing complex networks through a limited set of nodes. However, determining the optimal number and location of pinned nodes under dynamic and structural constraints remains a computational challenge. This work proposes an improved version of the Phymastich...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithms Ročník 18; číslo 10; s. 637
Hlavní autori: Lizarraga, Jorge A., Pita, Alberto J., Ruiz-Leon, Javier, Alanis, Alma Y., Luque-Vega, Luis F., Carrasco-Navarro, Rocío, Lara-Álvarez, Carlos, Aguilar-Molina, Yehoshua, Guerrero-Osuna, Héctor A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.10.2025
Predmet:
ISSN:1999-4893, 1999-4893
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Pinning control is a key strategy for stabilizing complex networks through a limited set of nodes. However, determining the optimal number and location of pinned nodes under dynamic and structural constraints remains a computational challenge. This work proposes an improved version of the Phymastichus–Hypothenemus Algorithm—Minimized and Determinated (PHA-MD) to solve multi-constraint, hybrid optimization problems in pinning control without requiring a predefined number of control nodes. Inspired by the parasitic behavior of Phymastichus coffea on Hypothenemus hampei, the algorithm models each agent as a parasitoid capable of propagating influence across a network, inheriting node importance and dynamically expanding search dimensions through its “offspring.” Unlike its original formulation, PHA-MD integrates variable-length encoding and V-stability assessment to autonomously identify a minimal yet effective pinning set. The method was evaluated on benchmark network topologies and compared against state-of-the-art heuristic algorithms. The results show that PHA-MD consistently achieves asymptotic stability using fewer pinned nodes while maintaining energy efficiency and convergence robustness. These findings highlight the potential of biologically inspired, dimension-adaptive algorithms in solving high-dimensional, combinatorial control problems in complex dynamical systems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4893
1999-4893
DOI:10.3390/a18100637