Generalized pseudotensor formulations of the Stokes’ integral theorem

Oriented continua play an important role in micropolar elasticity modelling. All realizations of micropolar theories are conceptually possible only within the framework of the pseudotensor formalism and the orientable manifold notion. This particularly concerns the theory of micropolar hemitropic el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya of Saratov University. Mathematics. Mechanics. Informatics Jg. 22; H. 2; S. 205 - 215
Hauptverfasser: Radayev, Yu. N., Murashkin, E. V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Saratov State University 01.01.2022
Schlagworte:
ISSN:1816-9791, 2541-9005
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Oriented continua play an important role in micropolar elasticity modelling. All realizations of micropolar theories are conceptually possible only within the framework of the pseudotensor formalism and the orientable manifold notion. This particularly concerns the theory of micropolar hemitropic elastic media. In this paper, a pseudotensor description is used in contrast to Kartan's formalism. The pseudotensor formulation of Stokes' integral theorem is almost unknown in the current scientific literature. Here we consider various formulations of Stokes' integral theorem for an arbitrary asymmetric covariant pseudotensor field of a given weight and valency. This extends the theorem to the case of pseudotensors. This fact makes it possible to use the mentioned generalization for micropolar continua. The study mostly relies on the class of special coordinate systems often employed in classical physical field theories. A procedure for orientations consistency inside and on the boundary of a manifold is discussed for various formulations of Stokes' integral theorem.
AbstractList Oriented continua play an important role in micropolar elasticity modelling. All realizations of micropolar theories are conceptually possible only within the framework of the pseudotensor formalism and the orientable manifold notion. This particularly concerns the theory of micropolar hemitropic elastic media. In this paper, a pseudotensor description is used in contrast to Kartan's formalism. The pseudotensor formulation of Stokes' integral theorem is almost unknown in the current scientific literature. Here we consider various formulations of Stokes' integral theorem for an arbitrary asymmetric covariant pseudotensor field of a given weight and valency. This extends the theorem to the case of pseudotensors. This fact makes it possible to use the mentioned generalization for micropolar continua. The study mostly relies on the class of special coordinate systems often employed in classical physical field theories. A procedure for orientations consistency inside and on the boundary of a manifold is discussed for various formulations of Stokes' integral theorem.
Author Radayev, Yu. N.
Murashkin, E. V.
Author_xml – sequence: 1
  givenname: Yu. N.
  orcidid: 0000-0002-0866-2151
  surname: Radayev
  fullname: Radayev, Yu. N.
– sequence: 2
  givenname: E. V.
  orcidid: 0000-0002-3267-4742
  surname: Murashkin
  fullname: Murashkin, E. V.
BookMark eNqNkM9KxDAQh4Os4PrnHXrwWs2kyaYBLyq6Lgge1HNI04lGu82SxIOefA1fzyex3ZU9eBIGZhjm9zF8-2TShx4JOQZ6ArWg9BRqmJVKKigZZawca5hEyUDskCkTHEpFqZiQ6fZyjxyl5BvKAaiSAFMyn2OP0XT-A9tilfCtDRn7FGLhQly-dSb70KciuCI_Y3Gfwyum78-vwvcZn4bcuA4Rl4dk15ku4dFvPyCP11cPlzfl7d18cXl-W9qqlnn4r2orUdUz4aREq5yVNXfAhKMtGOtqawBrxowVXDYK0QnDnZ2BVKYRlFUHZLHhtsG86FX0SxPfdTBerxchPmkTs7cdasmNYNxVhjWWS1AKpJC24aJuhibcwDrbsGwMKUV0Wx5QvXasR3N6NKdHx3qsYRJ6cDzEL_7Erc9rXzka3_0P8gM44oea
CitedBy_id crossref_primary_10_1134_S0025654424603719
crossref_primary_10_3103_S0025654423700243
crossref_primary_10_3103_S0025654423700255
ContentType Journal Article
CorporateAuthor Ishlinsky Institute for Problems in Mechanics RAS
CorporateAuthor_xml – name: Ishlinsky Institute for Problems in Mechanics RAS
DBID AAYXX
CITATION
DOA
DOI 10.18500/1816-9791-2022-22-2-205-215
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2541-9005
EndPage 215
ExternalDocumentID oai_doaj_org_article_74a524f3a2bc471991757cb458b7cb5f
10_18500_1816_9791_2022_22_2_205_215
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c387t-203d353865f77ec9fc784f125f0d1acf8ca1e822ac547b9eef5a4fc6179ab5023
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000893260500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1816-9791
IngestDate Fri Oct 03 12:51:35 EDT 2025
Tue Nov 18 22:45:28 EST 2025
Sat Nov 29 04:00:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-203d353865f77ec9fc784f125f0d1acf8ca1e822ac547b9eef5a4fc6179ab5023
ORCID 0000-0002-3267-4742
0000-0002-0866-2151
OpenAccessLink https://doaj.org/article/74a524f3a2bc471991757cb458b7cb5f
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_74a524f3a2bc471991757cb458b7cb5f
crossref_primary_10_18500_1816_9791_2022_22_2_205_215
crossref_citationtrail_10_18500_1816_9791_2022_22_2_205_215
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PublicationYear 2022
Publisher Saratov State University
Publisher_xml – name: Saratov State University
SSID ssib041109711
ssib044046830
ssib060989347
ssib015894158
ssib012759525
ssib044742518
Score 2.2039754
Snippet Oriented continua play an important role in micropolar elasticity modelling. All realizations of micropolar theories are conceptually possible only within the...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 205
SubjectTerms coordinate frame
fundamental orienting pseudoscalar
m-cell
micropolar hemitropic continuum
orientation consistency
pseudotensor
stokes’ integral theorem
Title Generalized pseudotensor formulations of the Stokes’ integral theorem
URI https://doaj.org/article/74a524f3a2bc471991757cb458b7cb5f
Volume 22
WOSCitedRecordID wos000893260500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2541-9005
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib060989347
  issn: 1816-9791
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2541-9005
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044742518
  issn: 1816-9791
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0yiLgRRcXxRRazLdNH0iS4UnF0IYPgg9mFNE1gcJyRaceFK3_D3_NLvLetM93pQgg0BFLay-Hec0N7DiE9lWQW02AgQhsHzKc2kJ7JIGEqk5FPnKrs255uxXAoRyN117L6wm_CanngOnB9wQyPmU9MnFlIpEBnBBc2Y1xmcOEesy-wnlYzBUhC1XLFV0iNuFRQqZZIY6izKVbIRpG8VK6INGPQMfJV1k5DBXW9ciuDipgGSqhog_Qw40gehv3lIoAOmjscMONBjG67rXrXsgWo6tdgm2w1xJOe1y-8Q9bcdJdcN6rT43eX09fCLaBHhb52NqfIZRtnr4LOPAWeSO_L2bMrvj4-aSMyMaH1f5Ave-RxcPVweRM01gqBTaQo4eGSPOHo9-mFcFZ5KyTzQHZ8mEfGemlN5IA7GMuZyJRznhvmLdAdZTIOdX6fdKazqTsgVOXQ8qEoUGTwPImZMMlUHqYmZFZJH3fJ2U8AtG10x9H-YqKx_8DwaQyfxvBpDJ_GATOuIXxdwpe7X2v9jT_uu8BYL_egina1ANjSDbb0b9g6_I-bHJHNChTVsc0x6ZTzhTsh6_atHBfz0wq231dP4Ws
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+pseudotensor+formulations+of+the+Stokes%E2%80%99+integral+theorem&rft.jtitle=Izvestiya+of+Saratov+University.+Mathematics.+Mechanics.+Informatics&rft.au=Radayev%2C+Yu.+N.&rft.au=Murashkin%2C+E.+V.&rft.date=2022-01-01&rft.issn=1816-9791&rft.volume=22&rft.issue=2&rft.spage=205&rft.epage=215&rft_id=info:doi/10.18500%2F1816-9791-2022-22-2-205-215&rft.externalDBID=n%2Fa&rft.externalDocID=10_18500_1816_9791_2022_22_2_205_215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1816-9791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1816-9791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1816-9791&client=summon