Enhancing Semi-Supervised Learning in Educational Data Mining Through Synthetic Data Generation Using Tabular Variational Autoencoder

This paper presents TVAE-SSL, a novel semi-supervised learning (SSL) paradigm that involves Tabular Variational Autoencoder (TVAE)-sampled synthetic data injection into the training process to enhance model performance under low-label data conditions in Educational Data Mining tasks. The algorithm b...

Full description

Saved in:
Bibliographic Details
Published in:Algorithms Vol. 18; no. 10; p. 663
Main Authors: Kostopoulos, Georgios, Fazakis, Nikos, Kotsiantis, Sotiris, Dimakopoulos, Yiannis
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.10.2025
Subjects:
ISSN:1999-4893, 1999-4893
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents TVAE-SSL, a novel semi-supervised learning (SSL) paradigm that involves Tabular Variational Autoencoder (TVAE)-sampled synthetic data injection into the training process to enhance model performance under low-label data conditions in Educational Data Mining tasks. The algorithm begins with training a TVAE on the given labeled data to generate imitative synthetic samples of the underlying data distribution. These synthesized samples are treated as additional unlabeled data and combined with the original unlabeled ones in order to form an augmented training pool. A standard SSL algorithm (e.g., Self-Training) is trained using a base classifier (e.g., Random Forest) on the combined dataset. By expanding the pool of unlabeled samples with realistic synthetic data, TVAE-SSL improves training sample quantity and diversity without introducing label noise. Large-scale experiments on a variety of datasets demonstrate that TVAE-SSL can outperform baseline supervised models in the full labeled dataset in terms of accuracy, F1-score and fairness metrics. Our results demonstrate the capacity of generative augmentation to enhance the effectiveness of semi-supervised learning for tabular data.
AbstractList This paper presents TVAE-SSL, a novel semi-supervised learning (SSL) paradigm that involves Tabular Variational Autoencoder (TVAE)-sampled synthetic data injection into the training process to enhance model performance under low-label data conditions in Educational Data Mining tasks. The algorithm begins with training a TVAE on the given labeled data to generate imitative synthetic samples of the underlying data distribution. These synthesized samples are treated as additional unlabeled data and combined with the original unlabeled ones in order to form an augmented training pool. A standard SSL algorithm (e.g., Self-Training) is trained using a base classifier (e.g., Random Forest) on the combined dataset. By expanding the pool of unlabeled samples with realistic synthetic data, TVAE-SSL improves training sample quantity and diversity without introducing label noise. Large-scale experiments on a variety of datasets demonstrate that TVAE-SSL can outperform baseline supervised models in the full labeled dataset in terms of accuracy, F1-score and fairness metrics. Our results demonstrate the capacity of generative augmentation to enhance the effectiveness of semi-supervised learning for tabular data.
Audience Academic
Author Kotsiantis, Sotiris
Fazakis, Nikos
Dimakopoulos, Yiannis
Kostopoulos, Georgios
Author_xml – sequence: 1
  givenname: Georgios
  orcidid: 0000-0002-7374-0099
  surname: Kostopoulos
  fullname: Kostopoulos, Georgios
– sequence: 2
  givenname: Nikos
  orcidid: 0000-0001-7687-2380
  surname: Fazakis
  fullname: Fazakis, Nikos
– sequence: 3
  givenname: Sotiris
  orcidid: 0000-0002-2247-3082
  surname: Kotsiantis
  fullname: Kotsiantis, Sotiris
– sequence: 4
  givenname: Yiannis
  orcidid: 0000-0002-8671-0657
  surname: Dimakopoulos
  fullname: Dimakopoulos, Yiannis
BookMark eNptkk1rGzEQhkVIoUnaQ__BQk49bKqPlSwdTeqkAZcenPQqZvVhy9iSK-0G8gPyv6us09BCmYPEzDvP8DJzjk5jig6hTwRfMabwFyCSYCwEO0FnRCnVdlKx07_-79F5Kdsq4UqQM_S8iBuIJsR1s3L70K7Gg8uPoTjbLB3k-FIIsVnY0cAQUoRd8xUGaL6HqXS_yWlcb5rVUxw2bgjmWL110eVJ3zyUSQf9uIPc_IQc_nDm45BcNMm6_AG987Ar7uPre4Eebhb319_a5Y_bu-v5sjVMzoaWdMZ0nVNeGSVNDT7rKO97pfCM9oxyQ2hH7MwAMd57gT1gDkxZYnFPFGYX6O7ItQm2-pDDHvKTThD0lEh5rSFXFzunJecEDLFCGdH5OsJy6ojETijZCSoq6_LIOuT0a3Rl0Ns05mqsaEYFl5TQaeKrag0VGqJPQwazD8XouRSUE1lpVXX1H1UNW3di6oZ9qPl_Gj4fG0xOpWTn38wQrF8OQb8dAvsNxfil7Q
Cites_doi 10.1145/2090236.2090255
10.1186/s41239-024-00450-9
10.1093/nsr/nwx106
10.1109/ACCESS.2021.3134787
10.1016/j.neucom.2010.01.018
10.1002/widm.1355
10.1007/978-3-031-01548-9
10.1109/ACCESS.2022.3156073
10.1007/s10115-009-0209-z
10.1109/TNN.2009.2015974
10.1145/3287560.3287589
10.1109/TSMCC.2010.2053532
10.1023/A:1010933404324
10.1002/widm.1075
10.1145/279943.279962
10.1145/3457607
10.1007/978-3-319-23781-7_21
10.1111/bjet.12868
10.1145/2801948.2802013
10.1007/s10115-013-0706-y
10.1186/s12909-023-04856-3
10.1109/TLT.2019.2911581
10.1109/TKDE.2005.186
10.1109/IISA.2017.8316425
10.1145/2939672.2939785
10.1109/IJCNN.2016.7727598
10.1007/11430919_71
10.3390/app10238413
10.1109/TSMCA.2007.904745
10.1109/ICDMW.2008.27
10.1007/978-3-030-75178-4
10.1142/S0218213019400013
10.1145/3290605.3300830
10.1007/s44163-021-00016-y
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/a18100663
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Education
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_8551ac1d69c64fb99d52e180e6984626
A862518846
10_3390_a18100663
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c387t-14cc44e9f9c98c8c857425bb99072b325c1241d7ca1cfff60fa05a39d1d0b1903
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603199300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4893
IngestDate Mon Nov 03 22:05:16 EST 2025
Tue Oct 28 21:33:53 EDT 2025
Wed Nov 12 17:02:04 EST 2025
Tue Nov 11 03:52:21 EST 2025
Sat Nov 29 07:10:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-14cc44e9f9c98c8c857425bb99072b325c1241d7ca1cfff60fa05a39d1d0b1903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7374-0099
0000-0001-7687-2380
0000-0002-8671-0657
0000-0002-2247-3082
OpenAccessLink https://www.proquest.com/docview/3265821290?pq-origsite=%requestingapplication%
PQID 3265821290
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_8551ac1d69c64fb99d52e180e6984626
proquest_journals_3265821290
gale_infotracmisc_A862518846
gale_infotracacademiconefile_A862518846
crossref_primary_10_3390_a18100663
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
Mikre (ref_1) 2011; 6
ref_13
ref_35
ref_34
ref_31
Romero (ref_4) 2020; 10
ref_19
Romero (ref_2) 2010; 40
ref_18
Zhou (ref_7) 2018; 5
ref_39
ref_16
ref_38
ref_15
Zhou (ref_41) 2005; 17
Kostopoulos (ref_32) 2021; 9
Kloos (ref_12) 2018; 12
Flanagan (ref_24) 2022; 10
Xu (ref_47) 2019; 32
Romero (ref_3) 2013; 3
Breiman (ref_42) 2001; 45
Ke (ref_44) 2017; 30
Kitto (ref_11) 2019; 50
ref_25
ref_45
ref_22
Hardt (ref_46) 2016; 29
ref_21
Rahmani (ref_30) 2024; 21
ref_43
Kostopoulos (ref_17) 2019; 28
ref_20
Kostopoulos (ref_9) 2019; 12
Kostopoulos (ref_10) 2021; Volume 2
Triguero (ref_33) 2015; 42
ref_29
Zhou (ref_36) 2010; 24
Chapelle (ref_8) 2009; 20
ref_28
ref_27
ref_26
Li (ref_37) 2007; 37
ref_5
James (ref_23) 2021; 1
Yaslan (ref_40) 2010; 73
ref_6
References_xml – ident: ref_45
  doi: 10.1145/2090236.2090255
– volume: 21
  start-page: 19
  year: 2024
  ident: ref_30
  article-title: Dropout in online higher education: A systematic literature review
  publication-title: Int. J. Educ. Technol. High. Educ.
  doi: 10.1186/s41239-024-00450-9
– volume: 5
  start-page: 44
  year: 2018
  ident: ref_7
  article-title: A brief introduction to weakly supervised learning
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx106
– volume: Volume 2
  start-page: 79
  year: 2021
  ident: ref_10
  article-title: Exploiting semi-supervised learning in the education field: A critical survey
  publication-title: Advances in Machine Learning/Deep Learning-Based Technologies
– volume: 9
  start-page: 165881
  year: 2021
  ident: ref_32
  article-title: Interpretable models for early prediction of certification in MOOCs: A case study on a MOOC for smart city professionals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3134787
– ident: ref_5
– volume: 29
  start-page: 1
  year: 2016
  ident: ref_46
  article-title: Equality of opportunity in supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_26
– volume: 73
  start-page: 1652
  year: 2010
  ident: ref_40
  article-title: Co-training with relevant random subspaces
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.01.018
– volume: 10
  start-page: e1355
  year: 2020
  ident: ref_4
  article-title: Educational data mining and learning analytics: An updated survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1355
– ident: ref_6
  doi: 10.1007/978-3-031-01548-9
– volume: 10
  start-page: 26230
  year: 2022
  ident: ref_24
  article-title: Fine grain synthetic educational data: Challenges and limitations of collaborative learning analytics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3156073
– volume: 24
  start-page: 415
  year: 2010
  ident: ref_36
  article-title: Semi-supervised learning by disagreement
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-009-0209-z
– volume: 20
  start-page: 542
  year: 2009
  ident: ref_8
  article-title: Semi-supervised learning
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2015974
– ident: ref_39
– volume: 12
  start-page: 384
  year: 2018
  ident: ref_12
  article-title: Prediction in MOOCs: A review and future research directions
  publication-title: IEEE Trans. Learn. Technol.
– ident: ref_29
  doi: 10.1145/3287560.3287589
– volume: 40
  start-page: 601
  year: 2010
  ident: ref_2
  article-title: Educational data mining: A review of the state of the art
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/TSMCC.2010.2053532
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_42
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 3
  start-page: 12
  year: 2013
  ident: ref_3
  article-title: Data mining in education
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1075
– ident: ref_35
  doi: 10.1145/279943.279962
– ident: ref_22
  doi: 10.1145/3457607
– ident: ref_13
  doi: 10.1007/978-3-319-23781-7_21
– volume: 50
  start-page: 2855
  year: 2019
  ident: ref_11
  article-title: Practical ethics for building learning analytics
  publication-title: Br. J. Educ. Technol.
  doi: 10.1111/bjet.12868
– ident: ref_15
  doi: 10.1145/2801948.2802013
– volume: 42
  start-page: 245
  year: 2015
  ident: ref_33
  article-title: Self-labeled techniques for semi-supervised learning: Taxonomy, software and empirical study
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0706-y
– ident: ref_31
  doi: 10.1186/s12909-023-04856-3
– volume: 12
  start-page: 212
  year: 2019
  ident: ref_9
  article-title: Multiview learning for early prognosis of academic performance: A case study
  publication-title: IEEE Trans. Learn. Technol.
  doi: 10.1109/TLT.2019.2911581
– ident: ref_25
– volume: 17
  start-page: 1529
  year: 2005
  ident: ref_41
  article-title: Tri-training: Exploiting unlabeled data using three classifiers
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.186
– ident: ref_27
– ident: ref_14
  doi: 10.1109/IISA.2017.8316425
– ident: ref_43
  doi: 10.1145/2939672.2939785
– ident: ref_16
  doi: 10.1109/IJCNN.2016.7727598
– ident: ref_34
  doi: 10.1007/11430919_71
– volume: 6
  start-page: 109
  year: 2011
  ident: ref_1
  article-title: The roles of information communication technologies in education: Review article with emphasis to the computer and internet
  publication-title: Ethiop. J. Educ. Sci.
– ident: ref_18
  doi: 10.3390/app10238413
– volume: 37
  start-page: 1088
  year: 2007
  ident: ref_37
  article-title: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
  publication-title: IEEE Trans. Syst. Man, Cybern.-Part A Syst. Hum.
  doi: 10.1109/TSMCA.2007.904745
– volume: 32
  start-page: 1
  year: 2019
  ident: ref_47
  article-title: Modeling tabular data using conditional gan
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_19
– ident: ref_38
  doi: 10.1109/ICDMW.2008.27
– ident: ref_21
  doi: 10.1007/978-3-030-75178-4
– ident: ref_20
– volume: 28
  start-page: 1940001
  year: 2019
  ident: ref_17
  article-title: A semi-supervised regression algorithm for grade prediction of students in distance learning courses
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S0218213019400013
– ident: ref_28
  doi: 10.1145/3290605.3300830
– volume: 30
  start-page: 1
  year: 2017
  ident: ref_44
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 15
  year: 2021
  ident: ref_23
  article-title: Synthetic data use: Exploring use cases to optimise data utility
  publication-title: Discov. Artif. Intell.
  doi: 10.1007/s44163-021-00016-y
SSID ssj0065961
Score 2.3512626
Snippet This paper presents TVAE-SSL, a novel semi-supervised learning (SSL) paradigm that involves Tabular Variational Autoencoder (TVAE)-sampled synthetic data...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 663
SubjectTerms Academic failure
Accuracy
Algorithms
At risk students
College students
Data mining
Datasets
Distance learning
Education
Educational Data Mining
Experiments
fairness
Higher education
Labels
Machine learning
Methods
Performance evaluation
prediction
Quality of education
Samples
Semi-supervised learning
Synthetic data
Tables (data)
variational auto-encoder
SummonAdditionalLinks – databaseName: Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BaxQxFA5SevCitSpuWyWI4GloJslkkuNqW7y0CLtKbyF5ydQ9OC27s4I_wP_tSzKzuAfxInNLHpnwvry89-Dle4S8a3wrnGayMsBVJTkTlRa-q4KJHfcalAohN5tob2707a35_Eerr1QTVuiBi-LONbp0B3VQBpTsvDGh4bHWLCqDrpNnsm3WmimZKnewaoyqC4-QwKT-3KEfy851z_tkkv6_XcXZv1wdkSdjYEjnZUPPyKPYH5OnU9MFOtrgc_Lrsv-WODL6O7qI31fVYvuQzH0TAx25Uu_oqqe7wg1c88INjl7nThB0Wfry0MXPHkM__FeZLezTSZ7mIgK6dD4VqNKvmEtP68y3w33ivQxx_YJ8ubpcfvxUjb0UKhC6HapaAkgZTWfAaMCvwZy48ahP1nIveAPo6OvQgquh6zrFOscaJ0yoA_MYNIiX5KC_7-MrQg0P0mOgJF0bJQSHIWbAMS-1DzUEMSNvJx3bh0KZYTHVSEDYHRAz8iFpfyeQWK7zAGJvR-ztv7CfkfcJO5tscVg7cOOTAtxnYrWyc0zXEuGcRMmzPUm0IdifntC3ow1vLAa26RUxN-zkf2z2lDzmqXdwLgQ8IwfDehtfk0P4Maw26zf5-P4GgG306Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhancing Semi-Supervised Learning in Educational Data Mining Through Synthetic Data Generation Using Tabular Variational Autoencoder
URI https://www.proquest.com/docview/3265821290
https://doaj.org/article/8551ac1d69c64fb99d52e180e6984626
Volume 18
WOSCitedRecordID wos001603199300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: K7-
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M7S
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVglwMXFhYQhaWyEBInaxPHceIT6kJXILRVRQtaTpG_0u2BtLQpEhdu_G9mHKeoB7igSDnETmLJ45k3zuQ9Ql7mpsh0mQimLJdM8CRjZWZq5pSvuSmtlM4FsYliMimvr9U0brhtY1ll7xODo3Yri3vk5wAz8J9OrpLX628MVaPw62qU0LhNjpElIQ2le7PeE8tcybRjE8ogtT_XEM1CiD2IQYGq_28OOUSZy5P_Hd99ci_iSzrqDOIBueWbU3LSazfQuJRPUa05VnY8JL_GzQ3SbjQLOvNfl2y2W6MH2XpHI_3qgi4bur8Dnv9Wt5peBXEJOu-kfujsRwNoEt7btXaE1tifhroEOtcGa17pZ0jP--eMdu0KqTSd3zwiny7H8zfvWJRnYDYri5alwlohvKqVVaWFI4c0OzcG4lvBTcZzC9ghdYXVqa3rWia1TnKdKZe6xAAOyR6To2bV-CeEKu6EAewldOGFdRpQq4NrRpTGpdZlA_Kin7Bq3bFwVJC94KxW-1kdkAucyn0HJM4OF1abRRXXYVUCQtQ2dVJZKWoYq8u5T8vESwVIjMsBeYWGUOHybjfa6viXAowTibKqEWSAyGEnoOfZQU9YlvawubeTKrqFbfXHSJ7-u_kZuctRaDhUDZ6Ro3az88_JHfu9XW43Q3J8MZ5MPw7DBgKcPxRsGCwfzz_H0D59fzX98hv0IA3V
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGLbGQIILg8FEYYCFQJysJbbjxAeECtu0qVuFtIJ2M_5K6YG0pCloP4C_w2_ktZMU9QC3HVBuseNEyZPnfZ28fh6EXmYmZ7pIOJGWCsJpwkjBTEmc9CU1hRXCuWg2kY_HxeWl_LCFfvVrYUJZZc-Jkajd3IZv5AeQZoQ1nVQmbxffSHCNCn9XewuNFhYjf_UDpmzLN6eH8HxfUXp8NHl_QjpXAWJZkTck5dZy7mUprSwsbBnMDjNjgJZzahjNLIS81OVWp7YsS5GUOsk0ky51iYHwyWDcG-gmh8HCezXKSc_8IpMibdWLGJPJgYboGUP6RsyL1gB_CwAxqh3v_G_34x662-XPeNgC_j7a8tUu2um9KXBHVbvBjbqrXHmAfh5VX4KsSDXFF_7rjFysFoEhl97hTl52imcVXh8B4x_qRuPzaJ6BJ62VEb64qiBbhvO2ra1gd-iPY90FnmgTanrxJ13P-nGGq2YepEKdrx-ij9dyY_bQdjWv_COEJXXcQG7Jde65dRqycgf7DC-MS61jA_SiB4hatCojCmZnAUVqjaIBehegs-4QhMHjjnk9VR3PqAIyYG1TJ6QVvIRrdRn1aZF4ISHTpGKAXgfgqUBfTa2t7lZhwHUGITA1hBlu0Ojj0HN_oyfQjt1s7nGpOtpbqj-gfPzv5ufo9snk_EydnY5HT9AdGkyVY4XkPtpu6pV_im7Z781sWT-LbxhGn68bwr8BMrJj7g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGLZGhxAXBgNEYYCFQJyiJbbjxAeECl1FNVZV6kDjZPyV0gNpSVPQfgB_il_H68Qp6gFuO6DcYsexkifP-7p9_TwIPU91RlUes0gYwiNGYhrlVBeRFa4gOjecW9uYTWSTSX5xIaZ76Fe3F8aXVXac2BC1XRr_G_kxpBl-TycR8XERyiKmw9Hr1bfIO0j5f1o7O40WIqfu8gcs39avxkN41y8IGZ2cv30XBYeByNA8q6OEGcOYE4UwIjdwpLBSTLUGis6IpiQ1EP4SmxmVmKIoeFyoOFVU2MTGGkIphXGvoX1IyRnpof3p-Gz6qYsDPBU8abWMKIVZK4ilTYDfiYCNUcDfwkET40YH__PTuY1uhcwaD9pP4Q7ac-UhOuhcK3AgsUPvUx1qWu6inyflFy84Us7xzH1dRLPNynPn2lkchGfneFHi7RUw_lDVCp81thr4vDU5wrPLEvJouG_b2kp5-_64qcjA50r7al_8UVWLbpzBpl56EVHrqnvow5U8mPuoVy5L9wBhQSzTkHUylTlmrIJ83cI5zXJtE2NpHz3rwCJXrf6IhHWbR5TcIqqP3ngYbTt4yfDmxLKay8BAMofcWJnEcmE4K2CuNiUuyWPHBeSghPfRSw9C6YmtrpRRYX8GzNNLhMkBrH29eh-Dnkc7PYGQzG5zh1EZCHEt_wD04b-bn6IbgFz5fjw5fYRuEu-23JROHqFeXW3cY3TdfK8X6-pJ-Nww-nzVGP4N1ARubw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Semi-Supervised+Learning+in+Educational+Data+Mining+Through+Synthetic+Data+Generation+Using+Tabular+Variational+Autoencoder&rft.jtitle=Algorithms&rft.au=Kostopoulos%2C+Georgios&rft.au=Fazakis%2C+Nikos&rft.au=Kotsiantis%2C+Sotiris&rft.au=Dimakopoulos%2C+Yiannis&rft.date=2025-10-01&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=18&rft.issue=10&rft.spage=663&rft_id=info:doi/10.3390%2Fa18100663&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a18100663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon