Use of ChatGPT for Determining Clinical and Surgical Treatment of Lumbar Disc Herniation With Radiculopathy: A North American Spine Society Guideline Comparison

Objective: Large language models like chat generative pre-trained transformer (ChatGPT) have found success in various sectors, but their application in the medical field remains limited. This study aimed to assess the feasibility of using ChatGPT to provide accurate medical information to patients,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurospine Ročník 21; číslo 1; s. 149 - 158
Hlavní autori: Mejia, Mateo Restrepo, Arroyave, Juan Sebastian, Saturno, Michael, Ndjonko, Laura Chelsea Mazudie, Zaidat, Bashar, Rajjoub, Rami, Ahmed, Wasil, Zapolsky, Ivan, Cho, Samuel K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Korean Spinal Neurosurgery Society 01.03.2024
대한척추신경외과학회
Predmet:
ISSN:2586-6583, 2586-6591
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Objective: Large language models like chat generative pre-trained transformer (ChatGPT) have found success in various sectors, but their application in the medical field remains limited. This study aimed to assess the feasibility of using ChatGPT to provide accurate medical information to patients, specifically evaluating how well ChatGPT versions 3.5 and 4 aligned with the 2012 North American Spine Society (NASS) guidelines for lumbar disk herniation with radiculopathy.Methods: ChatGPT's responses to questions based on the NASS guidelines were analyzed for accuracy. Three new categories—overconclusiveness, supplementary information, and incompleteness—were introduced to deepen the analysis. Overconclusiveness referred to recommendations not mentioned in the NASS guidelines, supplementary information denoted additional relevant details, and incompleteness indicated omitted crucial information from the NASS guidelines.Results: Out of 29 clinical guidelines evaluated, ChatGPT-3.5 demonstrated accuracy in 15 responses (52%), while ChatGPT-4 achieved accuracy in 17 responses (59%). ChatGPT-3.5 was overconclusive in 14 responses (48%), while ChatGPT-4 exhibited overconclusiveness in 13 responses (45%). Additionally, ChatGPT-3.5 provided supplementary information in 24 responses (83%), and ChatGPT-4 provided supplemental information in 27 responses (93%). In terms of incompleteness, ChatGPT-3.5 displayed this in 11 responses (38%), while ChatGPT-4 showed incompleteness in 8 responses (23%).Conclusion: ChatGPT shows promise for clinical decision-making, but both patients and healthcare providers should exercise caution to ensure safety and quality of care. While these results are encouraging, further research is necessary to validate the use of large language models in clinical settings.
AbstractList Objective: Large language models like chat generative pre-trained transformer (ChatGPT) have found success in various sectors, but their application in the medical field remains limited. This study aimed to assess the feasibility of using ChatGPT to provide accurate medical information to patients, specifically evaluating how well ChatGPT versions 3.5 and 4 aligned with the 2012 North American Spine Society (NASS) guidelines for lumbar disk herniation with radiculopathy. Methods: ChatGPT's responses to questions based on the NASS guidelines were analyzed for accuracy. Three new categories—overconclusiveness, supplementary information, and incompleteness—were introduced to deepen the analysis. Overconclusiveness referred to recommendations not mentioned in the NASS guidelines, supplementary information denoted additional relevant details, and incompleteness indicated omitted crucial information from the NASS guidelines. Results: Out of 29 clinical guidelines evaluated, ChatGPT-3.5 demonstrated accuracy in 15 responses (52%), while ChatGPT-4 achieved accuracy in 17 responses (59%). ChatGPT-3.5 was overconclusive in 14 responses (48%), while ChatGPT-4 exhibited overconclusiveness in 13 responses (45%). Additionally, ChatGPT-3.5 provided supplementary information in 24 responses (83%), and ChatGPT-4 provided supplemental information in 27 responses (93%). In terms of incompleteness, ChatGPT-3.5 displayed this in 11 responses (38%), while ChatGPT-4 showed incompleteness in 8 responses (23%). Conclusion: ChatGPT shows promise for clinical decision-making, but both patients and healthcare providers should exercise caution to ensure safety and quality of care. While these results are encouraging, further research is necessary to validate the use of large language models in clinical settings. KCI Citation Count: 0
Objective Large language models like chat generative pre-trained transformer (ChatGPT) have found success in various sectors, but their application in the medical field remains limited. This study aimed to assess the feasibility of using ChatGPT to provide accurate medical information to patients, specifically evaluating how well ChatGPT versions 3.5 and 4 aligned with the 2012 North American Spine Society (NASS) guidelines for lumbar disk herniation with radiculopathy. Methods ChatGPT's responses to questions based on the NASS guidelines were analyzed for accuracy. Three new categories—overconclusiveness, supplementary information, and incompleteness—were introduced to deepen the analysis. Overconclusiveness referred to recommendations not mentioned in the NASS guidelines, supplementary information denoted additional relevant details, and incompleteness indicated omitted crucial information from the NASS guidelines. Results Out of 29 clinical guidelines evaluated, ChatGPT-3.5 demonstrated accuracy in 15 responses (52%), while ChatGPT-4 achieved accuracy in 17 responses (59%). ChatGPT-3.5 was overconclusive in 14 responses (48%), while ChatGPT-4 exhibited overconclusiveness in 13 responses (45%). Additionally, ChatGPT-3.5 provided supplementary information in 24 responses (83%), and ChatGPT-4 provided supplemental information in 27 responses (93%). In terms of incompleteness, ChatGPT-3.5 displayed this in 11 responses (38%), while ChatGPT-4 showed incompleteness in 8 responses (23%). Conclusion ChatGPT shows promise for clinical decision-making, but both patients and healthcare providers should exercise caution to ensure safety and quality of care. While these results are encouraging, further research is necessary to validate the use of large language models in clinical settings.
Large language models like chat generative pre-trained transformer (ChatGPT) have found success in various sectors, but their application in the medical field remains limited. This study aimed to assess the feasibility of using ChatGPT to provide accurate medical information to patients, specifically evaluating how well ChatGPT versions 3.5 and 4 aligned with the 2012 North American Spine Society (NASS) guidelines for lumbar disk herniation with radiculopathy.OBJECTIVELarge language models like chat generative pre-trained transformer (ChatGPT) have found success in various sectors, but their application in the medical field remains limited. This study aimed to assess the feasibility of using ChatGPT to provide accurate medical information to patients, specifically evaluating how well ChatGPT versions 3.5 and 4 aligned with the 2012 North American Spine Society (NASS) guidelines for lumbar disk herniation with radiculopathy.ChatGPT's responses to questions based on the NASS guidelines were analyzed for accuracy. Three new categories-overconclusiveness, supplementary information, and incompleteness-were introduced to deepen the analysis. Overconclusiveness referred to recommendations not mentioned in the NASS guidelines, supplementary information denoted additional relevant details, and incompleteness indicated omitted crucial information from the NASS guidelines.METHODSChatGPT's responses to questions based on the NASS guidelines were analyzed for accuracy. Three new categories-overconclusiveness, supplementary information, and incompleteness-were introduced to deepen the analysis. Overconclusiveness referred to recommendations not mentioned in the NASS guidelines, supplementary information denoted additional relevant details, and incompleteness indicated omitted crucial information from the NASS guidelines.Out of 29 clinical guidelines evaluated, ChatGPT-3.5 demonstrated accuracy in 15 responses (52%), while ChatGPT-4 achieved accuracy in 17 responses (59%). ChatGPT-3.5 was overconclusive in 14 responses (48%), while ChatGPT-4 exhibited overconclusiveness in 13 responses (45%). Additionally, ChatGPT-3.5 provided supplementary information in 24 responses (83%), and ChatGPT-4 provided supplemental information in 27 responses (93%). In terms of incompleteness, ChatGPT-3.5 displayed this in 11 responses (38%), while ChatGPT-4 showed incompleteness in 8 responses (23%).RESULTSOut of 29 clinical guidelines evaluated, ChatGPT-3.5 demonstrated accuracy in 15 responses (52%), while ChatGPT-4 achieved accuracy in 17 responses (59%). ChatGPT-3.5 was overconclusive in 14 responses (48%), while ChatGPT-4 exhibited overconclusiveness in 13 responses (45%). Additionally, ChatGPT-3.5 provided supplementary information in 24 responses (83%), and ChatGPT-4 provided supplemental information in 27 responses (93%). In terms of incompleteness, ChatGPT-3.5 displayed this in 11 responses (38%), while ChatGPT-4 showed incompleteness in 8 responses (23%).ChatGPT shows promise for clinical decision-making, but both patients and healthcare providers should exercise caution to ensure safety and quality of care. While these results are encouraging, further research is necessary to validate the use of large language models in clinical settings.CONCLUSIONChatGPT shows promise for clinical decision-making, but both patients and healthcare providers should exercise caution to ensure safety and quality of care. While these results are encouraging, further research is necessary to validate the use of large language models in clinical settings.
Author Arroyave, Juan Sebastian
Zaidat, Bashar
Ahmed, Wasil
Cho, Samuel K.
Mejia, Mateo Restrepo
Rajjoub, Rami
Ndjonko, Laura Chelsea Mazudie
Zapolsky, Ivan
Saturno, Michael
Author_xml – sequence: 1
  givenname: Mateo Restrepo
  orcidid: 0009-0003-0457-3308
  surname: Mejia
  fullname: Mejia, Mateo Restrepo
– sequence: 2
  givenname: Juan Sebastian
  orcidid: 0009-0003-9480-0657
  surname: Arroyave
  fullname: Arroyave, Juan Sebastian
– sequence: 3
  givenname: Michael
  surname: Saturno
  fullname: Saturno, Michael
– sequence: 4
  givenname: Laura Chelsea Mazudie
  orcidid: 0000-0002-3153-4967
  surname: Ndjonko
  fullname: Ndjonko, Laura Chelsea Mazudie
– sequence: 5
  givenname: Bashar
  orcidid: 0000-0002-8823-720X
  surname: Zaidat
  fullname: Zaidat, Bashar
– sequence: 6
  givenname: Rami
  orcidid: 0009-0005-2990-7874
  surname: Rajjoub
  fullname: Rajjoub, Rami
– sequence: 7
  givenname: Wasil
  orcidid: 0009-0001-0904-1891
  surname: Ahmed
  fullname: Ahmed, Wasil
– sequence: 8
  givenname: Ivan
  surname: Zapolsky
  fullname: Zapolsky, Ivan
– sequence: 9
  givenname: Samuel K.
  orcidid: 0000-0001-7511-2486
  surname: Cho
  fullname: Cho, Samuel K.
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003067530$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp1kk1vEzEQhleoiJbQM1cfEVJaf9vLBUUB0kgRoCYVR8vrnU1Md-3g3UXKv-Gn4iYFqUicxh6_76MZz7wszkIMUBSvCb4inHJxHforyrjCgl4JKp8VF1RoOZWiJGd_z5qdF5d97yvMuRKcMfKiOGealkRxeVH8uusBxQbNd3ZYfN2gJib0AQZInQ8-bNG8zdHZFtlQo_WYtsfLJoEdOgjDg3U1dpXNLt87dAMpeDv4GNA3P-zQra29G9u4t8Pu8A7N0OeYcnrWQcqggNZ7HwCto_MwHNBi9DW0D5l57PY2-T6GV8XzxrY9XD7GSXH36eNmfjNdfVks57PV1DGt5JQQ5iSucAWNxpw4DC63i2uOayEorahgYKXTTPOGO10SqxllBNfQKGkrzSbF2xM3pMbcO2-i9ce4jeY-mdntZmlIJmsmcRYvT-I62u9mn3xn0-HoOCZi2hqbBu9aMFBiVkvtBFENF6oqgTleSlUpkI3iTWa9P7H2Y9VB7fKvJts-gT59CX6Xi_qZqylLKvNEJ8WbR0KKP0boB9PlWUDb2gBx7A0tKRaKYayyVJykLsW-T9AY54fjvDLat5lpjqtlQradVsvk1cq-6398f-r7n-M3p7TRzg
CitedBy_id crossref_primary_10_1016_j_xnsj_2024_100580
crossref_primary_10_1016_j_jposna_2024_100135
crossref_primary_10_14245_ns_2550094_047
crossref_primary_10_1007_s00586_025_08994_8
crossref_primary_10_1002_jeo2_70393
crossref_primary_10_1177_15563316251340696
crossref_primary_10_1007_s11657_025_01587_4
crossref_primary_10_1177_20552076241311939
crossref_primary_10_2196_59607
crossref_primary_10_1177_20552076251367645
crossref_primary_10_3390_jcm14165876
crossref_primary_10_1097_BPO_0000000000002890
crossref_primary_10_1177_24730114251352494
crossref_primary_10_3389_fdgth_2025_1574287
crossref_primary_10_1186_s12883_025_04280_8
crossref_primary_10_1007_s00701_025_06610_8
crossref_primary_10_1097_MS9_0000000000003519
crossref_primary_10_1038_s41746_025_01752_6
crossref_primary_10_1186_s40001_025_02296_x
crossref_primary_10_1016_j_wneu_2024_05_172
crossref_primary_10_1016_j_arthro_2025_03_066
crossref_primary_10_2196_64486
crossref_primary_10_1007_s13755_025_00368_0
crossref_primary_10_1016_j_spinee_2025_02_010
crossref_primary_10_1186_s13018_025_05831_y
crossref_primary_10_1007_s10143_025_03785_7
crossref_primary_10_1016_j_fas_2024_12_003
crossref_primary_10_31616_asj_2024_0301
Cites_doi 10.1016/j.jor.2013.07.005
10.7759/cureus.35179
10.3928/01477447-20210618-11
10.1007/s00234-023-03252-4
10.1371/journal.pdig.0000198
10.3889/oamjms.2019.679
10.48550/arXiv.2304.14454
10.1016/j.ncl.2007.01.008
10.1016/j.wneu.2022.06.023
10.7759/cureus.48078
10.3390/healthcare11060887
10.1186/s12962-021-00272-w
10.48550/arXiv.2302.12813
10.1016/j.spinee.2020.01.015
10.1177/2192568220968772
10.7759/cureus.40895
10.1016/j.spinee.2013.08.003
10.1016/j.spinee.2023.07.015
ContentType Journal Article
Copyright Copyright © 2024 by the Korean Spinal Neurosurgery Society 2024
Copyright_xml – notice: Copyright © 2024 by the Korean Spinal Neurosurgery Society 2024
DBID AAYXX
CITATION
7X8
5PM
DOA
ACYCR
DOI 10.14245/ns.2347052.526
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
Korean Citation Index
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2586-6591
EndPage 158
ExternalDocumentID oai_kci_go_kr_ARTI_10418360
oai_doaj_org_article_e903d68c517f457b9e3c4967b7e6f74f
PMC10992643
10_14245_ns_2347052_526
GroupedDBID AAYXX
ABDBF
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
GROUPED_DOAJ
HYE
PGMZT
RPM
7X8
M~E
5PM
ACYCR
OK1
ID FETCH-LOGICAL-c3876-113c60b0bef8041c0ec4750d40d5522b253ea6c8384f4c891a832310def76ab83
IEDL.DBID DOA
ISSN 2586-6583
IngestDate Thu Apr 04 10:27:16 EDT 2024
Fri Oct 03 12:52:59 EDT 2025
Thu Aug 21 18:34:43 EDT 2025
Thu Oct 02 11:51:03 EDT 2025
Tue Nov 18 21:47:01 EST 2025
Sat Nov 29 03:16:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3876-113c60b0bef8041c0ec4750d40d5522b253ea6c8384f4c891a832310def76ab83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
https://doi.org/10.14245/ns.2347052.526
ORCID 0009-0003-0457-3308
0000-0002-3153-4967
0000-0001-7511-2486
0009-0005-2990-7874
0009-0003-9480-0657
0009-0001-0904-1891
0000-0002-8823-720X
OpenAccessLink https://doaj.org/article/e903d68c517f457b9e3c4967b7e6f74f
PMID 38291746
PQID 2920573007
PQPubID 23479
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10418360
doaj_primary_oai_doaj_org_article_e903d68c517f457b9e3c4967b7e6f74f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10992643
proquest_miscellaneous_2920573007
crossref_citationtrail_10_14245_ns_2347052_526
crossref_primary_10_14245_ns_2347052_526
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Neurospine
PublicationYear 2024
Publisher Korean Spinal Neurosurgery Society
대한척추신경외과학회
Publisher_xml – name: Korean Spinal Neurosurgery Society
– name: 대한척추신경외과학회
References ref13
ref12
ref23
ref14
ref20
ref11
ref22
ref10
ref21
Edmonston (ref6) 2010
ref1
(ref2) 2001
ref19
ref18
ref8
(ref17) 2024
ref7
ref9
Quintans-Júnior (ref16) 2023
ref4
ref3
ref5
Au Yeung (ref15) 2023
References_xml – ident: ref8
  doi: 10.1016/j.jor.2013.07.005
– year: 2001
  ident: ref2
– ident: ref23
  doi: 10.7759/cureus.35179
– ident: ref7
  doi: 10.3928/01477447-20210618-11
– ident: ref21
  doi: 10.1007/s00234-023-03252-4
– start-page: 174
  volume-title: Infection rate and risk factor analysis in an orthopaedic ambulatory surgical center
  year: 2010
  ident: ref6
– ident: ref1
  doi: 10.1371/journal.pdig.0000198
– ident: ref9
  doi: 10.3889/oamjms.2019.679
– ident: ref19
  doi: 10.48550/arXiv.2304.14454
– ident: ref3
  doi: 10.1016/j.ncl.2007.01.008
– ident: ref10
  doi: 10.1016/j.wneu.2022.06.023
– volume-title: New models and developer products announced at DevDay [Internet]
  year: 2024
  ident: ref17
– ident: ref22
  doi: 10.7759/cureus.48078
– ident: ref20
  doi: 10.3390/healthcare11060887
– ident: ref11
  doi: 10.1186/s12962-021-00272-w
– start-page: 1161098
  volume-title: AI chatbots not yet ready for clinical use
  year: 2023
  ident: ref15
– ident: ref14
  doi: 10.48550/arXiv.2302.12813
– start-page: e0060
  volume-title: ChatGPT: the new panacea of the academic world
  year: 2023
  ident: ref16
– ident: ref12
  doi: 10.1016/j.spinee.2020.01.015
– ident: ref13
  doi: 10.1177/2192568220968772
– ident: ref18
  doi: 10.7759/cureus.40895
– ident: ref4
  doi: 10.1016/j.spinee.2013.08.003
– ident: ref5
  doi: 10.1016/j.spinee.2023.07.015
SSID ssib044754331
ssj0002002413
Score 2.4255893
Snippet Objective: Large language models like chat generative pre-trained transformer (ChatGPT) have found success in various sectors, but their application in the...
Large language models like chat generative pre-trained transformer (ChatGPT) have found success in various sectors, but their application in the medical field...
Objective Large language models like chat generative pre-trained transformer (ChatGPT) have found success in various sectors, but their application in the...
SourceID nrf
doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 149
SubjectTerms artificial intelligence
chatgpt
lumbar disk herniation with radiculopathy
north american spine society guidelines
Original
qualitative study
신경외과학
Title Use of ChatGPT for Determining Clinical and Surgical Treatment of Lumbar Disc Herniation With Radiculopathy: A North American Spine Society Guideline Comparison
URI https://www.proquest.com/docview/2920573007
https://pubmed.ncbi.nlm.nih.gov/PMC10992643
https://doaj.org/article/e903d68c517f457b9e3c4967b7e6f74f
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003067530
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Neurospine, 2024, 21(1), , pp.149-158
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2586-6591
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002413
  issn: 2586-6583
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2586-6591
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044754331
  issn: 2586-6583
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAFgQCxQCsjOHBJ68SO7fRWlj6QoKroVuzNih_pRi1Jld0gceG38FOZSbKrzQFx4ZJIia0knhnP58z4G0Le4UYeFmQR-UykkYgZmJTjLHKpsF5ax7hwXbEJdX6u5_PsYqvUF-aE9fTA_cAdhIxxL7VLY1WIVNkscCcyqayCJyhR4OwLqGdrMQWahCx2uBVo87cFUxFEVys5SbWMwO3ygecHI38HIN-EC8XSZD9FmoUtF9Ux-YPjqZpiBELHKZRbPunkMXk0gEl61H_EE3IvVE_J76tloHVBp4t8dXoxo4BK6cch6QX8FB2YQG9pXnl62Tbd1Edn64Rz7Pq5_W5z6FUuHT0LuHELxUe_lasF_Zp7_GVYYynjn4f0iHaRH7qO_NDLO8CtdEgGpact0mjhlemm4OEzcnVyPJueRUMdhshxmCyjOOZOMstsKJCtyLHgYHyZF8ynAN9skvKQS6e5FoVwOotzmCYANvpQKJlbzZ-TnaquwgtCoRUYPJc6y2HkmbJCxjooqTLvXPDFhOyvh964gaQca2XcGlysoKxMtTSDrAzIakLebzrc9fwcf2_6AWW5aYbE2t0FUDczqJv5l7pNyFvQBHPjyq4_nq9rc9MYWH58gieLGHfFTMibtaYYMFeMweRVqFt4nyxBCkpAZhOiRyo0eq_xnapcdMTfGMUEAMtf_o8veUUeJmAUfT7da7KzatqwSx64H6ty2eyR-2qu9zqjguOXX8d_ACtnI1I
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+ChatGPT+for+Determining+Clinical+and+Surgical+Treatment+of+Lumbar+Disc+Herniation+With+Radiculopathy%3A+A+North+American+Spine+Society+Guideline+Comparison&rft.jtitle=Neurospine&rft.au=Mateo+Restrepo+Mejia&rft.au=Juan+Sebastian+Arroyave&rft.au=Michael+Saturno&rft.au=Laura+Chelsea+Mazudie+Ndjonko&rft.date=2024-03-01&rft.pub=Korean+Spinal+Neurosurgery+Society&rft.issn=2586-6583&rft.eissn=2586-6591&rft.volume=21&rft.issue=1&rft.spage=149&rft.epage=158&rft_id=info:doi/10.14245%2Fns.2347052.526&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e903d68c517f457b9e3c4967b7e6f74f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2586-6583&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2586-6583&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2586-6583&client=summon