MR‐based synthetic CT generation using a deep convolutional neural network method
Purpose Interests have been rapidly growing in the field of radiotherapy to replace CT with magnetic resonance imaging (MRI), due to superior soft tissue contrast offered by MRI and the desire to reduce unnecessary radiation dose. MR‐only radiotherapy also simplifies clinical workflow and avoids unc...
Uložené v:
| Vydané v: | Medical physics (Lancaster) Ročník 44; číslo 4; s. 1408 - 1419 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.04.2017
|
| Predmet: | |
| ISSN: | 0094-2405, 2473-4209, 2473-4209 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Purpose
Interests have been rapidly growing in the field of radiotherapy to replace CT with magnetic resonance imaging (MRI), due to superior soft tissue contrast offered by MRI and the desire to reduce unnecessary radiation dose. MR‐only radiotherapy also simplifies clinical workflow and avoids uncertainties in aligning MR with CT. Methods, however, are needed to derive CT‐equivalent representations, often known as synthetic CT (sCT), from patient MR images for dose calculation and DRR‐based patient positioning. Synthetic CT estimation is also important for PET attenuation correction in hybrid PET‐MR systems. We propose in this work a novel deep convolutional neural network (DCNN) method for sCT generation and evaluate its performance on a set of brain tumor patient images.
Methods
The proposed method builds upon recent developments of deep learning and convolutional neural networks in the computer vision literature. The proposed DCNN model has 27 convolutional layers interleaved with pooling and unpooling layers and 35 million free parameters, which can be trained to learn a direct end‐to‐end mapping from MR images to their corresponding CTs. Training such a large model on our limited data is made possible through the principle of transfer learning and by initializing model weights from a pretrained model. Eighteen brain tumor patients with both CT and T1‐weighted MR images are used as experimental data and a sixfold cross‐validation study is performed. Each sCT generated is compared against the real CT image of the same patient on a voxel‐by‐voxel basis. Comparison is also made with respect to an atlas‐based approach that involves deformable atlas registration and patch‐based atlas fusion.
Results
The proposed DCNN method produced a mean absolute error (MAE) below 85 HU for 13 of the 18 test subjects. The overall average MAE was 84.8 ± 17.3 HU for all subjects, which was found to be significantly better than the average MAE of 94.5 ± 17.8 HU for the atlas‐based method. The DCNN method also provided significantly better accuracy when being evaluated using two other metrics: the mean squared error (188.6 ± 33.7 versus 198.3 ± 33.0) and the Pearson correlation coefficient(0.906 ± 0.03 versus 0.896 ± 0.03). Although training a DCNN model can be slow, training only need be done once. Applying a trained model to generate a complete sCT volume for each new patient MR image only took 9 s, which was much faster than the atlas‐based approach.
Conclusions
A DCNN model method was developed, and shown to be able to produce highly accurate sCT estimations from conventional, single‐sequence MR images in near real time. Quantitative results also showed that the proposed method competed favorably with an atlas‐based method, in terms of both accuracy and computation speed at test time. Further validation on dose computation accuracy and on a larger patient cohort is warranted. Extensions of the method are also possible to further improve accuracy or to handle multi‐sequence MR images. |
|---|---|
| AbstractList | Interests have been rapidly growing in the field of radiotherapy to replace CT with magnetic resonance imaging (MRI), due to superior soft tissue contrast offered by MRI and the desire to reduce unnecessary radiation dose. MR-only radiotherapy also simplifies clinical workflow and avoids uncertainties in aligning MR with CT. Methods, however, are needed to derive CT-equivalent representations, often known as synthetic CT (sCT), from patient MR images for dose calculation and DRR-based patient positioning. Synthetic CT estimation is also important for PET attenuation correction in hybrid PET-MR systems. We propose in this work a novel deep convolutional neural network (DCNN) method for sCT generation and evaluate its performance on a set of brain tumor patient images.
The proposed method builds upon recent developments of deep learning and convolutional neural networks in the computer vision literature. The proposed DCNN model has 27 convolutional layers interleaved with pooling and unpooling layers and 35 million free parameters, which can be trained to learn a direct end-to-end mapping from MR images to their corresponding CTs. Training such a large model on our limited data is made possible through the principle of transfer learning and by initializing model weights from a pretrained model. Eighteen brain tumor patients with both CT and T1-weighted MR images are used as experimental data and a sixfold cross-validation study is performed. Each sCT generated is compared against the real CT image of the same patient on a voxel-by-voxel basis. Comparison is also made with respect to an atlas-based approach that involves deformable atlas registration and patch-based atlas fusion.
The proposed DCNN method produced a mean absolute error (MAE) below 85 HU for 13 of the 18 test subjects. The overall average MAE was 84.8 ± 17.3 HU for all subjects, which was found to be significantly better than the average MAE of 94.5 ± 17.8 HU for the atlas-based method. The DCNN method also provided significantly better accuracy when being evaluated using two other metrics: the mean squared error (188.6 ± 33.7 versus 198.3 ± 33.0) and the Pearson correlation coefficient(0.906 ± 0.03 versus 0.896 ± 0.03). Although training a DCNN model can be slow, training only need be done once. Applying a trained model to generate a complete sCT volume for each new patient MR image only took 9 s, which was much faster than the atlas-based approach.
A DCNN model method was developed, and shown to be able to produce highly accurate sCT estimations from conventional, single-sequence MR images in near real time. Quantitative results also showed that the proposed method competed favorably with an atlas-based method, in terms of both accuracy and computation speed at test time. Further validation on dose computation accuracy and on a larger patient cohort is warranted. Extensions of the method are also possible to further improve accuracy or to handle multi-sequence MR images. Purpose Interests have been rapidly growing in the field of radiotherapy to replace CT with magnetic resonance imaging (MRI), due to superior soft tissue contrast offered by MRI and the desire to reduce unnecessary radiation dose. MR‐only radiotherapy also simplifies clinical workflow and avoids uncertainties in aligning MR with CT. Methods, however, are needed to derive CT‐equivalent representations, often known as synthetic CT (sCT), from patient MR images for dose calculation and DRR‐based patient positioning. Synthetic CT estimation is also important for PET attenuation correction in hybrid PET‐MR systems. We propose in this work a novel deep convolutional neural network (DCNN) method for sCT generation and evaluate its performance on a set of brain tumor patient images. Methods The proposed method builds upon recent developments of deep learning and convolutional neural networks in the computer vision literature. The proposed DCNN model has 27 convolutional layers interleaved with pooling and unpooling layers and 35 million free parameters, which can be trained to learn a direct end‐to‐end mapping from MR images to their corresponding CTs. Training such a large model on our limited data is made possible through the principle of transfer learning and by initializing model weights from a pretrained model. Eighteen brain tumor patients with both CT and T1‐weighted MR images are used as experimental data and a sixfold cross‐validation study is performed. Each sCT generated is compared against the real CT image of the same patient on a voxel‐by‐voxel basis. Comparison is also made with respect to an atlas‐based approach that involves deformable atlas registration and patch‐based atlas fusion. Results The proposed DCNN method produced a mean absolute error (MAE) below 85 HU for 13 of the 18 test subjects. The overall average MAE was 84.8 ± 17.3 HU for all subjects, which was found to be significantly better than the average MAE of 94.5 ± 17.8 HU for the atlas‐based method. The DCNN method also provided significantly better accuracy when being evaluated using two other metrics: the mean squared error (188.6 ± 33.7 versus 198.3 ± 33.0) and the Pearson correlation coefficient(0.906 ± 0.03 versus 0.896 ± 0.03). Although training a DCNN model can be slow, training only need be done once. Applying a trained model to generate a complete sCT volume for each new patient MR image only took 9 s, which was much faster than the atlas‐based approach. Conclusions A DCNN model method was developed, and shown to be able to produce highly accurate sCT estimations from conventional, single‐sequence MR images in near real time. Quantitative results also showed that the proposed method competed favorably with an atlas‐based method, in terms of both accuracy and computation speed at test time. Further validation on dose computation accuracy and on a larger patient cohort is warranted. Extensions of the method are also possible to further improve accuracy or to handle multi‐sequence MR images. Interests have been rapidly growing in the field of radiotherapy to replace CT with magnetic resonance imaging (MRI), due to superior soft tissue contrast offered by MRI and the desire to reduce unnecessary radiation dose. MR-only radiotherapy also simplifies clinical workflow and avoids uncertainties in aligning MR with CT. Methods, however, are needed to derive CT-equivalent representations, often known as synthetic CT (sCT), from patient MR images for dose calculation and DRR-based patient positioning. Synthetic CT estimation is also important for PET attenuation correction in hybrid PET-MR systems. We propose in this work a novel deep convolutional neural network (DCNN) method for sCT generation and evaluate its performance on a set of brain tumor patient images.PURPOSEInterests have been rapidly growing in the field of radiotherapy to replace CT with magnetic resonance imaging (MRI), due to superior soft tissue contrast offered by MRI and the desire to reduce unnecessary radiation dose. MR-only radiotherapy also simplifies clinical workflow and avoids uncertainties in aligning MR with CT. Methods, however, are needed to derive CT-equivalent representations, often known as synthetic CT (sCT), from patient MR images for dose calculation and DRR-based patient positioning. Synthetic CT estimation is also important for PET attenuation correction in hybrid PET-MR systems. We propose in this work a novel deep convolutional neural network (DCNN) method for sCT generation and evaluate its performance on a set of brain tumor patient images.The proposed method builds upon recent developments of deep learning and convolutional neural networks in the computer vision literature. The proposed DCNN model has 27 convolutional layers interleaved with pooling and unpooling layers and 35 million free parameters, which can be trained to learn a direct end-to-end mapping from MR images to their corresponding CTs. Training such a large model on our limited data is made possible through the principle of transfer learning and by initializing model weights from a pretrained model. Eighteen brain tumor patients with both CT and T1-weighted MR images are used as experimental data and a sixfold cross-validation study is performed. Each sCT generated is compared against the real CT image of the same patient on a voxel-by-voxel basis. Comparison is also made with respect to an atlas-based approach that involves deformable atlas registration and patch-based atlas fusion.METHODSThe proposed method builds upon recent developments of deep learning and convolutional neural networks in the computer vision literature. The proposed DCNN model has 27 convolutional layers interleaved with pooling and unpooling layers and 35 million free parameters, which can be trained to learn a direct end-to-end mapping from MR images to their corresponding CTs. Training such a large model on our limited data is made possible through the principle of transfer learning and by initializing model weights from a pretrained model. Eighteen brain tumor patients with both CT and T1-weighted MR images are used as experimental data and a sixfold cross-validation study is performed. Each sCT generated is compared against the real CT image of the same patient on a voxel-by-voxel basis. Comparison is also made with respect to an atlas-based approach that involves deformable atlas registration and patch-based atlas fusion.The proposed DCNN method produced a mean absolute error (MAE) below 85 HU for 13 of the 18 test subjects. The overall average MAE was 84.8 ± 17.3 HU for all subjects, which was found to be significantly better than the average MAE of 94.5 ± 17.8 HU for the atlas-based method. The DCNN method also provided significantly better accuracy when being evaluated using two other metrics: the mean squared error (188.6 ± 33.7 versus 198.3 ± 33.0) and the Pearson correlation coefficient(0.906 ± 0.03 versus 0.896 ± 0.03). Although training a DCNN model can be slow, training only need be done once. Applying a trained model to generate a complete sCT volume for each new patient MR image only took 9 s, which was much faster than the atlas-based approach.RESULTSThe proposed DCNN method produced a mean absolute error (MAE) below 85 HU for 13 of the 18 test subjects. The overall average MAE was 84.8 ± 17.3 HU for all subjects, which was found to be significantly better than the average MAE of 94.5 ± 17.8 HU for the atlas-based method. The DCNN method also provided significantly better accuracy when being evaluated using two other metrics: the mean squared error (188.6 ± 33.7 versus 198.3 ± 33.0) and the Pearson correlation coefficient(0.906 ± 0.03 versus 0.896 ± 0.03). Although training a DCNN model can be slow, training only need be done once. Applying a trained model to generate a complete sCT volume for each new patient MR image only took 9 s, which was much faster than the atlas-based approach.A DCNN model method was developed, and shown to be able to produce highly accurate sCT estimations from conventional, single-sequence MR images in near real time. Quantitative results also showed that the proposed method competed favorably with an atlas-based method, in terms of both accuracy and computation speed at test time. Further validation on dose computation accuracy and on a larger patient cohort is warranted. Extensions of the method are also possible to further improve accuracy or to handle multi-sequence MR images.CONCLUSIONSA DCNN model method was developed, and shown to be able to produce highly accurate sCT estimations from conventional, single-sequence MR images in near real time. Quantitative results also showed that the proposed method competed favorably with an atlas-based method, in terms of both accuracy and computation speed at test time. Further validation on dose computation accuracy and on a larger patient cohort is warranted. Extensions of the method are also possible to further improve accuracy or to handle multi-sequence MR images. |
| Author | Han, Xiao |
| Author_xml | – sequence: 1 givenname: Xiao surname: Han fullname: Han, Xiao email: xiao.han@elekta.com organization: Elekta Inc |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28192624$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kElOwzAYhS1URFtA4gTISzYpHjMsUcUkFYEY1pHj_GkDiR3shKo7jsAZOQmlLSAhWL3F-95bfEPUM9YAQgeUjCgh7LhuRpRRKbfQgImIB4KRpIcGhCQiYILIPhp6_0gICbkkO6jPYpqwkIkBuru6fX99y5SHHPuFaWfQlhqP7_EUDDjVltbgzpdmihXOARqsrXmxVfdZqAob6Nwq2rl1T7iGdmbzPbRdqMrD_iZ30cPZ6f34Iphcn1-OTyaB5nEkg4KLmEAhIh0TrcJCK8lpSDMJtABFKKUZ51xxwqiKuNY5lRFVIgp5BrFIcr6Ljta_jbPPHfg2rUuvoaqUAdv5lMZhzBMpuFiihxu0y2rI08aVtXKL9EvEz5d21nsHxTdCSfrpOK2bdOV4iY5-obpsV6Zap8rqr0GwHszLChb_HqdXN2v-A6V0i-0 |
| CitedBy_id | crossref_primary_10_1016_j_meddos_2018_06_008 crossref_primary_10_1088_1361_6560_ab0dc0 crossref_primary_10_1002_acm2_13775 crossref_primary_10_1016_j_compbiomed_2022_105948 crossref_primary_10_1016_j_ejmp_2017_09_132 crossref_primary_10_1016_j_engappai_2023_107334 crossref_primary_10_1088_1757_899X_914_1_012030 crossref_primary_10_1007_s40042_021_00291_z crossref_primary_10_1186_s41747_019_0143_0 crossref_primary_10_14338_IJPT_D_20_00020_1 crossref_primary_10_1097_HP_0000000000002027 crossref_primary_10_1016_j_media_2019_101546 crossref_primary_10_1088_2057_1976_acea27 crossref_primary_10_1016_j_neuroimage_2020_117221 crossref_primary_10_1093_jrr_rrz030 crossref_primary_10_1155_2020_8279342 crossref_primary_10_1002_mp_15174 crossref_primary_10_1002_hbm_24210 crossref_primary_10_1007_s12149_021_01697_2 crossref_primary_10_1016_j_compmedimag_2024_102344 crossref_primary_10_1055_s_0045_1802660 crossref_primary_10_1088_1361_6560_ab8bf2 crossref_primary_10_1016_j_phro_2021_05_001 crossref_primary_10_1038_s41598_020_64842_3 crossref_primary_10_1186_s12880_024_01242_3 crossref_primary_10_1007_s13246_020_00933_9 crossref_primary_10_1016_j_phro_2021_05_007 crossref_primary_10_1038_s41598_025_05323_3 crossref_primary_10_1155_2021_2254594 crossref_primary_10_1016_j_ejrad_2024_111587 crossref_primary_10_1148_ryai_2021200276 crossref_primary_10_1007_s11042_024_18759_y crossref_primary_10_1007_s13139_017_0504_7 crossref_primary_10_1016_j_media_2018_03_011 crossref_primary_10_3389_fphy_2018_00051 crossref_primary_10_3389_fonc_2020_01715 crossref_primary_10_1109_ACCESS_2024_3377428 crossref_primary_10_1109_TRPMS_2023_3241102 crossref_primary_10_1038_s41598_019_52262_x crossref_primary_10_3389_fgene_2019_01110 crossref_primary_10_1016_j_ejmp_2020_10_023 crossref_primary_10_1016_j_phro_2020_12_007 crossref_primary_10_1007_s13534_024_00430_y crossref_primary_10_1016_j_radonc_2020_09_008 crossref_primary_10_1007_s11060_022_04068_7 crossref_primary_10_3390_rs15071906 crossref_primary_10_3389_fneur_2024_1383773 crossref_primary_10_3390_diagnostics12040816 crossref_primary_10_1088_1361_6560_ab436a crossref_primary_10_1145_3625227 crossref_primary_10_1016_j_phro_2020_04_002 crossref_primary_10_1088_1361_6560_ad611a crossref_primary_10_1002_mp_15073 crossref_primary_10_1109_TUFFC_2020_2983099 crossref_primary_10_1016_j_ijrobp_2020_05_006 crossref_primary_10_1002_mp_16048 crossref_primary_10_1016_j_radonc_2020_11_027 crossref_primary_10_3389_fonc_2017_00315 crossref_primary_10_1007_s13246_024_01457_2 crossref_primary_10_1002_acm2_13327 crossref_primary_10_1016_j_media_2025_103454 crossref_primary_10_1088_1361_6560_ab6f51 crossref_primary_10_1007_s11036_020_01678_1 crossref_primary_10_3389_fnins_2021_655019 crossref_primary_10_1109_JBHI_2019_2927368 crossref_primary_10_1109_TRPMS_2024_3397318 crossref_primary_10_1016_j_cmpb_2022_106932 crossref_primary_10_1016_j_ijrobp_2018_06_024 crossref_primary_10_1007_s10278_021_00551_1 crossref_primary_10_1088_1361_6560_abf1bb crossref_primary_10_1007_s10278_020_00361_x crossref_primary_10_1016_j_ymeth_2020_10_004 crossref_primary_10_1016_j_engappai_2023_106337 crossref_primary_10_1109_JSEN_2021_3050618 crossref_primary_10_1088_1361_6560_aca38a crossref_primary_10_3389_frai_2022_780405 crossref_primary_10_3390_s25061814 crossref_primary_10_3233_JIFS_179575 crossref_primary_10_1016_j_sigpro_2025_110181 crossref_primary_10_1111_echo_14674 crossref_primary_10_1109_TUFFC_2022_3198522 crossref_primary_10_1016_j_phro_2025_100764 crossref_primary_10_1016_j_bspc_2024_106819 crossref_primary_10_1016_j_cmpb_2024_108578 crossref_primary_10_1007_s13246_019_00822_w crossref_primary_10_1088_1361_6560_aaf5e0 crossref_primary_10_1016_j_neunet_2020_05_001 crossref_primary_10_1088_1361_6560_ab25bc crossref_primary_10_1109_TRPMS_2018_2868946 crossref_primary_10_1155_2021_4463975 crossref_primary_10_1007_s00259_021_05198_2 crossref_primary_10_1088_1361_6560_ab5c5b crossref_primary_10_3390_s22020523 crossref_primary_10_1002_mp_14075 crossref_primary_10_1088_1361_6560_ac8d45 crossref_primary_10_3390_cancers14123027 crossref_primary_10_1002_mp_16256 crossref_primary_10_1007_s00234_024_03282_6 crossref_primary_10_1016_j_bspc_2022_104258 crossref_primary_10_1016_j_canrad_2020_01_008 crossref_primary_10_1002_btm2_10494 crossref_primary_10_1002_acm2_70228 crossref_primary_10_1016_j_zemedi_2018_11_002 crossref_primary_10_1002_acm2_13121 crossref_primary_10_1007_s12350_021_02817_1 crossref_primary_10_3390_diagnostics11071194 crossref_primary_10_1016_j_ejmp_2021_03_035 crossref_primary_10_1007_s10278_018_0124_5 crossref_primary_10_3389_fonc_2024_1478148 crossref_primary_10_1002_mp_14180 crossref_primary_10_1002_mp_15150 crossref_primary_10_1002_mp_14062 crossref_primary_10_1109_TMI_2025_3559823 crossref_primary_10_1002_mp_16246 crossref_primary_10_1016_j_ijrobp_2019_08_049 crossref_primary_10_1088_1361_6560_ab23a6 crossref_primary_10_3390_bioengineering12060611 crossref_primary_10_1002_mp_17338 crossref_primary_10_1140_epjp_s13360_024_05660_8 crossref_primary_10_1186_s40658_023_00569_0 crossref_primary_10_1016_j_engappai_2018_11_013 crossref_primary_10_1002_mp_15460 crossref_primary_10_3389_fonc_2020_593381 crossref_primary_10_1016_j_bspc_2024_106294 crossref_primary_10_1007_s00066_024_02328_1 crossref_primary_10_1002_mrm_27134 crossref_primary_10_1002_mp_13047 crossref_primary_10_1002_mp_16556 crossref_primary_10_1002_acm2_13139 crossref_primary_10_1088_1361_6560_aac763 crossref_primary_10_1016_j_zemedi_2020_10_004 crossref_primary_10_1088_1361_6560_ab7d54 crossref_primary_10_1007_s11547_021_01351_x crossref_primary_10_1097_MD_0000000000023138 crossref_primary_10_1088_1361_6560_ab5b70 crossref_primary_10_1016_j_compbiomed_2018_05_018 crossref_primary_10_1002_ird3_112 crossref_primary_10_1002_mp_15572 crossref_primary_10_1002_mp_16782 crossref_primary_10_1093_bib_bbaa310 crossref_primary_10_1002_mp_16666 crossref_primary_10_1088_2057_1976_ac0501 crossref_primary_10_3389_fneur_2019_00869 crossref_primary_10_3390_jimaging7040066 crossref_primary_10_1042_BSR20180289 crossref_primary_10_1007_s00259_020_05061_w crossref_primary_10_1016_j_compmedimag_2021_101953 crossref_primary_10_1016_j_ejmp_2021_05_010 crossref_primary_10_1109_JPROC_2019_2936809 crossref_primary_10_1109_TMI_2024_3382043 crossref_primary_10_1038_s41598_018_27742_1 crossref_primary_10_1007_s00066_023_02090_w crossref_primary_10_1007_s00259_020_04852_5 crossref_primary_10_1016_j_jvcir_2019_102578 crossref_primary_10_1002_mp_13187 crossref_primary_10_1109_TCSVT_2025_3528981 crossref_primary_10_1016_j_cmpb_2022_107001 crossref_primary_10_1002_mrm_28008 crossref_primary_10_3389_fonc_2022_920443 crossref_primary_10_1016_j_ejmp_2021_05_001 crossref_primary_10_1177_13524585211029860 crossref_primary_10_1007_s13246_023_01320_w crossref_primary_10_1109_TRPMS_2020_3009269 crossref_primary_10_1002_jmri_26712 crossref_primary_10_1155_2020_5193707 crossref_primary_10_3390_app15052311 crossref_primary_10_4103_JCOT_JCOT_3_23 crossref_primary_10_1088_1361_6560_ade220 crossref_primary_10_1007_s00259_019_04380_x crossref_primary_10_1088_1361_6560_ab1cee crossref_primary_10_1002_mp_14387 crossref_primary_10_1002_mrm_29684 crossref_primary_10_1002_mp_15479 crossref_primary_10_3233_JIFS_211968 crossref_primary_10_3390_app12178650 crossref_primary_10_1088_1361_6560_abab57 crossref_primary_10_1186_s13014_023_02349_7 crossref_primary_10_3390_diagnostics13243661 crossref_primary_10_1016_j_radonc_2022_08_028 crossref_primary_10_1016_j_compbiomed_2022_105556 crossref_primary_10_1002_acm2_13176 crossref_primary_10_1186_s12880_021_00618_z crossref_primary_10_1002_mp_15661 crossref_primary_10_1002_mrm_29356 crossref_primary_10_1002_mp_16752 crossref_primary_10_1016_j_ejmp_2021_04_016 crossref_primary_10_1053_j_semnuclmed_2025_01_006 crossref_primary_10_1002_mp_13247 crossref_primary_10_1186_s13014_023_02336_y crossref_primary_10_1002_ima_70013 crossref_primary_10_1038_s41598_021_81044_7 crossref_primary_10_1088_2057_1976_ad6a62 crossref_primary_10_1007_s12072_021_10229_z crossref_primary_10_3390_app11041691 crossref_primary_10_1088_1361_6560_aaf0bc crossref_primary_10_1002_mp_15534 crossref_primary_10_1016_j_artmed_2023_102609 crossref_primary_10_3389_fnins_2022_920981 crossref_primary_10_3389_fonc_2023_1117874 crossref_primary_10_3390_app10113794 crossref_primary_10_3389_fonc_2024_1407016 crossref_primary_10_1016_j_knosys_2025_114491 crossref_primary_10_1016_j_radonc_2020_10_018 crossref_primary_10_1093_jrr_rrz063 crossref_primary_10_1109_JBHI_2019_2912659 crossref_primary_10_1186_s13014_024_02467_w crossref_primary_10_1007_s11548_022_02732_x crossref_primary_10_1088_1361_6560_ab857b crossref_primary_10_1016_j_patrec_2022_04_019 crossref_primary_10_1088_1742_6596_1848_1_012006 crossref_primary_10_1002_mp_13262 crossref_primary_10_1088_2057_1976_ac21aa crossref_primary_10_1002_mp_13264 crossref_primary_10_1016_j_meddos_2019_01_002 crossref_primary_10_3390_app122211600 crossref_primary_10_1016_j_compbiomed_2023_106738 crossref_primary_10_1016_j_neuroimage_2021_118606 crossref_primary_10_1016_j_ejrad_2020_109487 crossref_primary_10_1016_j_compmedimag_2021_101885 crossref_primary_10_1109_JBHI_2022_3143104 crossref_primary_10_1007_s11633_024_1528_y crossref_primary_10_1016_j_crmeth_2025_101074 crossref_primary_10_1016_j_ejmp_2023_102544 crossref_primary_10_3389_fonc_2019_00977 crossref_primary_10_1371_journal_pone_0316642 crossref_primary_10_3390_bioengineering10091078 crossref_primary_10_1186_s13014_021_01794_6 crossref_primary_10_1016_j_ijrobp_2019_06_2535 crossref_primary_10_1016_j_dib_2025_111768 crossref_primary_10_1007_s10278_024_01312_6 crossref_primary_10_1016_j_jrras_2022_03_003 crossref_primary_10_1016_j_cmpb_2022_107032 crossref_primary_10_1148_radiol_2020202861 crossref_primary_10_3389_fonc_2022_1086258 crossref_primary_10_1007_s00138_023_01410_5 crossref_primary_10_1109_JBHI_2024_3393870 crossref_primary_10_1007_s11517_024_03035_w crossref_primary_10_1016_j_ejrad_2025_112310 crossref_primary_10_1148_radiol_2020202747 crossref_primary_10_3390_app12073223 crossref_primary_10_3389_fonc_2019_00964 crossref_primary_10_1088_1361_6560_aba5e9 crossref_primary_10_3389_fnins_2022_1053783 crossref_primary_10_1016_j_radonc_2019_03_026 crossref_primary_10_1002_mp_14534 crossref_primary_10_1002_mp_15986 crossref_primary_10_1007_s00259_020_04746_6 crossref_primary_10_1088_1361_6560_ac0e79 crossref_primary_10_3389_fonc_2021_617681 crossref_primary_10_1016_j_compbiomed_2023_107842 crossref_primary_10_1016_j_jacr_2020_06_033 crossref_primary_10_1038_s41571_020_0417_8 crossref_primary_10_3390_bioengineering10020250 crossref_primary_10_1088_1361_6560_ab41af crossref_primary_10_1109_TMI_2022_3167808 crossref_primary_10_1016_j_ijrobp_2024_09_046 crossref_primary_10_1016_j_compmedimag_2018_09_004 crossref_primary_10_3389_fphy_2019_00243 crossref_primary_10_1002_jmri_26534 crossref_primary_10_1093_rpd_ncaf043 crossref_primary_10_3390_cancers14246123 crossref_primary_10_1109_RBME_2023_3269776 crossref_primary_10_3390_s22072452 crossref_primary_10_1002_mp_13672 crossref_primary_10_1016_j_bspc_2022_103994 crossref_primary_10_1002_mp_16702 crossref_primary_10_1177_02841851241300616 crossref_primary_10_1002_mp_14758 crossref_primary_10_1038_s41598_024_59014_6 crossref_primary_10_1016_j_phro_2021_10_001 crossref_primary_10_1109_TMI_2019_2935916 crossref_primary_10_3171_2020_4_PEDS20131 crossref_primary_10_1109_JBHI_2023_3308529 crossref_primary_10_1016_j_ijrobp_2021_11_007 crossref_primary_10_1186_s12885_020_6694_x crossref_primary_10_1186_s40658_021_00426_y crossref_primary_10_1007_s13534_022_00227_x crossref_primary_10_1109_TBME_2018_2814538 crossref_primary_10_1016_j_eswa_2021_115008 crossref_primary_10_1002_mp_13583 crossref_primary_10_1002_ima_23169 crossref_primary_10_1016_j_phro_2023_100425 crossref_primary_10_1002_mp_16976 crossref_primary_10_1038_s41598_022_06546_4 crossref_primary_10_1088_1361_6560_ac08b2 crossref_primary_10_1109_TAI_2022_3187388 crossref_primary_10_1016_j_mri_2019_04_002 crossref_primary_10_1016_j_neucom_2021_07_066 crossref_primary_10_1088_2057_1976_ab6e1f crossref_primary_10_1016_j_semradonc_2023_10_003 crossref_primary_10_1007_s13534_024_00402_2 crossref_primary_10_1109_TCBB_2020_2979841 crossref_primary_10_1002_mp_13574 crossref_primary_10_3390_jpm13091338 crossref_primary_10_1007_s13534_021_00195_8 crossref_primary_10_1002_mp_15876 crossref_primary_10_1002_mp_14418 crossref_primary_10_1109_ACCESS_2019_2912226 crossref_primary_10_1016_j_ctro_2022_100564 crossref_primary_10_1016_j_compbiomed_2022_105277 crossref_primary_10_1016_j_radonc_2023_110056 crossref_primary_10_1109_ACCESS_2025_3570728 crossref_primary_10_3390_cancers16213670 crossref_primary_10_3390_su13031224 crossref_primary_10_1088_2057_1976_abe3a7 crossref_primary_10_1016_j_ejro_2022_100448 crossref_primary_10_3390_diagnostics11010011 crossref_primary_10_1148_ryai_2020190027 crossref_primary_10_1002_mp_15936 crossref_primary_10_1016_j_radonc_2025_110782 crossref_primary_10_3389_fonc_2022_968689 crossref_primary_10_1016_j_radonc_2020_06_049 crossref_primary_10_1016_j_radonc_2024_110387 crossref_primary_10_1088_1361_6560_ac279e crossref_primary_10_1259_bjr_20180505 crossref_primary_10_1016_j_phro_2022_11_011 crossref_primary_10_1016_j_jksuci_2019_06_002 crossref_primary_10_1016_j_knosys_2024_111799 crossref_primary_10_1016_j_ijrobp_2018_12_008 crossref_primary_10_1088_2057_1976_ab27a6 crossref_primary_10_1016_j_semradonc_2022_06_001 crossref_primary_10_3390_s22114043 crossref_primary_10_1002_jmri_27308 crossref_primary_10_1097_RMR_0000000000000279 crossref_primary_10_1007_s00066_024_02277_9 crossref_primary_10_1177_0271678X19888123 crossref_primary_10_4274_mirt_galenos_2024_86422 crossref_primary_10_1016_j_semradonc_2022_06_007 crossref_primary_10_1177_15330338231199286 crossref_primary_10_3390_bioengineering9090467 crossref_primary_10_1016_j_compbiomed_2021_104917 crossref_primary_10_1109_JBHI_2021_3103387 crossref_primary_10_1088_2516_1091_ac5b13 crossref_primary_10_1016_j_procs_2023_01_171 crossref_primary_10_1007_s00330_019_06229_1 crossref_primary_10_1038_s41598_021_01681_w crossref_primary_10_3389_fonc_2021_660284 crossref_primary_10_1002_mp_13663 crossref_primary_10_1002_mp_14987 crossref_primary_10_1109_TIM_2025_3544370 crossref_primary_10_1088_1361_6560_aaaca4 crossref_primary_10_3390_app12031358 crossref_primary_10_3390_s23239532 crossref_primary_10_1002_mrm_28689 crossref_primary_10_1016_j_neuroimage_2021_118697 crossref_primary_10_1109_ACCESS_2020_3047861 crossref_primary_10_1088_1361_6560_abc5cb crossref_primary_10_1186_s13014_020_01524_4 crossref_primary_10_1002_ima_23113 crossref_primary_10_1177_15330338211046433 crossref_primary_10_1016_j_ejmp_2019_08_008 crossref_primary_10_1007_s00259_019_04374_9 crossref_primary_10_1016_j_phro_2022_10_002 crossref_primary_10_1007_s11227_021_03901_6 crossref_primary_10_1007_s11604_023_01449_4 crossref_primary_10_1002_mrm_29766 crossref_primary_10_1177_17562848251359141 crossref_primary_10_1007_s11042_021_11411_z crossref_primary_10_1088_1361_6560_ac3d16 crossref_primary_10_1016_j_ejmp_2021_07_027 crossref_primary_10_3389_fonc_2020_01107 crossref_primary_10_1016_j_compbiomed_2025_110635 crossref_primary_10_1016_j_cmpb_2021_106575 crossref_primary_10_3233_JIFS_213367 crossref_primary_10_1177_0271678X211029178 crossref_primary_10_1007_s00330_023_10534_1 crossref_primary_10_1155_2021_2033806 crossref_primary_10_1259_bjr_20190001 crossref_primary_10_1002_mp_13716 crossref_primary_10_3390_cancers15020330 crossref_primary_10_1038_s41598_024_61869_8 crossref_primary_10_1002_mp_14929 crossref_primary_10_1016_j_ejmp_2018_05_006 crossref_primary_10_1038_s41598_021_85671_y crossref_primary_10_1148_rg_220029 crossref_primary_10_1148_radiol_2018180547 crossref_primary_10_1016_j_neucom_2021_08_138 crossref_primary_10_1016_j_compbiomed_2024_107983 crossref_primary_10_1016_j_cmpb_2019_105065 crossref_primary_10_1016_j_media_2020_101718 crossref_primary_10_1016_j_hoc_2019_08_005 crossref_primary_10_1007_s13246_021_01031_0 crossref_primary_10_1016_j_compmedimag_2023_102249 crossref_primary_10_1016_j_zemedi_2018_12_003 crossref_primary_10_1007_s13369_019_03735_8 crossref_primary_10_1080_00207454_2024_2352784 crossref_primary_10_14338_IJPT_20_00099_1 crossref_primary_10_1016_j_breast_2019_11_011 crossref_primary_10_1088_2516_1091_adc85e crossref_primary_10_3389_fonc_2021_686875 crossref_primary_10_1016_j_ijrobp_2019_06_009 crossref_primary_10_1088_1361_6560_aada6d crossref_primary_10_1088_1361_6560_aaf496 crossref_primary_10_1016_j_jatmed_2025_06_003 crossref_primary_10_1088_1361_6560_abb1d6 crossref_primary_10_3390_a14050144 crossref_primary_10_1002_mp_13617 crossref_primary_10_3389_fonc_2021_713617 crossref_primary_10_1007_s10723_020_09513_3 crossref_primary_10_1038_s41598_019_43656_y crossref_primary_10_1016_j_patrec_2020_06_017 crossref_primary_10_1016_j_media_2021_102079 crossref_primary_10_1016_j_ejrad_2021_109915 crossref_primary_10_1155_2021_1348922 crossref_primary_10_1016_j_clon_2018_08_009 crossref_primary_10_1038_s41598_023_33288_8 crossref_primary_10_1088_1361_6560_ab0b66 crossref_primary_10_1186_s12885_024_11844_3 crossref_primary_10_3390_app11083508 crossref_primary_10_1016_j_eswa_2022_117421 crossref_primary_10_1088_2399_6528_ac24d8 crossref_primary_10_3389_fphy_2023_1088899 crossref_primary_10_1007_s13042_023_01871_0 crossref_primary_10_3389_fonc_2019_01333 crossref_primary_10_1002_jmri_28573 crossref_primary_10_1016_j_ejca_2023_113504 crossref_primary_10_56809_icujtas_1562430 crossref_primary_10_1007_s12194_019_00520_y crossref_primary_10_2478_pjmpe_2025_0003 crossref_primary_10_1002_hbm_25039 crossref_primary_10_3390_app131810521 crossref_primary_10_1186_s13244_024_01627_6 crossref_primary_10_1002_jmri_26271 crossref_primary_10_1002_mrm_27948 crossref_primary_10_3389_fonc_2024_1429837 crossref_primary_10_1016_j_rpor_2019_02_001 crossref_primary_10_1186_s13244_024_01820_7 crossref_primary_10_3389_fonc_2022_822687 crossref_primary_10_3390_app9122521 crossref_primary_10_1016_j_ijrobp_2018_10_002 crossref_primary_10_1016_j_radonc_2020_09_029 crossref_primary_10_1186_s40658_022_00486_8 crossref_primary_10_1109_TRPMS_2020_3006844 crossref_primary_10_3390_s19102361 crossref_primary_10_1016_j_compmedimag_2022_102150 crossref_primary_10_1186_s13014_023_02384_4 crossref_primary_10_1016_j_canrad_2018_09_005 crossref_primary_10_1002_mrm_28826 crossref_primary_10_1109_TMI_2020_2987026 crossref_primary_10_1007_s42835_023_01602_z crossref_primary_10_1016_j_compbiomed_2024_108870 crossref_primary_10_1007_s11548_019_02040_x crossref_primary_10_1002_acm2_12654 crossref_primary_10_1016_j_ymeth_2020_06_008 crossref_primary_10_1088_1361_6560_ab8cd2 crossref_primary_10_1007_s11263_020_01321_2 crossref_primary_10_1088_1361_6560_ab28a1 crossref_primary_10_1093_noajnl_vdaf001 crossref_primary_10_1016_j_phro_2025_100806 crossref_primary_10_2478_pjmpe_2025_0025 crossref_primary_10_1016_j_ijrobp_2018_05_058 crossref_primary_10_1088_1361_6560_ab0095 crossref_primary_10_1080_0284186X_2019_1684558 crossref_primary_10_3390_diagnostics11111964 crossref_primary_10_1002_mp_18038 crossref_primary_10_1109_ACCESS_2024_3460077 crossref_primary_10_1002_mp_12602 crossref_primary_10_1016_j_phro_2023_100464 crossref_primary_10_1002_mp_12600 crossref_primary_10_1088_1361_6560_abb0f8 crossref_primary_10_1109_TMI_2021_3059265 crossref_primary_10_1259_bjro_20230030 crossref_primary_10_3390_app14125144 crossref_primary_10_1109_ACCESS_2020_3048315 crossref_primary_10_1259_bjr_20190067 crossref_primary_10_1053_j_semnuclmed_2025_05_005 crossref_primary_10_1080_0284186X_2022_2140017 crossref_primary_10_3389_fnins_2018_01005 crossref_primary_10_1038_s41598_022_18256_y crossref_primary_10_3390_app132011283 crossref_primary_10_1109_TAP_2019_2948565 crossref_primary_10_7555_JBR_36_20220037 crossref_primary_10_1016_j_ejmp_2021_09_006 crossref_primary_10_1016_j_ins_2020_06_072 crossref_primary_10_14338_IJPT_19_00062_1 crossref_primary_10_1002_mp_16087 crossref_primary_10_1007_s11604_018_0793_5 crossref_primary_10_1016_j_ynirp_2024_100195 crossref_primary_10_1016_j_compmedimag_2023_102300 crossref_primary_10_1097_RCT_0000000000001247 crossref_primary_10_3390_bioengineering9080368 crossref_primary_10_1002_acm2_13644 crossref_primary_10_1016_j_phro_2024_100658 crossref_primary_10_3389_fbioe_2024_1297675 crossref_primary_10_1002_acm2_12554 crossref_primary_10_1186_s41824_020_00086_8 crossref_primary_10_1002_acm2_13530 crossref_primary_10_1002_mp_13925 crossref_primary_10_1016_j_compbiomed_2021_104763 crossref_primary_10_1002_mp_13927 crossref_primary_10_1109_TVCG_2022_3219248 crossref_primary_10_1038_s41598_022_12646_y crossref_primary_10_1016_j_phro_2025_100708 crossref_primary_10_1080_0284186X_2019_1630754 |
| Cites_doi | 10.1109/TSMC.1979.4310076 10.1118/1.4957412 10.1118/1.4842575 10.1088/0031-9155/59/23/7501 10.1016/j.ijrobp.2015.08.045 10.1088/0031-9155/61/17/6531 10.1088/0031-9155/59/21/6595 10.1145/2647868.2654889 10.1088/0031-9155/60/2/825 10.1118/1.4758068 10.1088/0031-9155/60/22/R323 10.1016/j.radonc.2013.10.034 10.1118/1.4914158 10.1118/1.4873315 10.1118/1.4926756 10.1118/1.3377774 10.1118/1.4931417 10.1118/1.1569270 10.1016/j.neuroimage.2014.12.061 10.1109/TMI.2015.2482920 10.2967/jnumed.111.092577 10.3109/0284186X.2012.692883 10.2967/jnumed.107.049353 10.1016/j.ijrobp.2015.07.001 10.1186/1748-717X-8-51 10.1109/42.668698 10.1118/1.3578928 10.1120/jacmp.v17i3.6065 10.2967/jnumed.109.065425 10.2967/jnumed.115.156299 10.1118/1.4958676 10.1148/radiol.14140810 10.1109/5.726791 10.1007/s00259-008-1007-7 10.2967/jnumed.108.054726 10.1016/j.ijrobp.2011.11.056 10.1038/nature14539 10.2967/jnumed.109.069112 10.3109/0284186X.2013.819119 10.1016/j.media.2016.07.007 10.1088/0031-9155/58/23/8419 10.1097/RLI.0b013e318283292f |
| ContentType | Journal Article |
| Copyright | 2017 American Association of Physicists in Medicine 2017 American Association of Physicists in Medicine. |
| Copyright_xml | – notice: 2017 American Association of Physicists in Medicine – notice: 2017 American Association of Physicists in Medicine. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1002/mp.12155 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 2473-4209 |
| EndPage | 1419 |
| ExternalDocumentID | 28192624 10_1002_mp_12155 MP12155 |
| Genre | article Journal Article |
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHQN AAIPD AAMMB AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABJNI ABLJU ABQWH ABUFD ABXGK ACAHQ ACBEA ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AGHNM AGXDD AGYGG AHBTC AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LH4 LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR ZGI ZVN ZXP ZY4 ZZTAW AAYXX CITATION AAHHS ABFTF ABTAH ACCFJ AEEZP AEQDE AIWBW AJBDE ALUQN CGR CUY CVF ECM EIF NPM XJT 7X8 |
| ID | FETCH-LOGICAL-c3875-f3480ef47c80ca6fca53161b5e1fea0111b333a3021a73ccd1571a4763be849d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 553 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400572700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-2405 2473-4209 |
| IngestDate | Sun Nov 09 10:11:59 EST 2025 Thu Apr 03 07:01:20 EDT 2025 Sat Nov 29 06:02:31 EST 2025 Tue Nov 18 22:03:38 EST 2025 Tue Nov 11 03:10:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | deep learning synthetic CT MRI convolutional neural network radiation therapy |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions http://doi.wiley.com/10.1002/tdm_license_1 2017 American Association of Physicists in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3875-f3480ef47c80ca6fca53161b5e1fea0111b333a3021a73ccd1571a4763be849d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 28192624 |
| PQID | 1868395434 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1868395434 pubmed_primary_28192624 crossref_primary_10_1002_mp_12155 crossref_citationtrail_10_1002_mp_12155 wiley_primary_10_1002_mp_12155_MP12155 |
| PublicationCentury | 2000 |
| PublicationDate | April 2017 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical physics (Lancaster) |
| PublicationTitleAlternate | Med Phys |
| PublicationYear | 2017 |
| References | 2012; 83 2015; 57 2014; 1409 2013; 48 2010; 37 2015; 93 2013; 109 2015; 521 2015; 1511 2015; 108 2012; 39 2014; 41 1995; 2 2011; 38 2013; 8 2016; 17 2003; 30 1998; 86 2012; 53 2016; 35 2015; 9350 2015; 9351 1998; 1524 2009; 36 1998; 17 2013; 58 2015; 60 2009; 50 2015; 42 2015; 275 2008; 49 2017; 35 2013; 52 2016; 43 2014; 8689 2014; 59 2016; 61 2015 2014 2012; 25 2014; 1412 2015; 9349 2010; 51 1979; 9 Johansson (10.1002/mp.12155-BIB0016|mp12155-cit-0016) 2011; 38 Arabi (10.1002/mp.12155-BIB0022|mp12155-cit-0022) 2016; 61 Chen (10.1002/mp.12155-BIB0024|mp12155-cit-0024) 2016; 17 Martinez-Möller (10.1002/mp.12155-BIB0007|mp12155-cit-0007) 2009; 50 Dowling (10.1002/mp.12155-BIB0026|mp12155-cit-0026) 2015; 93 Krizhevsky (10.1002/mp.12155-BIB0036|mp12155-cit-0036) 2012; 25 Zeiler (10.1002/mp.12155-BIB0050|mp12155-cit-0050) 2014; 8689 LeCun (10.1002/mp.12155-BIB0052|mp12155-cit-0052) 1998; 1524 Hsu (10.1002/mp.12155-BIB0008|mp12155-cit-0008) 2013; 58 Burgos (10.1002/mp.12155-BIB0023|mp12155-cit-0023) 2015; 9350 Hofmann (10.1002/mp.12155-BIB0003|mp12155-cit-0003) 2009; 36 Kooi (10.1002/mp.12155-BIB0041|mp12155-cit-0041) 2017; 35 Zheng (10.1002/mp.12155-BIB0011|mp12155-cit-0011) 2015; 93 Sjölund (10.1002/mp.12155-BIB0029|mp12155-cit-0029) 2015; 60 LeCun (10.1002/mp.12155-BIB0037|mp12155-cit-0037) 1998; 86 Schmidt (10.1002/mp.12155-BIB0001|mp12155-cit-0001) 2015; 60 Schreibmann (10.1002/mp.12155-BIB0027|mp12155-cit-0027) 2010; 37 Torrado-Carvajal (10.1002/mp.12155-BIB0030|mp12155-cit-0030) 2015; 57 Ronneberger (10.1002/mp.12155-BIB0039|mp12155-cit-0039) 2015; 9351 Kingma (10.1002/mp.12155-BIB0053|mp12155-cit-0053) 2014 Andreasen (10.1002/mp.12155-BIB0021|mp12155-cit-0021) 2015; 42 Sled (10.1002/mp.12155-BIB0043|mp12155-cit-0043) 1998; 17 Zaidi (10.1002/mp.12155-BIB0010|mp12155-cit-0010) 2003; 30 Otsu (10.1002/mp.12155-BIB0045|mp12155-cit-0045) 1979; 9 Edmund (10.1002/mp.12155-BIB0012|mp12155-cit-0012) 2014; 59 Gudur (10.1002/mp.12155-BIB0034|mp12155-cit-0034) 2014; 59 Su (10.1002/mp.12155-BIB0009|mp12155-cit-0009) 2015; 42 Navalpakkam (10.1002/mp.12155-BIB0017|mp12155-cit-0017) 2013; 48 Siversson (10.1002/mp.12155-BIB0028|mp12155-cit-0028) 2015; 42 Jia (10.1002/mp.12155-BIB0051|mp12155-cit-0051) 2014 10.1002/mp.12155-BIB0054|mp12155-cit-0054 Devic (10.1002/mp.12155-BIB0002|mp12155-cit-0002) 2012; 39 Catana (10.1002/mp.12155-BIB0005|mp12155-cit-0005) 2010; 51 Noh (10.1002/mp.12155-BIB0047|mp12155-cit-0047) 2015 Nguyen (10.1002/mp.12155-BIB0042|mp12155-cit-0042) 2015; 9349 Lecun (10.1002/mp.12155-BIB0035|mp12155-cit-0035) 2015; 521 Hofmann (10.1002/mp.12155-BIB0033|mp12155-cit-0033) 2008; 49 Uh (10.1002/mp.12155-BIB0031|mp12155-cit-0031) 2014; 41 Rank (10.1002/mp.12155-BIB0018|mp12155-cit-0018) 2013; 109 Johansson (10.1002/mp.12155-BIB0015|mp12155-cit-0015) 2013; 52 Roth (10.1002/mp.12155-BIB0040|mp12155-cit-0040) 2016; 35 Chen (10.1002/mp.12155-BIB0032|mp12155-cit-0032) 2015; 275 Zhang (10.1002/mp.12155-BIB0038|mp12155-cit-0038) 2015; 108 Berker (10.1002/mp.12155-BIB0004|mp12155-cit-0004) 2012; 53 Kapanen (10.1002/mp.12155-BIB0013|mp12155-cit-0013) 2013; 52 Dowling (10.1002/mp.12155-BIB0025|mp12155-cit-0025) 2012; 83 Andreasen (10.1002/mp.12155-BIB0020|mp12155-cit-0020) 2016; 43 Keereman (10.1002/mp.12155-BIB0006|mp12155-cit-0006) 2010; 51 Korhonen (10.1002/mp.12155-BIB0014|mp12155-cit-0014) 2014; 41 Rank (10.1002/mp.12155-BIB0019|mp12155-cit-0019) 2013; 8 Simonyan (10.1002/mp.12155-BIB0049|mp12155-cit-0049) 2014; 1409 Han (10.1002/mp.12155-BIB0055|mp12155-cit-0055) 2016; 43 Chen (10.1002/mp.12155-BIB0046|mp12155-cit-0046) 2014; 1412 Cox (10.1002/mp.12155-BIB0044|mp12155-cit-0044) 1995; 2 Badrinarayanan (10.1002/mp.12155-BIB0048|mp12155-cit-0048) 2015; 1511 |
| References_xml | – volume: 59 start-page: 7501 year: 2014 end-page: 7519 article-title: A voxel‐based investigation for MRI‐only radiotherapy of the brain using ultra short echo times publication-title: Phys Med Biol – start-page: 1520 year: 2015 end-page: 1528 article-title: Learning deconvolution network for semantic segmentation publication-title: Proc. Int. Conf. Comp. Vis – volume: 52 start-page: 612 year: 2013 end-page: 618 article-title: T1/T2*‐weighted MRI provides clinically relevant pseudo‐CT density data for the pelvic bones in MRI‐only based radiotherapy treatment planning publication-title: Acta Oncol – volume: 60 start-page: 825 year: 2015 end-page: 839 article-title: Generating patient specific pseudo‐CT of the head from MR using atlas‐based regression publication-title: Phys Med Biol – volume: 9349 start-page: 677 year: 2015 end-page: 684 article-title: “Cross‐domain synthesis of medical images using efficient location‐sensitive deep network”, MICCAI 2015 publication-title: Part I, LNCS – volume: 1524 start-page: 9 year: 1998 end-page: 48 article-title: Efficient backprop publication-title: Neural Networks: tricks of the trade Springer – volume: 36 start-page: 93 year: 2009 end-page: 104 article-title: Towards quantitative PET/MRI: a review of MR‐based attenuation correction techniques publication-title: Eur J Nucl Med Mol Imaging – volume: 9351 start-page: 234 year: 2015 end-page: 241 article-title: “U‐Net: convolutional networks for biomedical image segmentation”, MICCAI 2015 publication-title: Part III, LNCS – volume: 61 start-page: 6531 year: 2016 end-page: 6552 article-title: Atlas‐guided generation of pseudo‐CT images for MRI‐only and hybrid PET–MRI‐guided radiotherapy treatment planning publication-title: Phys Med Biol – volume: 17 start-page: 1 year: 2016 end-page: 10 article-title: MR image‐based synthetic CT for IMRT prostate treatment planning and CBCT image‐guided localization publication-title: J Appl Clin Med Phys – volume: 57 start-page: 136 year: 2015 end-page: 144 article-title: Fast patch‐based pseudo‐CT synthesis from T1‐weighted MR images for PET/MR attenuation correction in brain studies publication-title: J Nucl Med – volume: 52 start-page: 1369 year: 2013 end-page: 1373 article-title: Improved quality of computed tomography substitute derived from magnetic resonance (MR) data by incorporation of spatial information–potential application for MR‐only radiotherapy and attenuation correction in positron emission tomography publication-title: Acta Oncol – volume: 1409 start-page: 1 year: 2014 end-page: 14 article-title: “Very deep convolutional networks for large‐scale image recognition”, arXiv publication-title: preprint – volume: 1412 start-page: 1 year: 2014 end-page: 14 article-title: “Semantic image segmentation with deep convolutional nets and fully connected CRFs”, arXiv publication-title: preprint – volume: 42 start-page: 1596 year: 2015 end-page: 1605 article-title: J.a.L. Andersen, J.M. Edmund, “Patch‐based generation of a pseudo CT from conventional MRI sequences for MRI‐only radiotherapy of the brain” publication-title: Med Phys – volume: 60 start-page: 323 year: 2015 end-page: 361 article-title: Radiotherapy planning using MRI publication-title: Phys Med Biol – volume: 49 start-page: 1875 year: 2008 end-page: 1883 article-title: MRI‐based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration publication-title: J Nucl Med – volume: 58 start-page: 8419 year: 2013 end-page: 8435 article-title: Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy publication-title: Phys Med Biol – volume: 53 start-page: 796 year: 2012 end-page: 804 article-title: MRI‐based attenuation correction for hybrid PET/MRI systems: a 4‐class tissue segmentation technique using a combined ultrashort‐echo‐time/Dixon MRI sequence publication-title: J Nucl Med – volume: 109 start-page: 414 year: 2013 end-page: 418 article-title: MRI‐based simulation of treatment plans for ion radiotherapy in the brain region publication-title: Radiother Oncol – volume: 42 start-page: 4974 year: 2015 end-page: 4986 article-title: Generation of brain pseudo‐CTs using an undersampled, single‐acquisition UTE‐mDixon pulse sequence and unsupervised clustering publication-title: Med Phys – volume: 8 start-page: 51 year: 2013 article-title: MRI‐based treatment plan simulation and adaptation for ion radiotherapy using a classification‐based approach publication-title: Radiat Oncol – volume: 51 start-page: 812 year: 2010 end-page: 818 article-title: MRI‐based attenuation correction for PET/MRI using ultrashort echo time sequences publication-title: J Nucl Med – volume: 43 start-page: 4742 year: 2016 end-page: 4752 article-title: A patch‐based pseudo‐CT approach for MRI‐only radiotherapy in the pelvis publication-title: Med Phys – volume: 108 start-page: 214 year: 2015 end-page: 224 article-title: Deep convolutional neural networks for multi‐modality isointense infant brain image segmentation publication-title: NeuroImage – volume: 37 start-page: 2101 year: 2010 end-page: 2109 article-title: J.a. Nye, D.M. Schuster, D.R. Martin, J. Votaw, T. Fox, “MR‐based attenuation correction for hybrid PET‐MR brain imaging systems using deformable image registration” publication-title: Med Phys – year: 2015 – volume: 9 start-page: 62 year: 1979 end-page: 66 article-title: A threshold selection method from gray‐level histograms publication-title: IEEE Trans. Syst. Man Cybern – volume: 83 start-page: 5 year: 2012 end-page: 11 article-title: An atlas‐based electron density mapping method for magnetic resonance imaging (MRI)‐alone treatment planning and adaptive MRI‐based prostate radiation therapy publication-title: Int J Radiat Oncol Biol Phys – start-page: 675 year: 2014 end-page: 678 article-title: Caffe: convolutional architecture for fast feature embedding publication-title: Proc. ACM Int. Conf. Multimedia – volume: 35 start-page: 1170 year: 2016 end-page: 1181 article-title: Improving computer‐aided detection using convolutional neural networks and random view aggregation publication-title: IEEE Trans Med Imaging – volume: 38 start-page: 2708 year: 2011 end-page: 2714 article-title: CT substitute derived from MRI sequences with ultrashort echo time publication-title: Med Phys – volume: 48 start-page: 323 year: 2013 article-title: Magnetic resonance‐based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps publication-title: Invest Radiol – volume: 51 start-page: 1431 year: 2010 end-page: 1438 article-title: Toward implementing an MRI‐based PET attenuation‐correction method for neurologic studies on the MR‐PET brain prototype publication-title: J Nucl Med – volume: 43 start-page: 3733 year: 2016 article-title: An efficient atlas‐based synthetic CT generation method publication-title: Med Phys – volume: 93 start-page: 1144 year: 2015 end-page: 1153 article-title: Automatic substitute CT generation and contouring for MRI‐alone external beam radiation therapy from standard MRI sequences publication-title: Int J Radiat Oncol Biol Phys – start-page: 1 year: 2014 end-page: 13 article-title: Adam: a method for stochastic optimization publication-title: Proc. Int. Conf. Learning Representations – volume: 41 start-page: 051711 year: 2014 article-title: MRI‐based treatment planning with pseudo CT generated through atlas registration publication-title: Med Phys – volume: 25 start-page: 1097 year: 2012 end-page: 1105 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances In Neural Information Processing Systems – volume: 42 start-page: 6090 year: 2015 end-page: 6097 article-title: Technical Note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm publication-title: Med Phys – volume: 9350 start-page: 476 year: 2015 end-page: 484 article-title: “Robust CT synthesis for radiotherapy planning: application to the head and neck region”, MICCAI 2015 publication-title: Part II, LNCS – volume: 275 start-page: 562 year: 2015 end-page: 569 article-title: Probabilistic air segmentation and sparse regression estimated pseudo CT for PET/MR attenuation correction publication-title: Radiology – volume: 521 start-page: 436 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 50 start-page: 520 year: 2009 end-page: 526 article-title: Tissue classification as a potential approach for attenuation correction in whole‐body PET/MRI: evaluation with PET/CT data publication-title: J Nucl Med – volume: 1511 start-page: 1 year: 2015 end-page: 14 article-title: “SegNet: a deep convolutional encoder‐decoder architecture for image segmentation”, arXiv publication-title: preprint – volume: 30 start-page: 937 year: 2003 end-page: 948 article-title: Magnetic resonance imaging‐guided attenuation and scatter corrections in three‐dimensional brain positron emission tomography publication-title: Med Phys – volume: 35 start-page: 303 year: 2017 end-page: 312 article-title: Large scale deep learning for computer aided detection of mammographic lesions publication-title: Med Image Anal – volume: 93 start-page: 497 year: 2015 end-page: 506 article-title: Magnetic Resonance‐Based Automatic Air Segmentation for Generation of Synthetic Computed Tomography Scans in the Head Region publication-title: Int J Radiat Oncol Biol Phys – volume: 86 start-page: 2278 year: 1998 end-page: 2323 article-title: L.o. Bottou, Y. Bengio, P. Haffner, “Gradient‐based learning applied to document recognition” publication-title: Proc IEEE – volume: 8689 start-page: 818 year: 2014 end-page: 833 article-title: “Visualizing and understanding convolutional networks”, ECCV 2014 publication-title: LNCS – volume: 59 start-page: 6595 year: 2014 end-page: 6606 article-title: A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning publication-title: Phys Med Biol – volume: 17 start-page: 87 year: 1998 end-page: 97 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging – volume: 39 start-page: 6701 year: 2012 end-page: 6711 article-title: MRI simulation for radiotherapy treatment planning publication-title: Med Phys – volume: 41 start-page: 011704 year: 2014 article-title: A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI‐based radiotherapy treatment planning of prostate cancer publication-title: Med Phys – volume: 2 start-page: 366 year: 1995 end-page: 369 article-title: Dynamic histogram warping of image pairs for constant image brightness publication-title: Proc. Int. Conf. Image Proc – volume: 9 start-page: 62 year: 1979 ident: 10.1002/mp.12155-BIB0045|mp12155-cit-0045 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern doi: 10.1109/TSMC.1979.4310076 – volume: 43 start-page: 3733 year: 2016 ident: 10.1002/mp.12155-BIB0055|mp12155-cit-0055 article-title: An efficient atlas-based synthetic CT generation method publication-title: Med Phys doi: 10.1118/1.4957412 – volume: 41 start-page: 011704 year: 2014 ident: 10.1002/mp.12155-BIB0014|mp12155-cit-0014 article-title: A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer publication-title: Med Phys doi: 10.1118/1.4842575 – volume: 59 start-page: 7501 year: 2014 ident: 10.1002/mp.12155-BIB0012|mp12155-cit-0012 article-title: A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times publication-title: Phys Med Biol doi: 10.1088/0031-9155/59/23/7501 – volume: 93 start-page: 1144 year: 2015 ident: 10.1002/mp.12155-BIB0026|mp12155-cit-0026 article-title: Automatic substitute CT generation and contouring for MRI-alone external beam radiation therapy from standard MRI sequences publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2015.08.045 – ident: 10.1002/mp.12155-BIB0054|mp12155-cit-0054 – volume: 61 start-page: 6531 year: 2016 ident: 10.1002/mp.12155-BIB0022|mp12155-cit-0022 article-title: Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/17/6531 – volume: 59 start-page: 6595 year: 2014 ident: 10.1002/mp.12155-BIB0034|mp12155-cit-0034 article-title: A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning publication-title: Phys Med Biol doi: 10.1088/0031-9155/59/21/6595 – start-page: 675 year: 2014 ident: 10.1002/mp.12155-BIB0051|mp12155-cit-0051 article-title: Caffe: convolutional architecture for fast feature embedding publication-title: Proc. ACM Int. Conf. Multimedia doi: 10.1145/2647868.2654889 – volume: 60 start-page: 825 year: 2015 ident: 10.1002/mp.12155-BIB0029|mp12155-cit-0029 article-title: Generating patient specific pseudo-CT of the head from MR using atlas-based regression publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/2/825 – volume: 9350 start-page: 476 year: 2015 ident: 10.1002/mp.12155-BIB0023|mp12155-cit-0023 article-title: “Robust CT synthesis for radiotherapy planning: application to the head and neck region”, MICCAI 2015 publication-title: Part II, LNCS – volume: 39 start-page: 6701 year: 2012 ident: 10.1002/mp.12155-BIB0002|mp12155-cit-0002 article-title: MRI simulation for radiotherapy treatment planning publication-title: Med Phys doi: 10.1118/1.4758068 – volume: 60 start-page: 323 year: 2015 ident: 10.1002/mp.12155-BIB0001|mp12155-cit-0001 article-title: Radiotherapy planning using MRI publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/22/R323 – start-page: 1520 year: 2015 ident: 10.1002/mp.12155-BIB0047|mp12155-cit-0047 article-title: Learning deconvolution network for semantic segmentation publication-title: Proc. Int. Conf. Comp. Vis – volume: 109 start-page: 414 year: 2013 ident: 10.1002/mp.12155-BIB0018|mp12155-cit-0018 article-title: MRI-based simulation of treatment plans for ion radiotherapy in the brain region publication-title: Radiother Oncol doi: 10.1016/j.radonc.2013.10.034 – volume: 42 start-page: 1596 year: 2015 ident: 10.1002/mp.12155-BIB0021|mp12155-cit-0021 article-title: J.a.L. Andersen, J.M. Edmund, “Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain” publication-title: Med Phys doi: 10.1118/1.4914158 – volume: 1409 start-page: 1 year: 2014 ident: 10.1002/mp.12155-BIB0049|mp12155-cit-0049 article-title: “Very deep convolutional networks for large-scale image recognition”, arXiv publication-title: preprint – volume: 41 start-page: 051711 year: 2014 ident: 10.1002/mp.12155-BIB0031|mp12155-cit-0031 article-title: MRI-based treatment planning with pseudo CT generated through atlas registration publication-title: Med Phys doi: 10.1118/1.4873315 – volume: 42 start-page: 4974 year: 2015 ident: 10.1002/mp.12155-BIB0009|mp12155-cit-0009 article-title: Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering publication-title: Med Phys doi: 10.1118/1.4926756 – volume: 37 start-page: 2101 year: 2010 ident: 10.1002/mp.12155-BIB0027|mp12155-cit-0027 article-title: J.a. Nye, D.M. Schuster, D.R. Martin, J. Votaw, T. Fox, “MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration” publication-title: Med Phys doi: 10.1118/1.3377774 – volume: 42 start-page: 6090 year: 2015 ident: 10.1002/mp.12155-BIB0028|mp12155-cit-0028 article-title: Technical Note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm publication-title: Med Phys doi: 10.1118/1.4931417 – volume: 1412 start-page: 1 year: 2014 ident: 10.1002/mp.12155-BIB0046|mp12155-cit-0046 article-title: “Semantic image segmentation with deep convolutional nets and fully connected CRFs”, arXiv publication-title: preprint – volume: 30 start-page: 937 year: 2003 ident: 10.1002/mp.12155-BIB0010|mp12155-cit-0010 article-title: Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography publication-title: Med Phys doi: 10.1118/1.1569270 – volume: 25 start-page: 1097 year: 2012 ident: 10.1002/mp.12155-BIB0036|mp12155-cit-0036 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances In Neural Information Processing Systems – volume: 108 start-page: 214 year: 2015 ident: 10.1002/mp.12155-BIB0038|mp12155-cit-0038 article-title: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.061 – volume: 9351 start-page: 234 year: 2015 ident: 10.1002/mp.12155-BIB0039|mp12155-cit-0039 article-title: “U-Net: convolutional networks for biomedical image segmentation”, MICCAI 2015 publication-title: Part III, LNCS – volume: 35 start-page: 1170 year: 2016 ident: 10.1002/mp.12155-BIB0040|mp12155-cit-0040 article-title: Improving computer-aided detection using convolutional neural networks and random view aggregation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2482920 – volume: 9349 start-page: 677 year: 2015 ident: 10.1002/mp.12155-BIB0042|mp12155-cit-0042 article-title: “Cross-domain synthesis of medical images using efficient location-sensitive deep network”, MICCAI 2015 publication-title: Part I, LNCS – volume: 53 start-page: 796 year: 2012 ident: 10.1002/mp.12155-BIB0004|mp12155-cit-0004 article-title: MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence publication-title: J Nucl Med doi: 10.2967/jnumed.111.092577 – volume: 52 start-page: 612 year: 2013 ident: 10.1002/mp.12155-BIB0013|mp12155-cit-0013 article-title: T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning publication-title: Acta Oncol doi: 10.3109/0284186X.2012.692883 – volume: 49 start-page: 1875 year: 2008 ident: 10.1002/mp.12155-BIB0033|mp12155-cit-0033 article-title: MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration publication-title: J Nucl Med doi: 10.2967/jnumed.107.049353 – volume: 93 start-page: 497 year: 2015 ident: 10.1002/mp.12155-BIB0011|mp12155-cit-0011 article-title: Magnetic Resonance-Based Automatic Air Segmentation for Generation of Synthetic Computed Tomography Scans in the Head Region publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2015.07.001 – volume: 8 start-page: 51 year: 2013 ident: 10.1002/mp.12155-BIB0019|mp12155-cit-0019 article-title: MRI-based treatment plan simulation and adaptation for ion radiotherapy using a classification-based approach publication-title: Radiat Oncol doi: 10.1186/1748-717X-8-51 – volume: 17 start-page: 87 year: 1998 ident: 10.1002/mp.12155-BIB0043|mp12155-cit-0043 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging doi: 10.1109/42.668698 – volume: 38 start-page: 2708 year: 2011 ident: 10.1002/mp.12155-BIB0016|mp12155-cit-0016 article-title: CT substitute derived from MRI sequences with ultrashort echo time publication-title: Med Phys doi: 10.1118/1.3578928 – volume: 17 start-page: 1 year: 2016 ident: 10.1002/mp.12155-BIB0024|mp12155-cit-0024 article-title: MR image-based synthetic CT for IMRT prostate treatment planning and CBCT image-guided localization publication-title: J Appl Clin Med Phys doi: 10.1120/jacmp.v17i3.6065 – volume: 51 start-page: 812 year: 2010 ident: 10.1002/mp.12155-BIB0006|mp12155-cit-0006 article-title: MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences publication-title: J Nucl Med doi: 10.2967/jnumed.109.065425 – volume: 57 start-page: 136 year: 2015 ident: 10.1002/mp.12155-BIB0030|mp12155-cit-0030 article-title: Fast patch-based pseudo-CT synthesis from T1-weighted MR images for PET/MR attenuation correction in brain studies publication-title: J Nucl Med doi: 10.2967/jnumed.115.156299 – start-page: 1 year: 2014 ident: 10.1002/mp.12155-BIB0053|mp12155-cit-0053 article-title: Adam: a method for stochastic optimization publication-title: Proc. Int. Conf. Learning Representations – volume: 43 start-page: 4742 year: 2016 ident: 10.1002/mp.12155-BIB0020|mp12155-cit-0020 article-title: A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis publication-title: Med Phys doi: 10.1118/1.4958676 – volume: 1524 start-page: 9 year: 1998 ident: 10.1002/mp.12155-BIB0052|mp12155-cit-0052 article-title: Efficient backprop publication-title: Neural Networks: tricks of the trade Springer – volume: 275 start-page: 562 year: 2015 ident: 10.1002/mp.12155-BIB0032|mp12155-cit-0032 article-title: Probabilistic air segmentation and sparse regression estimated pseudo CT for PET/MR attenuation correction publication-title: Radiology doi: 10.1148/radiol.14140810 – volume: 8689 start-page: 818 year: 2014 ident: 10.1002/mp.12155-BIB0050|mp12155-cit-0050 article-title: “Visualizing and understanding convolutional networks”, ECCV 2014 publication-title: LNCS – volume: 86 start-page: 2278 year: 1998 ident: 10.1002/mp.12155-BIB0037|mp12155-cit-0037 article-title: L.o. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning applied to document recognition” publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 1511 start-page: 1 year: 2015 ident: 10.1002/mp.12155-BIB0048|mp12155-cit-0048 article-title: “SegNet: a deep convolutional encoder-decoder architecture for image segmentation”, arXiv publication-title: preprint – volume: 36 start-page: 93 year: 2009 ident: 10.1002/mp.12155-BIB0003|mp12155-cit-0003 article-title: Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-008-1007-7 – volume: 50 start-page: 520 year: 2009 ident: 10.1002/mp.12155-BIB0007|mp12155-cit-0007 article-title: Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data publication-title: J Nucl Med doi: 10.2967/jnumed.108.054726 – volume: 2 start-page: 366 year: 1995 ident: 10.1002/mp.12155-BIB0044|mp12155-cit-0044 article-title: Dynamic histogram warping of image pairs for constant image brightness publication-title: Proc. Int. Conf. Image Proc – volume: 83 start-page: 5 year: 2012 ident: 10.1002/mp.12155-BIB0025|mp12155-cit-0025 article-title: An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2011.11.056 – volume: 521 start-page: 436 year: 2015 ident: 10.1002/mp.12155-BIB0035|mp12155-cit-0035 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 51 start-page: 1431 year: 2010 ident: 10.1002/mp.12155-BIB0005|mp12155-cit-0005 article-title: Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype publication-title: J Nucl Med doi: 10.2967/jnumed.109.069112 – volume: 52 start-page: 1369 year: 2013 ident: 10.1002/mp.12155-BIB0015|mp12155-cit-0015 article-title: Improved quality of computed tomography substitute derived from magnetic resonance (MR) data by incorporation of spatial information-potential application for MR-only radiotherapy and attenuation correction in positron emission tomography publication-title: Acta Oncol doi: 10.3109/0284186X.2013.819119 – volume: 35 start-page: 303 year: 2017 ident: 10.1002/mp.12155-BIB0041|mp12155-cit-0041 article-title: Large scale deep learning for computer aided detection of mammographic lesions publication-title: Med Image Anal doi: 10.1016/j.media.2016.07.007 – volume: 58 start-page: 8419 year: 2013 ident: 10.1002/mp.12155-BIB0008|mp12155-cit-0008 article-title: Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy publication-title: Phys Med Biol doi: 10.1088/0031-9155/58/23/8419 – volume: 48 start-page: 323 year: 2013 ident: 10.1002/mp.12155-BIB0017|mp12155-cit-0017 article-title: Magnetic resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps publication-title: Invest Radiol doi: 10.1097/RLI.0b013e318283292f |
| SSID | ssj0006350 |
| Score | 2.6769788 |
| Snippet | Purpose
Interests have been rapidly growing in the field of radiotherapy to replace CT with magnetic resonance imaging (MRI), due to superior soft tissue... Interests have been rapidly growing in the field of radiotherapy to replace CT with magnetic resonance imaging (MRI), due to superior soft tissue contrast... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1408 |
| SubjectTerms | Breast Neoplasms - diagnostic imaging convolutional neural network deep learning Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional Magnetic Resonance Imaging MRI Neural Networks (Computer) radiation therapy synthetic CT Time Factors Tomography, X-Ray Computed |
| Title | MR‐based synthetic CT generation using a deep convolutional neural network method |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.12155 https://www.ncbi.nlm.nih.gov/pubmed/28192624 https://www.proquest.com/docview/1868395434 |
| Volume | 44 |
| WOSCitedRecordID | wos000400572700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2473-4209 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5sq-LFR33VR4kgelpsHuvuHkUtHmwRtdDbkmSzRdBt6argzZ_gb_SXOMluK6KC4CmHTbJLZibzZWfyDcA-1SxVnPleIn3uCZGizRmpPJMaFlGhaaiVKzYRdLthvx9dlVmV9i5MwQ8x_eFmLcPt19bApcqPPklDH0aOGcGvQI2h2vpVqJ1dt3uX030YXWlxASUSNobgT6hnW-xoMvarM_qGML8CVudx2kv_-dZlWCxxJjkpFGMFZkxWh_lOGUmvw5xL_dT5Ktx0rt9f36w3S0j-kiEgxCHk9JYMHCO1FRyx2fEDIklizIjYRPVSYfENlhDTNS6dnBQVqdeg1z6_Pb3wylILnuZ4YvFSLsKWSUWgw5aWx6lGySEWVL6hqZG2Hr3inEuOiEAGXOuE-gGVAjcnZUIRJXwdqtkwM5tARIKnbSppqHBSIRFBMhlSiSfRSARBpBpwOFnzWJc85LYcxn1cMCiz-GEUu9VqwN6056jg3vipz0RsMRqGjXbIzAyf8tjWAeCRvTnbgI1CntNZbPSQHTN8cuDE9uv0cefKtVt_7bgNC8w6fpfbswPVx_GT2YVZ_fx4l4-bUAn6YbNU1A-LmekC |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6q9XXx_ajPFURPod1HTIInUUvFtohW8BY2m40ImpZWBW_-BH-jv8TZTVIpKgiecsjuJuzM7Hy7M_sNwB5VLIk4c51YutwRIkGb0zJydKJZQIWivopssQmv3fZvb4PLEhwVd2EyfojhgZuxDLteGwM3B9LVL9bQx56lRnDHoCxQi1C9y6dX9ZvmcCFGX5rdQAmECSK4BfdsjVWLvqPe6BvEHEWs1uXU5_71s_MwmyNNcpypxgKUdLoIU608lr4Ikzb5Uw2W4Lp19fH2bvxZTAavKUJC7EJOOuTOclIb0RGTH39HJIm17hGTqp6rLH7BUGLah00oJ1lN6mW4qZ91ThpOXmzBURz3LE7ChV_TifCUX1PyMFEoO0SDkatpoqWpSB9xziVHTCA9rlRMXY9KgctTpH0RxHwFxtNuqteAiBj321RSP8JBhUQMyaRPJe5FA-F5QVSBg2LSQ5UzkZuCGA9hxqHMwsdeaGerArvDlr2MfeOnNoXcQjQNE--Qqe4-D0JTCYAH5u5sBVYzgQ5HMfFDdsjwzb6V26_Dh61L-1z_a8MdmG50Ws2wed6-2IAZZmCAzfTZhPGn_rPeggn18nQ_6G_n-voJB1vsCg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7opuKL98u8RhB9KlsutS0-yXQobmPoBr6VNE2HoF3ZRfDNn-Bv9JeYpBcZKgg-5aFJWnJycr70nPMdgGMsSBRQYlsht6nFWKR0TvLAkpEkHmYCuyIwxSacdtt9ePA6M3Ce58Kk_BDFDzetGea81goukzCqfrGGPieGGsGehTLTNWRKUL68a_SaxUGsbGmageIx7USwc-7ZGqnmY6et0TeIOY1YjclpLP_rY1dgKUOa6CLdGqswI-M1WGhlvvQ1mDfBn2K0Dvetu4-3d23PQjR6jRUkVENQvYv6hpNaiw7p-Pg-4iiUMkE6VD3bsuoNmhLTNCagHKU1qTeg17jq1q-trNiCJai6s1gRZW5NRswRbk3ws0go2Sk0GNgSR5LrivQBpZRThQm4Q4UIse1gztTxFEiXeSHdhFI8iOU2IBaq-zbm2A3UpIwrDEm4i7m6i3rMcbygAqf5ovsiYyLXBTGe_JRDmfjPiW9WqwJHRc8kZd_4qU8uN1-phvZ38FgOJiNfVwKgns6drcBWKtBiFu0_JGdEPTkxcvt1er_VMe3OXzsewkLnsuE3b9q3u7BINAowgT57UBoPJ3If5sTL-HE0PMi26yevkuuF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MR-based+synthetic+CT+generation+using+a+deep+convolutional+neural+network+method&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Han%2C+Xiao&rft.date=2017-04-01&rft.eissn=2473-4209&rft.volume=44&rft.issue=4&rft.spage=1408&rft_id=info:doi/10.1002%2Fmp.12155&rft_id=info%3Apmid%2F28192624&rft.externalDocID=28192624 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |