Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere

We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r ∈ N of the hierarchy is defined as the minimal...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 193; číslo 2; s. 665 - 685
Hlavní autori: de Klerk, Etienne, Laurent, Monique
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2022
Springer
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r ∈ N of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2 r with respect to the surface measure. We show that the rate of convergence is O ( 1 / r 2 ) and we give a class of polynomials of any positive degree for which this rate is tight. In addition, we explore the implications for the related rate of convergence for the generalized problem of moments on the sphere.
AbstractList We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level $$r \in {\mathbb {N}}$$ r ∈ N of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2 r with respect to the surface measure. We show that the rate of convergence is $$O(1/r^2)$$ O ( 1 / r 2 ) and we give a class of polynomials of any positive degree for which this rate is tight. In addition, we explore the implications for the related rate of convergence for the generalized problem of moments on the sphere.
We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r∈N of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2r with respect to the surface measure. We show that the rate of convergence is O(1/r2) and we give a class of polynomials of any positive degree for which this rate is tight. In addition, we explore the implications for the related rate of convergence for the generalized problem of moments on the sphere.
We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r ∈ N of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2 r with respect to the surface measure. We show that the rate of convergence is O ( 1 / r 2 ) and we give a class of polynomials of any positive degree for which this rate is tight. In addition, we explore the implications for the related rate of convergence for the generalized problem of moments on the sphere.
We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864-885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level [Formula omitted] of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2r with respect to the surface measure. We show that the rate of convergence is [Formula omitted] and we give a class of polynomials of any positive degree for which this rate is tight. In addition, we explore the implications for the related rate of convergence for the generalized problem of moments on the sphere.
Audience Academic
Author Laurent, Monique
de Klerk, Etienne
Author_xml – sequence: 1
  givenname: Etienne
  orcidid: 0000-0003-3377-0063
  surname: de Klerk
  fullname: de Klerk, Etienne
  email: E.deKlerk@uvt.nl
  organization: Tilburg University
– sequence: 2
  givenname: Monique
  surname: Laurent
  fullname: Laurent, Monique
  organization: Tilburg University, Centrum Wiskunde & Informatica (CWI)
BookMark eNp9kU9r3DAQxUVJoZu0X6AnQc9OR5b1x8ewtE1hIZf0LGR5tKtgS67kLWw_fZW4UOghaIRgeL9Bb941uYopIiEfGdwyAPW5MGCgGmB9vZ0UDXtDdqzjsulkJ6_IDqAVjZAM3pHrUp4AgHGtd8TvU_yF-YjRIbXRTpcSCk2eWnqwpWDOSE8Bs83udHnun5cFMx3SOY6F-pTpkqZLTHOwE51DDHP4bdeQIq21npCW5YQZ35O33k4FP_x9b8iPr18e9_fN4eHb9_3doXFcK9bIdvBOuqFHZpUQEpUa9VB_DRy5Fh0Cas9hHHGQSgwKxcgsRzVCz6W2Pb8hn7a5S04_z1hW85TOudoqpq1Ey0WveVXdbqqjndCE6NOaratnxDm4ulkfav9OgVS9FrKrgN4Al1MpGb1xYX2xWcEwGQbmOQazxWBqDOYlBsMq2v6HLjnMNl9eh_gGlSqOR8z_bLxC_QG_-50I
CitedBy_id crossref_primary_10_1007_s10107_020_01549_3
crossref_primary_10_1007_s11590_021_01713_4
crossref_primary_10_1007_s00025_022_01659_8
crossref_primary_10_1137_24M164255X
crossref_primary_10_1007_s10107_025_02251_y
crossref_primary_10_1007_s11590_022_01940_3
crossref_primary_10_1007_s10107_020_01586_y
crossref_primary_10_1007_s10107_021_01745_9
crossref_primary_10_1007_s10107_020_01537_7
crossref_primary_10_1007_s10107_022_01877_6
crossref_primary_10_1007_s10107_022_01878_5
crossref_primary_10_1137_21M1458338
crossref_primary_10_1007_s10107_020_01468_3
crossref_primary_10_1007_s11590_021_01811_3
crossref_primary_10_1007_s10957_022_02153_5
crossref_primary_10_1103_PhysRevLett_134_030201
Cites_doi 10.1007/978-1-4614-6660-4
10.1137/100806990
10.1007/s10107-003-0387-5
10.1007/10997703_7
10.1007/s11590-019-01416-x
10.1137/S1052623400366802
10.1016/j.jat.2012.05.014
10.4153/CJM-1965-053-6
10.1017/CBO9780511565717
10.1007/s10107-011-0499-2
10.1287/moor.2017.0906
10.1287/moor.1060.0194
10.1016/j.jat.2009.11.006
10.1007/s10107-016-1043-1
10.1007/s10107-019-01429-5
10.1090/conm/253/03936
10.1007/s10107-020-01468-3
10.1007/978-3-030-21170-7_1
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2022 Springer
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-019-01465-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 685
ExternalDocumentID A706798564
10_1007_s10107_019_01465_1
GrantInformation_xml – fundername: Tilburg University
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3871-62bfc6cb9e1a7556e77d8b61003e3854e0e8f30ddeb675b7e5d1a3e7d09368a93
IEDL.DBID RSV
ISSN 0025-5610
IngestDate Thu Sep 25 00:56:54 EDT 2025
Sat Nov 29 10:12:42 EST 2025
Sat Nov 29 03:34:01 EST 2025
Tue Nov 18 22:03:02 EST 2025
Fri Feb 21 02:49:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Generalized eigenvalue problem
Semidefinite programming
90C30
Polynomial optimization on sphere
90C22
Lasserre hierarchy
90C26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3871-62bfc6cb9e1a7556e77d8b61003e3854e0e8f30ddeb675b7e5d1a3e7d09368a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3377-0063
OpenAccessLink https://link.springer.com/10.1007/s10107-019-01465-1
PQID 2675235983
PQPubID 25307
PageCount 21
ParticipantIDs proquest_journals_2675235983
gale_infotracacademiconefile_A706798564
crossref_citationtrail_10_1007_s10107_019_01465_1
crossref_primary_10_1007_s10107_019_01465_1
springer_journals_10_1007_s10107_019_01465_1
PublicationCentury 2000
PublicationDate 20220600
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References De Klerk, Laurent, Parrilo, Henrion, Garulli (CR10) 2005
CR4
Ahmadi, Olshevsky, Parrilo, Tsitsiklis (CR1) 2013; 137
Lasserre (CR15) 2001; 11
Dai, Xu (CR2) 2013
CR8
CR19
Dimitrov, Nikolov (CR3) 2010; 162
De Klerk, Laurent, Sun (CR11) 2017; 162
Martinez, Piazzon, Sommariva, Vianello (CR17) 2019
Driver, Jordaan (CR5) 2012; 164
CR9
Kalai, Vempala (CR14) 2006; 31
Lasserre (CR16) 2011; 21
CR13
CR12
CR23
Motzkin, Straus (CR18) 1965; 17
CR22
CR20
Parrilo (CR21) 2003; 96
De Klerk, Laurent (CR7) 2018; 43
Dunkl, Xu (CR6) 2001
AA Ahmadi (1465_CR1) 2013; 137
E De Klerk (1465_CR7) 2018; 43
E De Klerk (1465_CR10) 2005
PA Parrilo (1465_CR21) 2003; 96
JB Lasserre (1465_CR15) 2001; 11
1465_CR19
F Dai (1465_CR2) 2013
A Martinez (1465_CR17) 2019
1465_CR4
1465_CR8
1465_CR9
1465_CR20
DK Dimitrov (1465_CR3) 2010; 162
AT Kalai (1465_CR14) 2006; 31
E De Klerk (1465_CR11) 2017; 162
1465_CR13
K Driver (1465_CR5) 2012; 164
CF Dunkl (1465_CR6) 2001
1465_CR22
1465_CR12
JB Lasserre (1465_CR16) 2011; 21
TS Motzkin (1465_CR18) 1965; 17
1465_CR23
References_xml – year: 2013
  ident: CR2
  publication-title: Approximation Theory and Harmonic Analysis on Spheres and Balls
  doi: 10.1007/978-1-4614-6660-4
– ident: CR22
– ident: CR19
– volume: 21
  start-page: 864
  issue: 3
  year: 2011
  end-page: 885
  ident: CR16
  article-title: A new look at nonnegativity on closed sets and polynomial optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/100806990
– ident: CR4
– volume: 96
  start-page: 293
  issue: 2
  year: 2003
  end-page: 320
  ident: CR21
  article-title: Semidefinite programming relaxations for semialgebraic problems
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-003-0387-5
– ident: CR12
– start-page: 121
  year: 2005
  end-page: 133
  ident: CR10
  article-title: On the equivalence of algebraic approaches to the minimization of forms on the simplex
  publication-title: Positive Polynomials in Control
  doi: 10.1007/10997703_7
– year: 2019
  ident: CR17
  article-title: Quadrature-based polynomial optimization
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-019-01416-x
– ident: CR13
– volume: 11
  start-page: 796
  year: 2001
  end-page: 817
  ident: CR15
  article-title: Global optimization with polynomials and the problem of moments
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400366802
– volume: 164
  start-page: 1200
  year: 2012
  end-page: 1204
  ident: CR5
  article-title: Bounds for extreme zeros of some classical orthogonal polynomials
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2012.05.014
– ident: CR9
– volume: 17
  start-page: 533
  year: 1965
  end-page: 540
  ident: CR18
  article-title: Maxima for graphs and a new proof of a theorem of Túran
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1965-053-6
– year: 2001
  ident: CR6
  publication-title: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics
  doi: 10.1017/CBO9780511565717
– ident: CR8
– volume: 137
  start-page: 453
  issue: 1–2
  year: 2013
  end-page: 476
  ident: CR1
  article-title: NP-hardness of deciding convexity of quartic polynomials and related problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0499-2
– volume: 43
  start-page: 1317
  year: 2018
  end-page: 1325
  ident: CR7
  article-title: Comparison of Lasserre’s measure-based bounds for polynomial optimization to bounds obtained by simulated annealing
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2017.0906
– volume: 31
  start-page: 253
  issue: 2
  year: 2006
  end-page: 266
  ident: CR14
  article-title: Simulated annealing for convex optimization
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1060.0194
– ident: CR23
– ident: CR20
– volume: 162
  start-page: 1793
  year: 2010
  end-page: 1804
  ident: CR3
  article-title: Sharp bounds for the extreme zeros of classical orthogonal polynomials
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2009.11.006
– volume: 162
  start-page: 363
  issue: 1
  year: 2017
  end-page: 392
  ident: CR11
  article-title: Convergence analysis for Lasserre’s measure-based hierarchy of upper bounds for polynomial optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1043-1
– volume: 43
  start-page: 1317
  year: 2018
  ident: 1465_CR7
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2017.0906
– ident: 1465_CR12
  doi: 10.1007/s10107-019-01429-5
– volume: 162
  start-page: 363
  issue: 1
  year: 2017
  ident: 1465_CR11
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1043-1
– volume: 31
  start-page: 253
  issue: 2
  year: 2006
  ident: 1465_CR14
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1060.0194
– volume: 11
  start-page: 796
  year: 2001
  ident: 1465_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400366802
– start-page: 121
  volume-title: Positive Polynomials in Control
  year: 2005
  ident: 1465_CR10
  doi: 10.1007/10997703_7
– ident: 1465_CR8
– year: 2019
  ident: 1465_CR17
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-019-01416-x
– ident: 1465_CR4
– ident: 1465_CR13
– volume: 164
  start-page: 1200
  year: 2012
  ident: 1465_CR5
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2012.05.014
– ident: 1465_CR19
– volume: 96
  start-page: 293
  issue: 2
  year: 2003
  ident: 1465_CR21
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-003-0387-5
– ident: 1465_CR22
  doi: 10.1090/conm/253/03936
– volume-title: Approximation Theory and Harmonic Analysis on Spheres and Balls
  year: 2013
  ident: 1465_CR2
  doi: 10.1007/978-1-4614-6660-4
– ident: 1465_CR23
  doi: 10.1007/s10107-020-01468-3
– ident: 1465_CR9
  doi: 10.1007/978-3-030-21170-7_1
– ident: 1465_CR20
– volume: 137
  start-page: 453
  issue: 1–2
  year: 2013
  ident: 1465_CR1
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0499-2
– volume-title: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics
  year: 2001
  ident: 1465_CR6
  doi: 10.1017/CBO9780511565717
– volume: 21
  start-page: 864
  issue: 3
  year: 2011
  ident: 1465_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/100806990
– volume: 17
  start-page: 533
  year: 1965
  ident: 1465_CR18
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1965-053-6
– volume: 162
  start-page: 1793
  year: 2010
  ident: 1465_CR3
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2009.11.006
SSID ssj0001388
Score 2.5508296
Snippet We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for...
We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864-885, 2011), for...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 665
SubjectTerms Analysis
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Convergence
Distribution (Probability theory)
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Polynomials
Probability density functions
Theoretical
Upper bounds
Title Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere
URI https://link.springer.com/article/10.1007/s10107-019-01465-1
https://www.proquest.com/docview/2675235983
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHvTgW6wvchA8aKFt2iQ9LouLBxXxxd5CkqYg6O7S7gr-e2dqur4FhV7aJk06yTySzHxDyIFNuOFW2hCsNxOmhcxCozUwHiuFYVY6mxRNsglxcSH7_fzSB4XVrbd7eyTZSOp3wW5x4yaJ_j0pz0JY88yBupPIjlfXd1P5GzMp20StaB34UJnvv_FBHX0Wyl9ORxul01v-X3dXyJI3MmnndVaskhk3WCOL76AH4e58itdar5Oyi87nTRymo9rjlNBhSTU903hgXzmKSbORK57x-WQ0chU1mJOppmD30tHw4RkjnKFZRCt59OGdFC5oh9aIXuA2yG3v5KZ7GvoMDKFlsJIKeWJKy63JXaxFlnEnRCEN0DRijsksdZGTJYtARBpYeBjhsiLWzIkiyhmXOmebZHYwHLgtQjlLZCmktiK3oBCd5EwwI9M4z6FWEgUkbgdCWQ9PjlkyHtQbsDJSVAFFVUNRFQfkaFpn9ArO8WvpQxxfhZwLX7baByBA_xADS3UEbqrJjKcB2W2ngPIsXasE_jBBvEMWkON2yN9e_9zu9t-K75CFBEMsmp2eXTI7riZuj8zbp_F9Xe03U_0FYyX28A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9NMGnsAcYA0VE2P0ziASIlcWI7j6gCgdZWaOsQb5btOBIStFUDk_jvdxec8o0EUl6S2LFz9n3YvvsdwE-XCiucchFabzbKSpVH1hhkPF5Jy53yLi2bZBNyOFRnZ8VJCAqrW2_39kiykdT3gt2Sxk2S_HsykUe45lnMUGORI9_vP6dz-ZtwpdpErWQdhFCZ57_xQB09FspPTkcbpXO48r7ufoHlYGSy_dtZsQof_PgrfL4HPYh3gzlea70GVY-cz5s4TM9MwClhk4oZ1jd0YD_zjJJmE1fc0PPr6dTPmKWcTDVDu5dNJxc3FOGMzRJayWUI72R4YTusJvQCvw5_Dw9GvaMoZGCIHMeVVCRSWznhbOETI_NceClLZZGmMfdc5ZmPvap4jCLS4sLDSp-XieFelnHBhTIF34CF8WTsN4EJnqpKKuNk4VAheiW45FZlSVFgrTTuQNIOhHYBnpyyZFzoO2BloqhGiuqGojrpwO68zvQWnOPV0js0vpo4F7_sTAhAwP4RBpbel7SppnKRdaDbTgEdWLrWKf5hSniHvAN77ZDfvX653W9vK_4DPh2NBn3dPx7-2oKllMItml2fLixcza79Nnx0_67O69n3Ztr_B_1h-dQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9UwFD6MOcQ96JzKOufMw8AHLWubNkkfx_Sy4bwM5mRvIUlTEO56S3vvYP9-5_S2d3dOBRH60jZp0pOc5Jwk33cADlwirHDKhWi92TAtVBZaY1DxeCktd8q7pOiCTcjxWF1d5ecrKP7utPuwJbnANBBLUzU7rIvycAX4FndHJumsTyqyEP2fJykFDSJ__eLHciyOuVJD0FayFHrYzO-_8WBq-nWAfrRT2k1Aoxf_X_UteN4bn-xo0VtewpqvtmFzhZIQ774teVzbV1Ae06H0Dp_pmen5S9i0ZIadGdrIbzyjYNqkLbf0fF7XvmGWYjW1DO1hVk8nt4R8xmKJxeS6h30yvLAc1hKrgX8Nl6Mv349Pwj4yQ-g4elihSGzphLO5j43MMuGlLJRF-Ubcc5WlPvKq5BEOnRYdEit9VsSGe1lEORfK5PwNrFfTyu8AEzxRpVTGydzhROmV4JJblcZ5jrmSKIB4aBTtetpyip4x0feEyyRRjRLVnUR1HMDHZZ56Qdrx19QfqK01aTR-2ZkemID1I24sfSRpsU1lIg1gb-gOulf1Vif4hwnxIPIAPg3Nf__6z-Xu_lvy9_D0_PNIn52Ov76FZwmhMLrFoD1YnzVz_w423M3sZ9vsdxpwBzIwAsc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+analysis+of+a+Lasserre+hierarchy+of+upper+bounds+for+polynomial+minimization+on+the+sphere&rft.jtitle=Mathematical+programming&rft.au=de+Klerk%2C+Etienne&rft.au=Laurent%2C+Monique&rft.date=2022-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=193&rft.issue=2&rft.spage=665&rft.epage=685&rft_id=info:doi/10.1007%2Fs10107-019-01465-1&rft.externalDocID=10_1007_s10107_019_01465_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon