Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere
We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r ∈ N of the hierarchy is defined as the minimal...
Uložené v:
| Vydané v: | Mathematical programming Ročník 193; číslo 2; s. 665 - 685 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2022
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level
r
∈
N
of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2
r
with respect to the surface measure. We show that the rate of convergence is
O
(
1
/
r
2
)
and we give a class of polynomials of any positive degree for which this rate is tight. In addition, we explore the implications for the related rate of convergence for the generalized problem of moments on the sphere. |
|---|---|
| AbstractList | We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level
$$r \in {\mathbb {N}}$$
r
∈
N
of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2
r
with respect to the surface measure. We show that the rate of convergence is
$$O(1/r^2)$$
O
(
1
/
r
2
)
and we give a class of polynomials of any positive degree for which this rate is tight. In addition, we explore the implications for the related rate of convergence for the generalized problem of moments on the sphere. We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r∈N of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2r with respect to the surface measure. We show that the rate of convergence is O(1/r2) and we give a class of polynomials of any positive degree for which this rate is tight. In addition, we explore the implications for the related rate of convergence for the generalized problem of moments on the sphere. We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r ∈ N of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2 r with respect to the surface measure. We show that the rate of convergence is O ( 1 / r 2 ) and we give a class of polynomials of any positive degree for which this rate is tight. In addition, we explore the implications for the related rate of convergence for the generalized problem of moments on the sphere. We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864-885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level [Formula omitted] of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2r with respect to the surface measure. We show that the rate of convergence is [Formula omitted] and we give a class of polynomials of any positive degree for which this rate is tight. In addition, we explore the implications for the related rate of convergence for the generalized problem of moments on the sphere. |
| Audience | Academic |
| Author | Laurent, Monique de Klerk, Etienne |
| Author_xml | – sequence: 1 givenname: Etienne orcidid: 0000-0003-3377-0063 surname: de Klerk fullname: de Klerk, Etienne email: E.deKlerk@uvt.nl organization: Tilburg University – sequence: 2 givenname: Monique surname: Laurent fullname: Laurent, Monique organization: Tilburg University, Centrum Wiskunde & Informatica (CWI) |
| BookMark | eNp9kU9r3DAQxUVJoZu0X6AnQc9OR5b1x8ewtE1hIZf0LGR5tKtgS67kLWw_fZW4UOghaIRgeL9Bb941uYopIiEfGdwyAPW5MGCgGmB9vZ0UDXtDdqzjsulkJ6_IDqAVjZAM3pHrUp4AgHGtd8TvU_yF-YjRIbXRTpcSCk2eWnqwpWDOSE8Bs83udHnun5cFMx3SOY6F-pTpkqZLTHOwE51DDHP4bdeQIq21npCW5YQZ35O33k4FP_x9b8iPr18e9_fN4eHb9_3doXFcK9bIdvBOuqFHZpUQEpUa9VB_DRy5Fh0Cas9hHHGQSgwKxcgsRzVCz6W2Pb8hn7a5S04_z1hW85TOudoqpq1Ey0WveVXdbqqjndCE6NOaratnxDm4ulkfav9OgVS9FrKrgN4Al1MpGb1xYX2xWcEwGQbmOQazxWBqDOYlBsMq2v6HLjnMNl9eh_gGlSqOR8z_bLxC_QG_-50I |
| CitedBy_id | crossref_primary_10_1007_s10107_020_01549_3 crossref_primary_10_1007_s11590_021_01713_4 crossref_primary_10_1007_s00025_022_01659_8 crossref_primary_10_1137_24M164255X crossref_primary_10_1007_s10107_025_02251_y crossref_primary_10_1007_s11590_022_01940_3 crossref_primary_10_1007_s10107_020_01586_y crossref_primary_10_1007_s10107_021_01745_9 crossref_primary_10_1007_s10107_020_01537_7 crossref_primary_10_1007_s10107_022_01877_6 crossref_primary_10_1007_s10107_022_01878_5 crossref_primary_10_1137_21M1458338 crossref_primary_10_1007_s10107_020_01468_3 crossref_primary_10_1007_s11590_021_01811_3 crossref_primary_10_1007_s10957_022_02153_5 crossref_primary_10_1103_PhysRevLett_134_030201 |
| Cites_doi | 10.1007/978-1-4614-6660-4 10.1137/100806990 10.1007/s10107-003-0387-5 10.1007/10997703_7 10.1007/s11590-019-01416-x 10.1137/S1052623400366802 10.1016/j.jat.2012.05.014 10.4153/CJM-1965-053-6 10.1017/CBO9780511565717 10.1007/s10107-011-0499-2 10.1287/moor.2017.0906 10.1287/moor.1060.0194 10.1016/j.jat.2009.11.006 10.1007/s10107-016-1043-1 10.1007/s10107-019-01429-5 10.1090/conm/253/03936 10.1007/s10107-020-01468-3 10.1007/978-3-030-21170-7_1 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2022 Springer The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10107-019-01465-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 685 |
| ExternalDocumentID | A706798564 10_1007_s10107_019_01465_1 |
| GrantInformation_xml | – fundername: Tilburg University |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3871-62bfc6cb9e1a7556e77d8b61003e3854e0e8f30ddeb675b7e5d1a3e7d09368a93 |
| IEDL.DBID | RSV |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 25 00:56:54 EDT 2025 Sat Nov 29 10:12:42 EST 2025 Sat Nov 29 03:34:01 EST 2025 Tue Nov 18 22:03:02 EST 2025 Fri Feb 21 02:49:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Generalized eigenvalue problem Semidefinite programming 90C30 Polynomial optimization on sphere 90C22 Lasserre hierarchy 90C26 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3871-62bfc6cb9e1a7556e77d8b61003e3854e0e8f30ddeb675b7e5d1a3e7d09368a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3377-0063 |
| OpenAccessLink | https://link.springer.com/10.1007/s10107-019-01465-1 |
| PQID | 2675235983 |
| PQPubID | 25307 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2675235983 gale_infotracacademiconefile_A706798564 crossref_citationtrail_10_1007_s10107_019_01465_1 crossref_primary_10_1007_s10107_019_01465_1 springer_journals_10_1007_s10107_019_01465_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20220600 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 6 year: 2022 text: 20220600 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | De Klerk, Laurent, Parrilo, Henrion, Garulli (CR10) 2005 CR4 Ahmadi, Olshevsky, Parrilo, Tsitsiklis (CR1) 2013; 137 Lasserre (CR15) 2001; 11 Dai, Xu (CR2) 2013 CR8 CR19 Dimitrov, Nikolov (CR3) 2010; 162 De Klerk, Laurent, Sun (CR11) 2017; 162 Martinez, Piazzon, Sommariva, Vianello (CR17) 2019 Driver, Jordaan (CR5) 2012; 164 CR9 Kalai, Vempala (CR14) 2006; 31 Lasserre (CR16) 2011; 21 CR13 CR12 CR23 Motzkin, Straus (CR18) 1965; 17 CR22 CR20 Parrilo (CR21) 2003; 96 De Klerk, Laurent (CR7) 2018; 43 Dunkl, Xu (CR6) 2001 AA Ahmadi (1465_CR1) 2013; 137 E De Klerk (1465_CR7) 2018; 43 E De Klerk (1465_CR10) 2005 PA Parrilo (1465_CR21) 2003; 96 JB Lasserre (1465_CR15) 2001; 11 1465_CR19 F Dai (1465_CR2) 2013 A Martinez (1465_CR17) 2019 1465_CR4 1465_CR8 1465_CR9 1465_CR20 DK Dimitrov (1465_CR3) 2010; 162 AT Kalai (1465_CR14) 2006; 31 E De Klerk (1465_CR11) 2017; 162 1465_CR13 K Driver (1465_CR5) 2012; 164 CF Dunkl (1465_CR6) 2001 1465_CR22 1465_CR12 JB Lasserre (1465_CR16) 2011; 21 TS Motzkin (1465_CR18) 1965; 17 1465_CR23 |
| References_xml | – year: 2013 ident: CR2 publication-title: Approximation Theory and Harmonic Analysis on Spheres and Balls doi: 10.1007/978-1-4614-6660-4 – ident: CR22 – ident: CR19 – volume: 21 start-page: 864 issue: 3 year: 2011 end-page: 885 ident: CR16 article-title: A new look at nonnegativity on closed sets and polynomial optimization publication-title: SIAM J. Optim. doi: 10.1137/100806990 – ident: CR4 – volume: 96 start-page: 293 issue: 2 year: 2003 end-page: 320 ident: CR21 article-title: Semidefinite programming relaxations for semialgebraic problems publication-title: Math. Program. Ser. B doi: 10.1007/s10107-003-0387-5 – ident: CR12 – start-page: 121 year: 2005 end-page: 133 ident: CR10 article-title: On the equivalence of algebraic approaches to the minimization of forms on the simplex publication-title: Positive Polynomials in Control doi: 10.1007/10997703_7 – year: 2019 ident: CR17 article-title: Quadrature-based polynomial optimization publication-title: Optim. Lett. doi: 10.1007/s11590-019-01416-x – ident: CR13 – volume: 11 start-page: 796 year: 2001 end-page: 817 ident: CR15 article-title: Global optimization with polynomials and the problem of moments publication-title: SIAM J. Optim. doi: 10.1137/S1052623400366802 – volume: 164 start-page: 1200 year: 2012 end-page: 1204 ident: CR5 article-title: Bounds for extreme zeros of some classical orthogonal polynomials publication-title: J. Approx. Theory doi: 10.1016/j.jat.2012.05.014 – ident: CR9 – volume: 17 start-page: 533 year: 1965 end-page: 540 ident: CR18 article-title: Maxima for graphs and a new proof of a theorem of Túran publication-title: Can. J. Math. doi: 10.4153/CJM-1965-053-6 – year: 2001 ident: CR6 publication-title: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics doi: 10.1017/CBO9780511565717 – ident: CR8 – volume: 137 start-page: 453 issue: 1–2 year: 2013 end-page: 476 ident: CR1 article-title: NP-hardness of deciding convexity of quartic polynomials and related problems publication-title: Math. Program. doi: 10.1007/s10107-011-0499-2 – volume: 43 start-page: 1317 year: 2018 end-page: 1325 ident: CR7 article-title: Comparison of Lasserre’s measure-based bounds for polynomial optimization to bounds obtained by simulated annealing publication-title: Math. Oper. Res. doi: 10.1287/moor.2017.0906 – volume: 31 start-page: 253 issue: 2 year: 2006 end-page: 266 ident: CR14 article-title: Simulated annealing for convex optimization publication-title: Math. Oper. Res. doi: 10.1287/moor.1060.0194 – ident: CR23 – ident: CR20 – volume: 162 start-page: 1793 year: 2010 end-page: 1804 ident: CR3 article-title: Sharp bounds for the extreme zeros of classical orthogonal polynomials publication-title: J. Approx. Theory doi: 10.1016/j.jat.2009.11.006 – volume: 162 start-page: 363 issue: 1 year: 2017 end-page: 392 ident: CR11 article-title: Convergence analysis for Lasserre’s measure-based hierarchy of upper bounds for polynomial optimization publication-title: Math. Program. doi: 10.1007/s10107-016-1043-1 – volume: 43 start-page: 1317 year: 2018 ident: 1465_CR7 publication-title: Math. Oper. Res. doi: 10.1287/moor.2017.0906 – ident: 1465_CR12 doi: 10.1007/s10107-019-01429-5 – volume: 162 start-page: 363 issue: 1 year: 2017 ident: 1465_CR11 publication-title: Math. Program. doi: 10.1007/s10107-016-1043-1 – volume: 31 start-page: 253 issue: 2 year: 2006 ident: 1465_CR14 publication-title: Math. Oper. Res. doi: 10.1287/moor.1060.0194 – volume: 11 start-page: 796 year: 2001 ident: 1465_CR15 publication-title: SIAM J. Optim. doi: 10.1137/S1052623400366802 – start-page: 121 volume-title: Positive Polynomials in Control year: 2005 ident: 1465_CR10 doi: 10.1007/10997703_7 – ident: 1465_CR8 – year: 2019 ident: 1465_CR17 publication-title: Optim. Lett. doi: 10.1007/s11590-019-01416-x – ident: 1465_CR4 – ident: 1465_CR13 – volume: 164 start-page: 1200 year: 2012 ident: 1465_CR5 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2012.05.014 – ident: 1465_CR19 – volume: 96 start-page: 293 issue: 2 year: 2003 ident: 1465_CR21 publication-title: Math. Program. Ser. B doi: 10.1007/s10107-003-0387-5 – ident: 1465_CR22 doi: 10.1090/conm/253/03936 – volume-title: Approximation Theory and Harmonic Analysis on Spheres and Balls year: 2013 ident: 1465_CR2 doi: 10.1007/978-1-4614-6660-4 – ident: 1465_CR23 doi: 10.1007/s10107-020-01468-3 – ident: 1465_CR9 doi: 10.1007/978-3-030-21170-7_1 – ident: 1465_CR20 – volume: 137 start-page: 453 issue: 1–2 year: 2013 ident: 1465_CR1 publication-title: Math. Program. doi: 10.1007/s10107-011-0499-2 – volume-title: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics year: 2001 ident: 1465_CR6 doi: 10.1017/CBO9780511565717 – volume: 21 start-page: 864 issue: 3 year: 2011 ident: 1465_CR16 publication-title: SIAM J. Optim. doi: 10.1137/100806990 – volume: 17 start-page: 533 year: 1965 ident: 1465_CR18 publication-title: Can. J. Math. doi: 10.4153/CJM-1965-053-6 – volume: 162 start-page: 1793 year: 2010 ident: 1465_CR3 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2009.11.006 |
| SSID | ssj0001388 |
| Score | 2.5508296 |
| Snippet | We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for... We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864-885, 2011), for... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 665 |
| SubjectTerms | Analysis Calculus of Variations and Optimal Control; Optimization Combinatorics Convergence Distribution (Probability theory) Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Polynomials Probability density functions Theoretical Upper bounds |
| Title | Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere |
| URI | https://link.springer.com/article/10.1007/s10107-019-01465-1 https://www.proquest.com/docview/2675235983 |
| Volume | 193 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHvTgW6wvchA8aKFt2iQ9LouLBxXxxd5CkqYg6O7S7gr-e2dqur4FhV7aJk06yTySzHxDyIFNuOFW2hCsNxOmhcxCozUwHiuFYVY6mxRNsglxcSH7_fzSB4XVrbd7eyTZSOp3wW5x4yaJ_j0pz0JY88yBupPIjlfXd1P5GzMp20StaB34UJnvv_FBHX0Wyl9ORxul01v-X3dXyJI3MmnndVaskhk3WCOL76AH4e58itdar5Oyi87nTRymo9rjlNBhSTU903hgXzmKSbORK57x-WQ0chU1mJOppmD30tHw4RkjnKFZRCt59OGdFC5oh9aIXuA2yG3v5KZ7GvoMDKFlsJIKeWJKy63JXaxFlnEnRCEN0DRijsksdZGTJYtARBpYeBjhsiLWzIkiyhmXOmebZHYwHLgtQjlLZCmktiK3oBCd5EwwI9M4z6FWEgUkbgdCWQ9PjlkyHtQbsDJSVAFFVUNRFQfkaFpn9ArO8WvpQxxfhZwLX7baByBA_xADS3UEbqrJjKcB2W2ngPIsXasE_jBBvEMWkON2yN9e_9zu9t-K75CFBEMsmp2eXTI7riZuj8zbp_F9Xe03U_0FYyX28A |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9NMGnsAcYA0VE2P0ziASIlcWI7j6gCgdZWaOsQb5btOBIStFUDk_jvdxec8o0EUl6S2LFz9n3YvvsdwE-XCiucchFabzbKSpVH1hhkPF5Jy53yLi2bZBNyOFRnZ8VJCAqrW2_39kiykdT3gt2Sxk2S_HsykUe45lnMUGORI9_vP6dz-ZtwpdpErWQdhFCZ57_xQB09FspPTkcbpXO48r7ufoHlYGSy_dtZsQof_PgrfL4HPYh3gzlea70GVY-cz5s4TM9MwClhk4oZ1jd0YD_zjJJmE1fc0PPr6dTPmKWcTDVDu5dNJxc3FOGMzRJayWUI72R4YTusJvQCvw5_Dw9GvaMoZGCIHMeVVCRSWznhbOETI_NceClLZZGmMfdc5ZmPvap4jCLS4sLDSp-XieFelnHBhTIF34CF8WTsN4EJnqpKKuNk4VAheiW45FZlSVFgrTTuQNIOhHYBnpyyZFzoO2BloqhGiuqGojrpwO68zvQWnOPV0js0vpo4F7_sTAhAwP4RBpbel7SppnKRdaDbTgEdWLrWKf5hSniHvAN77ZDfvX653W9vK_4DPh2NBn3dPx7-2oKllMItml2fLixcza79Nnx0_67O69n3Ztr_B_1h-dQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9UwFD6MOcQ96JzKOufMw8AHLWubNkkfx_Sy4bwM5mRvIUlTEO56S3vvYP9-5_S2d3dOBRH60jZp0pOc5Jwk33cADlwirHDKhWi92TAtVBZaY1DxeCktd8q7pOiCTcjxWF1d5ecrKP7utPuwJbnANBBLUzU7rIvycAX4FndHJumsTyqyEP2fJykFDSJ__eLHciyOuVJD0FayFHrYzO-_8WBq-nWAfrRT2k1Aoxf_X_UteN4bn-xo0VtewpqvtmFzhZIQ774teVzbV1Ae06H0Dp_pmen5S9i0ZIadGdrIbzyjYNqkLbf0fF7XvmGWYjW1DO1hVk8nt4R8xmKJxeS6h30yvLAc1hKrgX8Nl6Mv349Pwj4yQ-g4elihSGzphLO5j43MMuGlLJRF-Ubcc5WlPvKq5BEOnRYdEit9VsSGe1lEORfK5PwNrFfTyu8AEzxRpVTGydzhROmV4JJblcZ5jrmSKIB4aBTtetpyip4x0feEyyRRjRLVnUR1HMDHZZ56Qdrx19QfqK01aTR-2ZkemID1I24sfSRpsU1lIg1gb-gOulf1Vif4hwnxIPIAPg3Nf__6z-Xu_lvy9_D0_PNIn52Ov76FZwmhMLrFoD1YnzVz_w423M3sZ9vsdxpwBzIwAsc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+analysis+of+a+Lasserre+hierarchy+of+upper+bounds+for+polynomial+minimization+on+the+sphere&rft.jtitle=Mathematical+programming&rft.au=de+Klerk%2C+Etienne&rft.au=Laurent%2C+Monique&rft.date=2022-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=193&rft.issue=2&rft.spage=665&rft.epage=685&rft_id=info:doi/10.1007%2Fs10107-019-01465-1&rft.externalDocID=10_1007_s10107_019_01465_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |