Heterogeneous parallel computing accelerated iterative subpixel digital image correlation

Parallel computing techniques have been introduced into digital image correlation (DIC) in recent years and leads to a surge in computation speed. The graphics processing unit (GPU)-based parallel computing demonstrated a surprising effect on accel- erating the iterative subpixel DIC, compared with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences Jg. 61; H. 1; S. 74 - 85
Hauptverfasser: Huang, JianWen, Zhang, LingQi, Jiang, ZhenYu, Dong, ShouBin, Chen, Wei, Liu, YiPing, Liu, ZeJia, Zhou, LiCheng, Tang, LiQun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Beijing Science China Press 2018
Springer Nature B.V
Schlagworte:
ISSN:1674-7321, 1869-1900
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Parallel computing techniques have been introduced into digital image correlation (DIC) in recent years and leads to a surge in computation speed. The graphics processing unit (GPU)-based parallel computing demonstrated a surprising effect on accel- erating the iterative subpixel DIC, compared with CPU-based parallel computing. In this paper, the performances of the two kinds of parallel computing techniques are compared for the previously proposed path-independent DIC method, in which the initial guess for the inverse compositional Gauss-Newton (IC-GN) algorithm at each point of interest (POI) is estimated through the fast Fourier transform-based cross-correlation (FFT-CC) algorithm. Based on the performance evaluation, a heterogeneous parallel computing (HPC) model is proposed with hybrid mode of parallelisms in order to combine the computing power of GPU and multicore CPU. A scheme of trial computation test is developed to optimize the configuration of the HPC model on a specific computer. The proposed HPC model shows excellent performance on a middle-end desktop computer for real-time subpixel DIC with high resolution of more than 10000 POIs per frame.
AbstractList Parallel computing techniques have been introduced into digital image correlation (DIC) in recent years and leads to a surge in computation speed. The graphics processing unit (GPU)-based parallel computing demonstrated a surprising effect on accelerating the iterative subpixel DIC, compared with CPU-based parallel computing. In this paper, the performances of the two kinds of parallel computing techniques are compared for the previously proposed path-independent DIC method, in which the initial guess for the inverse compositional Gauss-Newton (IC-GN) algorithm at each point of interest (POI) is estimated through the fast Fourier transform-based cross-correlation (FFT-CC) algorithm. Based on the performance evaluation, a heterogeneous parallel computing (HPC) model is proposed with hybrid mode of parallelisms in order to combine the computing power of GPU and multicore CPU. A scheme of trial computation test is developed to optimize the configuration of the HPC model on a specific computer. The proposed HPC model shows excellent performance on a middle-end desktop computer for real-time subpixel DIC with high resolution of more than 10000 POIs per frame.
Parallel computing techniques have been introduced into digital image correlation (DIC) in recent years and leads to a surge in computation speed. The graphics processing unit (GPU)-based parallel computing demonstrated a surprising effect on accel- erating the iterative subpixel DIC, compared with CPU-based parallel computing. In this paper, the performances of the two kinds of parallel computing techniques are compared for the previously proposed path-independent DIC method, in which the initial guess for the inverse compositional Gauss-Newton (IC-GN) algorithm at each point of interest (POI) is estimated through the fast Fourier transform-based cross-correlation (FFT-CC) algorithm. Based on the performance evaluation, a heterogeneous parallel computing (HPC) model is proposed with hybrid mode of parallelisms in order to combine the computing power of GPU and multicore CPU. A scheme of trial computation test is developed to optimize the configuration of the HPC model on a specific computer. The proposed HPC model shows excellent performance on a middle-end desktop computer for real-time subpixel DIC with high resolution of more than 10000 POIs per frame.
Author HUANG JianWen;ZHANG LingQi;JIANG ZhenYu;DONG ShouBin;CHEN Wei;LIU YiPing;LIU ZeJia;ZHOU LiCheng;TANG LiQun
AuthorAffiliation State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China;School of Computer Science, South China University of Technology, Guangzhou 510640, China;The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Author_xml – sequence: 1
  givenname: JianWen
  surname: Huang
  fullname: Huang, JianWen
  organization: State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology, School of Computer Science, South China University of Technology
– sequence: 2
  givenname: LingQi
  surname: Zhang
  fullname: Zhang, LingQi
  organization: School of Computer Science, South China University of Technology
– sequence: 3
  givenname: ZhenYu
  surname: Jiang
  fullname: Jiang, ZhenYu
  email: zhenyujiang@scut.edu.cn
  organization: State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology, The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences
– sequence: 4
  givenname: ShouBin
  surname: Dong
  fullname: Dong, ShouBin
  email: sbdong@scut.edu.cn
  organization: School of Computer Science, South China University of Technology
– sequence: 5
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology
– sequence: 6
  givenname: YiPing
  surname: Liu
  fullname: Liu, YiPing
  organization: State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology
– sequence: 7
  givenname: ZeJia
  surname: Liu
  fullname: Liu, ZeJia
  organization: State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology
– sequence: 8
  givenname: LiCheng
  surname: Zhou
  fullname: Zhou, LiCheng
  organization: State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology
– sequence: 9
  givenname: LiQun
  surname: Tang
  fullname: Tang, LiQun
  organization: State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology
BookMark eNp9kTFPwzAQhS1UJErpD2CLYA744iS2R1QBRUJigYHJcpxLSJXGqZ0g-Pc4aoUQQ734hvf5vXs-J7POdkjIJdAboJTfeoCUQUyBxxJyEdMTMgeRyxgkpbMw5zyNOUvgjCy939BwmJAU0jl5X-OAztbYoR191Gun2xbbyNhtPw5NV0faGGzR6QHLqBmmofnEyI9F33wFYdnUzaDbqNnqGgPmHLZBYrsLclrp1uPycC_I28P962odP788Pq3unmPDRD7EVSkzRqXMtdSpSDNgICoskRcJL3heySxLK0lzzgUzGddFgiITGS1LA5VAwxbkev9u7-xuRD-ojR1dFywVSCGyVCZAg4rvVcZZ7x1WyoTYU87B6aZVQNVUpdpXqUKVaqpSTST8I3sXlnXfR5lkz_ig7Wp0fzIdga4ORh-2q3eB-3UK_5eEnalkP9uSlEA
CitedBy_id crossref_primary_10_1088_1757_899X_967_1_012001
crossref_primary_10_1016_j_ins_2019_02_049
crossref_primary_10_1016_j_engstruct_2024_117752
crossref_primary_10_1007_s11340_021_00694_w
crossref_primary_10_1016_j_optlastec_2023_109420
crossref_primary_10_3390_photonics9030167
crossref_primary_10_1016_j_optlaseng_2020_106097
crossref_primary_10_1007_s10409_024_23464_x
crossref_primary_10_1016_j_optlaseng_2023_107566
crossref_primary_10_1364_AO_471747
crossref_primary_10_1088_1361_6501_acda53
crossref_primary_10_1016_j_optlaseng_2021_106812
crossref_primary_10_1111_str_12342
crossref_primary_10_1364_AO_481625
crossref_primary_10_1016_j_compgeo_2023_106027
crossref_primary_10_1364_AO_554144
crossref_primary_10_3390_app15052868
crossref_primary_10_1007_s11340_019_00563_7
crossref_primary_10_1016_j_optlaseng_2020_106323
crossref_primary_10_1007_s11340_021_00714_9
crossref_primary_10_1016_j_optlaseng_2019_105964
crossref_primary_10_1088_1361_6501_ab3c80
Cites_doi 10.1118/1.3578605
10.1023/B:VISI.0000011205.11775.fd
10.1016/j.optlaseng.2015.03.005
10.1016/j.optlaseng.2011.06.020
10.1016/j.optlaseng.2015.01.012
10.1007/s11340-013-9717-6
10.1111/str.12039
10.1088/0957-0233/17/6/045
10.1016/j.optlaseng.2011.02.023
10.1111/str.12066
10.1117/1.1314593
10.4208/cicp.110113.010813a
10.1007/s11340-017-0294-y
10.1016/j.polymertesting.2005.06.013
10.1007/s11340-014-9874-2
10.1111/str.12194
10.1016/j.taml.2016.04.003
10.1007/s11340-016-0133-6
10.1007/s11554-010-0162-9
10.1007/s11340-014-9948-1
10.1007/978-3-642-01811-4_15
10.1177/1094342013518807
10.1145/1816038.1816021
10.1007/s11340-015-0091-4
10.1117/1.OE.54.3.034106
10.1016/j.optlaseng.2014.06.011
10.1051/meca/2012025
10.2478/v10248-012-0019-x
ContentType Journal Article
Copyright Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
– notice: Copyright Springer Science & Business Media 2018
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
DOI 10.1007/s11431-017-9168-0
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Heterogeneous parallel computing accelerated iterative subpixel digital image correlation
EISSN 1869-1900
EndPage 85
ExternalDocumentID 10_1007_s11431_017_9168_0
674285009
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
29~
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BDATZ
CAG
CCEZO
CEKLB
CHBEP
COF
CQIGP
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
MA-
N2Q
NB0
NPVJJ
NQJWS
O9J
P9P
PF0
PT4
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TR2
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
~WA
-SC
-S~
0R~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
CAJEC
CJPJV
H13
Q--
U1G
U5M
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c386t-fd9530996a9a48451318fede7b27b76f9554f9067783c57ab2e85850ddc1f8ec3
IEDL.DBID RSV
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000422911200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1674-7321
IngestDate Thu Sep 25 00:45:50 EDT 2025
Sat Nov 29 05:32:36 EST 2025
Tue Nov 18 22:12:44 EST 2025
Fri Feb 21 02:33:06 EST 2025
Wed Feb 14 09:55:36 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords graphics processing unit (GPU)
heterogeneous parallel computing
digital image correlation (DIC)
real-time DIC
multicore CPU
inverse compositional Gauss-Newton (IC-GN) algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-fd9530996a9a48451318fede7b27b76f9554f9067783c57ab2e85850ddc1f8ec3
Notes Parallel computing techniques have been introduced into digital image correlation (DIC) in recent years and leads to a surge in computation speed. The graphics processing unit (GPU)-based parallel computing demonstrated a surprising effect on accel- erating the iterative subpixel DIC, compared with CPU-based parallel computing. In this paper, the performances of the two kinds of parallel computing techniques are compared for the previously proposed path-independent DIC method, in which the initial guess for the inverse compositional Gauss-Newton (IC-GN) algorithm at each point of interest (POI) is estimated through the fast Fourier transform-based cross-correlation (FFT-CC) algorithm. Based on the performance evaluation, a heterogeneous parallel computing (HPC) model is proposed with hybrid mode of parallelisms in order to combine the computing power of GPU and multicore CPU. A scheme of trial computation test is developed to optimize the configuration of the HPC model on a specific computer. The proposed HPC model shows excellent performance on a middle-end desktop computer for real-time subpixel DIC with high resolution of more than 10000 POIs per frame.
digital image correlation (DIC), inverse compositional Gauss-Newton (IC-GN) algorithm, heterogeneous parallel com-puting, graphics processing unit (GPU), multicore CPU, real-time DIC
11-5845/TH
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s11431-017-9168-0.pdf
PQID 1988549210
PQPubID 2043625
PageCount 12
ParticipantIDs proquest_journals_1988549210
crossref_citationtrail_10_1007_s11431_017_9168_0
crossref_primary_10_1007_s11431_017_9168_0
springer_journals_10_1007_s11431_017_9168_0
chongqing_primary_674285009
PublicationCentury 2000
PublicationDate 2018
20180100
2018-1-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China. Technological sciences
PublicationTitleAbbrev Sci. China Technol. Sci
PublicationTitleAlternate SCIENCE CHINA Technological Sciences
PublicationYear 2018
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References Bing, Xie, Xu (CR1) 2006; 17
Shao, Dai, He (CR9) 2015; 71
Pratx, Xing (CR18) 2011; 38
Baker, Matthews (CR8) 2001
Marciniak, Marciniak, Lutowski (CR23) 2013; 17
Zhang, Wang, Jiang (CR25) 2015; 69
Tong (CR2) 2013; 49
Leng, Ali, Hsieh (CR31) 2002
Bar-Kochba, Toyjanova, Andrews (CR27) 2015; 55
Sutton, Orteu, Schreier (CR5) 2009
Wang, Qian (CR17) 2017; 50
Valle, Hedan, Cosenza (CR29) 2015; 55
Leclerc, Périé, Hild (CR21) 2012; 13
Pan, Chen, Jiang (CR13) 2016; 6
Gao, Kemao (CR16) 2012; 50
Wu, Kong, Li (CR4) 2016; 56
Gembris, Neeb, Gipp (CR22) 2011; 6
Gates, Heath, Lambros (CR28) 2015; 29
Jiang, Kemao, Miao (CR15) 2015; 65
Pan (CR14) 2014; 50
Wang, Jiang, Kemao (CR30) 2016; 56
Chen, Jiang, Tang (CR11) 2017; 57
Baker, Matthews (CR7) 2004; 56
Singh, Omkar (CR24) 2013; 1
Leclerc, Périé, Roux, Gagalowicz, Philips (CR20) 2009
Pan, Li (CR12) 2011; 49
Tao, Xia (CR3) 2005; 24
Pan, Li, Tong (CR6) 2013; 53
Pan, Tian (CR10) 2015; 54
Le Besnerais, Le Sant, Lévêque (CR26) 2016; 52
Schreier, Braasch, Sutton (CR33) 2000; 39
Lee, Hammarlund, Singhal (CR32) 2010; 38
Navarro, Hitschfeld-Kahler, Mateu (CR19) 2014; 15
Lustig, Martonosi (CR34) 2013
W Gao (9168_CR16) 2012; 50
W Chen (9168_CR11) 2017; 57
B Pan (9168_CR12) 2011; 49
Z Jiang (9168_CR15) 2015; 65
S Baker (9168_CR8) 2001
D Lustig (9168_CR34) 2013
A Singh (9168_CR24) 2013; 1
V Valle (9168_CR29) 2015; 55
H Leclerc (9168_CR21) 2012; 13
B Marciniak (9168_CR23) 2013; 17
B Pan (9168_CR10) 2015; 54
X Shao (9168_CR9) 2015; 71
T Wang (9168_CR30) 2016; 56
D Gembris (9168_CR22) 2011; 6
Z Pan (9168_CR13) 2016; 6
B Pan (9168_CR6) 2013; 53
B Pan (9168_CR14) 2014; 50
W Tong (9168_CR2) 2013; 49
G Pratx (9168_CR18) 2011; 38
H Leclerc (9168_CR20) 2009
V W Lee (9168_CR32) 2010; 38
H W Schreier (9168_CR33) 2000; 39
T Wang (9168_CR17) 2017; 50
M A Sutton (9168_CR5) 2009
M Gates (9168_CR28) 2015; 29
P Bing (9168_CR1) 2006; 17
R Wu (9168_CR4) 2016; 56
E Bar-Kochba (9168_CR27) 2015; 55
S Baker (9168_CR7) 2004; 56
G Besnerais Le (9168_CR26) 2016; 52
L Zhang (9168_CR25) 2015; 69
G Tao (9168_CR3) 2005; 24
C A Navarro (9168_CR19) 2014; 15
T Leng (9168_CR31) 2002
References_xml – year: 2002
  ident: CR31
  article-title: An empirical study of hyper-threading in high performance computing clusters
  publication-title: Linux HPC Revolution
– volume: 38
  start-page: 2685
  year: 2011
  end-page: 2697
  ident: CR18
  article-title: GPU computing in medical physics: A review
  publication-title: Med Phys
  doi: 10.1118/1.3578605
– volume: 56
  start-page: 221
  year: 2004
  end-page: 255
  ident: CR7
  article-title: Lucas-kanade 20 years on: A unifying framework
  publication-title: Int J Comp Vision
  doi: 10.1023/B:VISI.0000011205.11775.fd
– volume: 71
  start-page: 9
  year: 2015
  end-page: 19
  ident: CR9
  article-title: Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2015.03.005
– volume: 50
  start-page: 608
  year: 2012
  end-page: 617
  ident: CR16
  article-title: Parallel computing in experimental mechanics and optical measurement: A review
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2011.06.020
– volume: 50
  start-page: 608
  year: 2017
  end-page: 617
  ident: CR17
  article-title: Parallel computing in experimental mechanics and optical measurement: A review (II)
  publication-title: Opt Laser Eng
– volume: 69
  start-page: 7
  year: 2015
  end-page: 12
  ident: CR25
  article-title: High accuracy digital image correlation powered by GPU-based parallel computing
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2015.01.012
– volume: 53
  start-page: 1277
  year: 2013
  end-page: 1289
  ident: CR6
  article-title: Fast, robust and accurate digital image correlation calculation without redundant computations
  publication-title: Exp Mech
  doi: 10.1007/s11340-013-9717-6
– volume: 49
  start-page: 313
  year: 2013
  end-page: 334
  ident: CR2
  article-title: Formulation of Lucas-Kanade digital image correlation algorithms for non-contact deformation measurements: A review
  publication-title: Strain
  doi: 10.1111/str.12039
– volume: 17
  start-page: 1615
  year: 2006
  end-page: 1621
  ident: CR1
  article-title: Performance of sub-pixel registration algorithms in digital image correlation
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/17/6/045
– volume: 49
  start-page: 841
  year: 2011
  end-page: 847
  ident: CR12
  article-title: A fast digital image correlation method for deformation measurement
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2011.02.023
– year: 2009
  ident: CR5
  publication-title: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
– volume: 50
  start-page: 48
  year: 2014
  end-page: 56
  ident: CR14
  article-title: An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss-Newton algorithm
  publication-title: Strain
  doi: 10.1111/str.12066
– volume: 39
  start-page: 2915
  year: 2000
  end-page: 2921
  ident: CR33
  article-title: Systematic errors in digital image correlation caused by intensity interpolation
  publication-title: Opt Eng
  doi: 10.1117/1.1314593
– start-page: 1090
  year: 2001
  end-page: 1097
  ident: CR8
  article-title: Equivalence and efficiency of image alignment algorithms
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– volume: 15
  start-page: 285
  year: 2014
  end-page: 329
  ident: CR19
  article-title: A survey on parallel computing and its applications in data-parallel problems using GPU architectures
  publication-title: Commun Commut Phys
  doi: 10.4208/cicp.110113.010813a
– volume: 57
  start-page: 979
  year: 2017
  end-page: 996
  ident: CR11
  article-title: Equal noise resistance of two mainstream iterative sub-pixel registration algorithms in digital image correlation
  publication-title: Exp Mech
  doi: 10.1007/s11340-017-0294-y
– volume: 24
  start-page: 844
  year: 2005
  end-page: 855
  ident: CR3
  article-title: A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2005.06.013
– volume: 55
  start-page: 261
  year: 2015
  end-page: 274
  ident: CR27
  article-title: A fast iterative digital volume correlation algorithm for large deformations
  publication-title: Exp Mech
  doi: 10.1007/s11340-014-9874-2
– volume: 52
  start-page: 286
  year: 2016
  end-page: 306
  ident: CR26
  article-title: Fast and dense 2D and 3D displacement field estimation by a highly parallel image correlation algorithm
  publication-title: Strain
  doi: 10.1111/str.12194
– volume: 6
  start-page: 126
  year: 2016
  end-page: 130
  ident: CR13
  article-title: Performance of global look-up table strategy in digital image correlation with cubic B-spline interpolation and bicubic interpolation
  publication-title: Theor Appl Mech Lett
  doi: 10.1016/j.taml.2016.04.003
– start-page: 354
  year: 2013
  end-page: 365
  ident: CR34
  article-title: Reducing GPU offload latency via finegrained CPU-GPU synchronization
  publication-title: Procedding of IEEE 19th International Symposium on High Performance Computer Architecture (HPCA)
– volume: 56
  start-page: 833
  year: 2016
  end-page: 843
  ident: CR4
  article-title: Real-time digital image correlation for dynamic strain measurement
  publication-title: Exp Mech
  doi: 10.1007/s11340-016-0133-6
– volume: 6
  start-page: 275
  year: 2011
  end-page: 280
  ident: CR22
  article-title: Correlation analysis on GPU systems using NVIDIA’s CUDA
  publication-title: J Real-Time Image Proc
  doi: 10.1007/s11554-010-0162-9
– volume: 55
  start-page: 379
  year: 2015
  end-page: 391
  ident: CR29
  article-title: Digital image correlation development for the study of materials including multiple crossing cracks
  publication-title: Exp Mech
  doi: 10.1007/s11340-014-9948-1
– start-page: 161
  year: 2009
  end-page: 171
  ident: CR20
  article-title: Integrated digital image correlation for the identification of mechanical properties
  publication-title: Computer Vision/Computer Graphics Collaboration Techniques
  doi: 10.1007/978-3-642-01811-4_15
– volume: 17
  start-page: 21
  year: 2013
  end-page: 28
  ident: CR23
  article-title: Usage of digital image correlation in analysis of cracking processes
  publication-title: Image Proc Commun
– volume: 29
  start-page: 92
  year: 2015
  end-page: 106
  ident: CR28
  article-title: High-performance hybrid CPU and GPU parallel algorithm for digital volume correlation
  publication-title: Int J High Perform Comput Appl
  doi: 10.1177/1094342013518807
– volume: 38
  start-page: 451
  year: 2010
  end-page: 460
  ident: CR32
  article-title: Debunking the 100X GPU vs. CPU myth
  publication-title: SIGARCH Comput Archit News
  doi: 10.1145/1816038.1816021
– volume: 1
  start-page: 1
  year: 2013
  end-page: 10
  ident: CR24
  article-title: Digital image correlation using GPU computing applied to biomechanics
  publication-title: Biomed Sci Eng
– volume: 56
  start-page: 297
  year: 2016
  end-page: 309
  ident: CR30
  article-title: GPU accelerated digital volume correlation
  publication-title: Exp Mech
  doi: 10.1007/s11340-015-0091-4
– volume: 54
  start-page: 034106
  year: 2015
  ident: CR10
  article-title: Superfast robust digital image correlation analysis with parallel computing
  publication-title: Opt Eng
  doi: 10.1117/1.OE.54.3.034106
– volume: 65
  start-page: 93
  year: 2015
  end-page: 102
  ident: CR15
  article-title: Path-independent digital image correlation with high accuracy, speed and robustness
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2014.06.011
– volume: 13
  start-page: 361
  year: 2012
  end-page: 371
  ident: CR21
  article-title: Digital volume correlation: What are the limits to the spatial resolution
  publication-title: Mech Indust
  doi: 10.1051/meca/2012025
– volume: 57
  start-page: 979
  year: 2017
  ident: 9168_CR11
  publication-title: Exp Mech
  doi: 10.1007/s11340-017-0294-y
– volume: 56
  start-page: 221
  year: 2004
  ident: 9168_CR7
  publication-title: Int J Comp Vision
  doi: 10.1023/B:VISI.0000011205.11775.fd
– volume: 52
  start-page: 286
  year: 2016
  ident: 9168_CR26
  publication-title: Strain
  doi: 10.1111/str.12194
– volume: 55
  start-page: 261
  year: 2015
  ident: 9168_CR27
  publication-title: Exp Mech
  doi: 10.1007/s11340-014-9874-2
– volume: 65
  start-page: 93
  year: 2015
  ident: 9168_CR15
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2014.06.011
– volume: 56
  start-page: 297
  year: 2016
  ident: 9168_CR30
  publication-title: Exp Mech
  doi: 10.1007/s11340-015-0091-4
– volume: 24
  start-page: 844
  year: 2005
  ident: 9168_CR3
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2005.06.013
– volume-title: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
  year: 2009
  ident: 9168_CR5
– volume: 71
  start-page: 9
  year: 2015
  ident: 9168_CR9
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2015.03.005
– volume: 56
  start-page: 833
  year: 2016
  ident: 9168_CR4
  publication-title: Exp Mech
  doi: 10.1007/s11340-016-0133-6
– volume: 49
  start-page: 313
  year: 2013
  ident: 9168_CR2
  publication-title: Strain
  doi: 10.1111/str.12039
– volume: 38
  start-page: 2685
  year: 2011
  ident: 9168_CR18
  publication-title: Med Phys
  doi: 10.1118/1.3578605
– volume: 13
  start-page: 361
  year: 2012
  ident: 9168_CR21
  publication-title: Mech Indust
  doi: 10.1051/meca/2012025
– volume: 50
  start-page: 48
  year: 2014
  ident: 9168_CR14
  publication-title: Strain
  doi: 10.1111/str.12066
– volume: 69
  start-page: 7
  year: 2015
  ident: 9168_CR25
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2015.01.012
– volume: 53
  start-page: 1277
  year: 2013
  ident: 9168_CR6
  publication-title: Exp Mech
  doi: 10.1007/s11340-013-9717-6
– volume-title: Linux HPC Revolution
  year: 2002
  ident: 9168_CR31
– start-page: 1090
  volume-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
  year: 2001
  ident: 9168_CR8
– volume: 39
  start-page: 2915
  year: 2000
  ident: 9168_CR33
  publication-title: Opt Eng
  doi: 10.1117/1.1314593
– volume: 15
  start-page: 285
  year: 2014
  ident: 9168_CR19
  publication-title: Commun Commut Phys
  doi: 10.4208/cicp.110113.010813a
– volume: 54
  start-page: 034106
  year: 2015
  ident: 9168_CR10
  publication-title: Opt Eng
  doi: 10.1117/1.OE.54.3.034106
– volume: 6
  start-page: 275
  year: 2011
  ident: 9168_CR22
  publication-title: J Real-Time Image Proc
  doi: 10.1007/s11554-010-0162-9
– volume: 49
  start-page: 841
  year: 2011
  ident: 9168_CR12
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2011.02.023
– volume: 50
  start-page: 608
  year: 2012
  ident: 9168_CR16
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2011.06.020
– volume: 6
  start-page: 126
  year: 2016
  ident: 9168_CR13
  publication-title: Theor Appl Mech Lett
  doi: 10.1016/j.taml.2016.04.003
– volume: 38
  start-page: 451
  year: 2010
  ident: 9168_CR32
  publication-title: SIGARCH Comput Archit News
  doi: 10.1145/1816038.1816021
– volume: 50
  start-page: 608
  year: 2017
  ident: 9168_CR17
  publication-title: Opt Laser Eng
– volume: 17
  start-page: 21
  year: 2013
  ident: 9168_CR23
  publication-title: Image Proc Commun
  doi: 10.2478/v10248-012-0019-x
– volume: 17
  start-page: 1615
  year: 2006
  ident: 9168_CR1
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/17/6/045
– start-page: 161
  volume-title: Computer Vision/Computer Graphics Collaboration Techniques
  year: 2009
  ident: 9168_CR20
  doi: 10.1007/978-3-642-01811-4_15
– volume: 29
  start-page: 92
  year: 2015
  ident: 9168_CR28
  publication-title: Int J High Perform Comput Appl
  doi: 10.1177/1094342013518807
– volume: 55
  start-page: 379
  year: 2015
  ident: 9168_CR29
  publication-title: Exp Mech
  doi: 10.1007/s11340-014-9948-1
– volume: 1
  start-page: 1
  year: 2013
  ident: 9168_CR24
  publication-title: Biomed Sci Eng
– start-page: 354
  volume-title: Procedding of IEEE 19th International Symposium on High Performance Computer Architecture (HPCA)
  year: 2013
  ident: 9168_CR34
SSID ssj0000389014
Score 2.2865813
Snippet Parallel computing techniques have been introduced into digital image correlation (DIC) in recent years and leads to a surge in computation speed. The...
Parallel computing techniques have been introduced into digital image correlation (DIC) in recent years and leads to a surge in computation speed. The graphics...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 74
SubjectTerms Computation
Cross correlation
Digital imaging
Engineering
Fast Fourier transformations
Fourier transforms
Graphics processing units
Iterative methods
Performance evaluation
Pixels
Title Heterogeneous parallel computing accelerated iterative subpixel digital image correlation
URI http://lib.cqvip.com/qk/60110X/201801/674285009.html
https://link.springer.com/article/10.1007/s11431-017-9168-0
https://www.proquest.com/docview/1988549210
Volume 61
WOSCitedRecordID wos000422911200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1869-1900
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000389014
  issn: 1674-7321
  databaseCode: RSV
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iHvTgW6ytsgdPysK-kxxFLD1IER-lnkJeWxfqbt1txZ_vZB9tFRX0nMnsMpN5JJl8g9CZS7V0RXkERhw7kH5gc4yFHUpFIaGQkVfidA9ucL9PhkN6W7_jLppq9-ZKsvTUi8duENrN1heDgUbEhn36GkQ7Yqzx7n4wP1gxiHFOieltCuxt7Htuc5v5HReDqfCcpaNX-OLn2LRIOL_ckZahp7v9r5_eQVt1pmldVktjF63odA9tLuEP7qOnnimGyWAN6WxWWAYGfDzWY0uWrR6AxOJSQlwycBLKqgCYwTtaxUxMkncgVMnINB2xkhdwSzAtz-vaugP02L1-uOrZda8FW_okmtqxoqEP2WLEKQ9IELpg67FWGgsPCxzFFNKOmJZwc74MMReeNjeKjlLSjYmW_iFaTbNUHyFLgVMIhcKEcx4oLIQIRAh5F48iDCFZtFB7LnE2qTA1GKjKA3YObSGn0QGTNUy56ZYxZguAZSNTBjJlRqbMaaHz-ZSG3y_EnUaxrDbXgrmUEANV58LwRaPIpeGfmB3_ibqNNiDdItUBTgetTvOZPkHr8m2aFPlpuYo_ABfU63w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4MmqgH30YEdQ-eNJvsu-3RGAlGJEaR4Knpa5FkBWTB-POdLruARk303OnsZqadmXam3yB06lItXZFdgRHHDqQf2BxjYYdSUQgoZORlON3tBm42SadD7_J33GlR7V6kJDNLPX_sBq7dHH0xbNCI2HBOXw7AYZk6vvuH9uxixSDGORmmtymwt7HvuUU28zsuBlPhedDvvsIXP_umecD5JUeauZ7a5r9-egtt5JGmdTFdGttoSfd30PoC_uAueqqbYpgBrCE9mKSWgQFPEp1YMmv1ACQWlxL8koGTUNYUgBmso5VOxLD3DoSq1zVNR6zeC5glmDYa5bV1e-ixdtW6rNt5rwVb-iQa27GioQ_RYsQpD0gQurDXY600Fh4WOIophB0xzeDmfBliLjxtMoqOUtKNiZb-Pir1B319gCwFRiEUChPOeaCwECIQIcRdPIowuGRRRpWZxNlwiqnBQFUesHNoGTmFDpjMYcpNt4yEzQGWjUwZyJQZmTKnjM5mUwp-vxBXC8WyfLumzKWEGKg6F4bPC0UuDP_E7PBP1Cdotd66bbDGdfOmgtYg9CLTy5wqKo1HE32EVuTbuJeOjrMV_QEpfu5g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iInrwLdbnHjwpi_tOchS1VCyloBY9hbxWF-q2drfiz3eyj1ZFBfGcySw7k8xMMpNvEDpyqZauKK7AiGMH0g9sjrGwQ6koBBQy8gqc7l4bdzrk_p52qz6nWV3tXqckyzcNBqUpzU-HKj6dPnwDN2-OwRg2a0RsOLPPBaZnkDmu3_QmlywGPc4p8L1Nsb2Nfc-tM5vfcTH4Ck-D9PEFvv7ZT02Dzy_50sINNVf-_QOraLmKQK2zcsmsoRmdrqOlD7iEG-ihZYpkBrC29GCcWQYevN_XfUsWLSCAxOJSgr8yMBPKKoGZwWpa2VgMkzcgVMmjaUZiJc9grmDaaFTV3G2iu-bl7XnLrnow2NInUW7HioY-RJERpzwgQeiCDYi10lh4WOAophCOxLSAofNliLnwtMk0OkpJNyZa-ltoNh2kehtZCoxFKBQmnPNAYSFEIEKIx3gUYXDVooF2J9JnwxJrg4HaPGDn0AZyan0wWcGXmy4afTYFXjYyZSBTZmTKnAY6nkyp-f1CvFcrmVXbOGMuJcRA2LkwfFIr9cPwT8x2_kR9iBa6F03Wvupc76JFiMhIecezh2bz0Vjvo3n5mifZ6KBY3O_wPPdE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+parallel+computing+accelerated+iterative+subpixel+digital+image+correlation&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%EF%BC%9A%E6%8A%80%E6%9C%AF%E7%A7%91%E5%AD%A6%E8%8B%B1%E6%96%87%E7%89%88&rft.au=HUANG+JianWen%3BZHANG+LingQi%3BJIANG+ZhenYu%3BDONG+ShouBin%3BCHEN+Wei%3BLIU+YiPing%3BLIU+ZeJia%3BZHOU+LiCheng%3BTANG+LiQun&rft.date=2018&rft.issn=1674-7321&rft.eissn=1869-1900&rft.volume=61&rft.issue=1&rft.spage=74&rft.epage=85&rft_id=info:doi/10.1007%2Fs11431-017-9168-0&rft.externalDocID=674285009
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60110X%2F60110X.jpg