A Mechanised Proof of Gödel’s Incompleteness Theorems Using Nominal Isabelle
An Isabelle/HOL formalisation of Gödel’s two incompleteness theorems is presented. The work follows Świerczkowski’s detailed proof of the theorems using hereditarily finite (HF) set theory (Dissertationes Mathematicae 422 , 1–58, 2003 ). Avoiding the usual arithmetical encodings of syntax eliminates...
Uloženo v:
| Vydáno v: | Journal of automated reasoning Ročník 55; číslo 1; s. 1 - 37 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.06.2015
Springer Nature B.V |
| Témata: | |
| ISSN: | 0168-7433, 1573-0670 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | An Isabelle/HOL formalisation of Gödel’s two incompleteness theorems is presented. The work follows Świerczkowski’s detailed proof of the theorems using hereditarily finite (HF) set theory (Dissertationes Mathematicae
422
, 1–58,
2003
). Avoiding the usual arithmetical encodings of syntax eliminates the necessity to formalise elementary number theory within an embedded logical calculus. The Isabelle formalisation uses two separate treatments of variable binding: the nominal package (Logical Methods in Computer Science
8
(2:14), 1–35,
2012
) is shown to scale to a development of this complexity, while de Bruijn indices (Indagationes Mathematicae
34
, 381–392,
1972
) turn out to be ideal for coding syntax. Critical details of the Isabelle proof are described, in particular gaps and errors found in the literature. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0168-7433 1573-0670 |
| DOI: | 10.1007/s10817-015-9322-8 |