Adaptive sampling for active learning with genetic programming

Active learning is a machine learning paradigm allowing to decide which inputs to use for training. It is introduced to Genetic Programming (GP) essentially thanks to the dynamic data sampling, used to address some known issues such as the computational cost, the over-fitting problem and the imbalan...

Full description

Saved in:
Bibliographic Details
Published in:Cognitive systems research Vol. 65; pp. 23 - 39
Main Authors: Ben Hamida, Sana, Hmida, Hmida, Borgi, Amel, Rukoz, Marta
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2021
Elsevier
Subjects:
ISSN:1389-0417, 1389-0417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Active learning is a machine learning paradigm allowing to decide which inputs to use for training. It is introduced to Genetic Programming (GP) essentially thanks to the dynamic data sampling, used to address some known issues such as the computational cost, the over-fitting problem and the imbalanced databases. The traditional dynamic sampling for GP gives to the algorithm a new sample periodically, often each generation, without considering the state of the evolution. In so doing, individuals do not have enough time to extract the hidden knowledge. An alternative approach is to use some information about the learning state to adapt the periodicity of the training data change. In this work, we propose an adaptive sampling strategy for classification tasks based on the state of solved fitness cases throughout learning. It is a flexible approach that could be applied with any dynamic sampling. We implemented some sampling algorithms extended with dynamic and adaptive controlling re-sampling frequency. We experimented them to solve the KDD intrusion detection and the Adult incomes prediction problems with GP. The experimental study demonstrates how the sampling frequency control preserves the power of dynamic sampling with possible improvements in learning time and quality. We also demonstrate that adaptive sampling can be an alternative to multi-level sampling. This work opens many new relevant extension paths.
AbstractList Active learning is a machine learning paradigm allowing to decide which inputs to use for training. It is introduced to Genetic Programming (GP) essentially thanks to the dynamic data sampling, used to address some known issues such as the computational cost, the over-fitting problem and the imbalanced databases. The traditional dynamic sampling for GP gives to the algorithm a new sample periodically, often each generation, without considering the state of the evolution. In so doing, individuals do not have enough time to extract the hidden knowledge. An alternative approach is to use some information about the learning state to adapt the periodicity of the training data change. In this work, we propose an adaptive sampling strategy for classification tasks based on the state of solved fitness cases throughout learning. It is a flexible approach that could be applied with any dynamic sampling. We implemented some sampling algorithms extended with dynamic and adaptive controlling re-sampling frequency. We experimented them to solve the KDD intrusion detection and the Adult incomes prediction problems with GP. The experimental study demonstrates how the sampling frequency control preserves the power of dynamic sampling with possible improvements in learning time and quality. We also demonstrate that adaptive sampling can be an alternative to multi-level sampling. This work opens many new relevant extension paths.
Author Borgi, Amel
Ben Hamida, Sana
Hmida, Hmida
Rukoz, Marta
Author_xml – sequence: 1
  givenname: Sana
  surname: Ben Hamida
  fullname: Ben Hamida, Sana
  email: sana.mrabet@dauphine.psl.eu
  organization: Université Paris Dauphine, PSL Research University, CNRS, UMR, LAMSADE, Paris 75016, France
– sequence: 2
  givenname: Hmida
  surname: Hmida
  fullname: Hmida, Hmida
  organization: Université Paris Dauphine, PSL Research University, CNRS, UMR, LAMSADE, Paris 75016, France
– sequence: 3
  givenname: Amel
  surname: Borgi
  fullname: Borgi, Amel
  email: amel.borgi@insat.rnu.tn
  organization: Université de Tunis El Manar, Institut Supérieur d’Informatique et Faculté des Sciences de Tunis, LR11ES14 LIPAH, Tunis 2092, Tunisia
– sequence: 4
  givenname: Marta
  surname: Rukoz
  fullname: Rukoz, Marta
  email: marta.rukoz@lamsade.dauphine.fr
  organization: Université Paris Dauphine, PSL Research University, CNRS, UMR, LAMSADE, Paris 75016, France
BackLink https://hal.science/hal-03493499$$DView record in HAL
BookMark eNqFkEFLwzAUx4NMcE6_gYdePbS-tF2beBiMoU4YeNFzSJO0y2ibkoTJvr2pFREPCg_e4__e7x1-l2jWm14hdIMhwYCLu0MiTONOLkkhhQRIAkDO0BxnhMaQ43L2Y75Al84dIGB0mc7Rai354PVRRY53Q6v7JqqNjbj4zFrFbT9m79rvo0b1ymsRDdY0lnddWFyh85q3Tl1_9QV6e3x43Wzj3cvT82a9i0VGCh9LAkJIDJSAXCpcyKyiVV5XJEypIlzklFcpLeQyz1IiS1xlMi1rCjWlpayybIFup7973rLB6o7bEzNcs-16x8YMspyGokccbvPpVljjnFX1N4CBjb7YgU2-2OiLAWHBV8Duf2FCe-616b3luv0PXk2wChKOWlnmhFa9UFJbJTyTRv_94AOkD4tv
CitedBy_id crossref_primary_10_1016_j_jare_2025_07_023
crossref_primary_10_1002_ange_202505301
crossref_primary_10_1007_s10710_024_09501_6
crossref_primary_10_1002_anie_202505301
crossref_primary_10_1016_j_asoc_2023_110427
crossref_primary_10_1007_s10710_025_09516_7
crossref_primary_10_1109_TEVC_2023_3257230
Cites_doi 10.1162/106365604773955157
10.1016/j.ejor.2007.08.008
10.1145/3188745.3188752
10.1145/347090.347110
10.1109/TMTT.2010.2090407
10.1002/9781119136378
10.1007/978-3-319-47898-2_6
10.4310/CIS.2002.v2.n1.a3
10.1007/978-3-642-17432-2_28
10.1007/978-3-540-46239-2_9
10.1115/1.4031905
10.1007/978-3-540-24621-3_22
10.1115/DETC2011-47288
10.1177/105971239700500201
10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0186
10.1023/A:1022673506211
10.1007/978-3-540-24840-8_12
10.1007/s10115-012-0507-8
10.1016/j.ins.2016.12.023
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Attribution - NonCommercial
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.cogsys.2020.08.008
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EISSN 1389-0417
EndPage 39
ExternalDocumentID oai:HAL:hal-03493499v1
10_1016_j_cogsys_2020_08_008
S1389041720300541
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AADFP
AADPK
AAEDT
AAEDW
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFRF
ABIVO
ABJNI
ABMAC
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACNNM
ACRLP
ACXNI
ACZNC
ADEZE
ADJOM
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFYLN
AGHFR
AGUBO
AGWIK
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSN
SST
SSV
SSY
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
AEIPS
AFJKZ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c386t-d80ccd10980d5e16d3b9b4fb86d32e8ac49ab296d54328d71b3d27f90f997db33
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000595249800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-0417
IngestDate Tue Oct 14 20:39:57 EDT 2025
Sat Nov 29 07:01:06 EST 2025
Tue Nov 18 22:51:07 EST 2025
Fri Feb 23 02:46:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Training data sampling
Adaptive sampling
Active learning
Genetic programming
Sampling frequency control
Machine learning
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-d80ccd10980d5e16d3b9b4fb86d32e8ac49ab296d54328d71b3d27f90f997db33
ORCID 0000-0003-4202-613X
OpenAccessLink https://hal.science/hal-03493499
PageCount 17
ParticipantIDs hal_primary_oai_HAL_hal_03493499v1
crossref_primary_10_1016_j_cogsys_2020_08_008
crossref_citationtrail_10_1016_j_cogsys_2020_08_008
elsevier_sciencedirect_doi_10_1016_j_cogsys_2020_08_008
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Cognitive systems research
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Settles, B. (2010).
Yu, Gen (b0195) 2010
Cohn, Atlas, Ladner (b0025) 1994; 15
Pickett, B. & Turner, C. J. (2011). A review and evaluation of existing adaptive sampling criteria and methods for the creation of NURBs-based Metamodels. In
Zhang, Joung (b0205) 1999; Vol. 2
Fu, Zhu, Li (b0050) 2013; 35
Balkanski, E. & Singer, Y. (2018b). Approximation guarantees for adaptive sampling. In: J.G. Dy, A. Krause (eds.)
(vol 529, pp 50–60), doi:10.1007/978-3-319-47898-2_6.
Kohavi (b0110) 1996
Harding, Banzhaf (b0080) 2011
Hunt, R., Johnston, M., Browne, W. N., & Zhang, M. (2010). Sampling methods in genetic programming for classification with unbalanced data. In
vol 2, pp 1053–1060
CGP. (2009).
(pp 1221–1226), IEEE, doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0186, URL http://doi.ieeecomputersociety.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0186
Atlas, L. E., Cohn, D., & Ladner, R. (1990) Training connectionist networks with queries and selective sampling. In
Simon, D. (2013).
Nordin, Banzhaf (b0160) 1997; 5
Freitas (b0045) 2002
Hmida, H., Ben Hamida, S., Borgi, A., & Rukoz, M. (2016a). Hierarchical data topology based selection for large scale learning. In
(vol 80, pp 393–402).
Li, Jacob (b0130) 2008; 188
Ghatercole, Ross (b0065) 1997
Pétrowski, A. & Ben Hamida, S. (2017).
.
Zhang, Cho (b0200) 1999
(pp 1138–1151). ACM, doi:10.1145/3188745.3188752.
Koza (b0115) 1992
Tech. Rep. 1648, University of Wisconsin, Madison.
Eiben, Michalewicz, Schoenauer, Smith (b0040) 2007
Gathercole, Ross (b0060) 1994; Vol. 866
Luo, Hou, Zhong, Cai, Ma (b0150) 2017; 382–383
Gathercole, C. (1998).
Gonçalves, I. & Silva, S. (2013). Balancing learning and overfitting in genetic programming with interleaved sampling of training data. In K. Krawiec, A. Moraglio, T. Hu, A.S. Etaner-Uyar, B. Hu (eds.)
Haitao, Yew-Soon, Jianfei (b0075) 2018; 57
Thesis, University of Edinburgh
(Vol. 2, Parts A and B, pp 609–618), doi:10.1115/DETC2011-47288.
Hmida, H., Ben Hamida, S., Borgi, A., & Rukoz, M. (2016b). Sampling methods in genetic programming learners from large datasets: A comparative study. In P. Angelov, Y. Manolopoulos, L.S. Iliadis, A. Roy, M.M.B.R. Vellasco (eds.)
Lasarczyk, Dittrich, Banzhaf (b0120) 2004; 12
UCI. (1999). Kdd cup.
John Wiley & Sons, USA, doi:10.1002/9781119136378
Iyengar, V. S., Apté, C., & Zhang, T. (2000). Active learning using adaptive resampling. In R. Ramakrishnan, S.J. Stolfo, R.J. Bayardo, I. Parsa (eds.)
(pp 91–98). ACM, doi:10.1145/347090.347110.
(Vol. 1802, pp 121–132).
Miller, J. F. & Thomson, P. (2000). Cartesian genetic programming. In
Li (b0125) 2002; 2
(Vol. 6464, pp 273–282), doi:10.1007/978-3-642-17432-2_28.
(Vol. 7831, pp 73–84), doi:10.1007/978-3-642-37207-0_7.
Liu, H., Xu, S., Ma, Y., Chen, X., & Wang, X. (2015) An adaptive bayesian sequential sampling approach for global metamodeling.
Deschrijver, Crombecq, Nguyen, Dhaene (b0035) 2011; 59
Luke, S. (2017).
Paris, G., Robilliard, D., Fonlupt, C. (2003). Exploring overfitting in genetic programming. In: P. Liardet, P. Collet, C. Fonlupt, E. Lutton, M. Schoenauer (eds.)
(Vol. 2, pp 566–573). Morgan-Kaufmann.
(Vol. 2936, pp 267–277), doi:10.1007/978-3-540-24621-3_22.
138(1), doi:10.1115/1.4031905, 011404
John Wiley & Sons, USA, doi:10.1007/978-1-84996-129-5
Balkanski, E. & Singer, Y. (2018a). The adaptive complexity of maximizing a submodular function. In: I. Diakonikolas, D. Kempe, M. Henzinger (eds.)
Curry, R. & Heywood, M. I. (2004). Towards efficient training on large datasets for genetic programming. In
Iba, H. (1999). Bagging, boosting, and bloating in genetic programming. In
(vol 3060, pp 161–174), doi:10.1007/978-3-540-24840-8_12.
Liu, Khoshgoftaar (b0140) 2004
Gathercole (10.1016/j.cogsys.2020.08.008_b0060) 1994; Vol. 866
Ghatercole (10.1016/j.cogsys.2020.08.008_b0065) 1997
Yu (10.1016/j.cogsys.2020.08.008_b0195) 2010
Freitas (10.1016/j.cogsys.2020.08.008_b0045) 2002
Koza (10.1016/j.cogsys.2020.08.008_b0115) 1992
Luo (10.1016/j.cogsys.2020.08.008_b0150) 2017; 382–383
Deschrijver (10.1016/j.cogsys.2020.08.008_b0035) 2011; 59
10.1016/j.cogsys.2020.08.008_b0155
Zhang (10.1016/j.cogsys.2020.08.008_b0205) 1999; Vol. 2
Fu (10.1016/j.cogsys.2020.08.008_b0050) 2013; 35
10.1016/j.cogsys.2020.08.008_b0135
10.1016/j.cogsys.2020.08.008_b0015
10.1016/j.cogsys.2020.08.008_b0030
10.1016/j.cogsys.2020.08.008_b0010
10.1016/j.cogsys.2020.08.008_b0175
10.1016/j.cogsys.2020.08.008_b0055
10.1016/j.cogsys.2020.08.008_b0070
Lasarczyk (10.1016/j.cogsys.2020.08.008_b0120) 2004; 12
10.1016/j.cogsys.2020.08.008_b0170
Haitao (10.1016/j.cogsys.2020.08.008_b0075) 2018; 57
10.1016/j.cogsys.2020.08.008_b0095
Kohavi (10.1016/j.cogsys.2020.08.008_b0110) 1996
10.1016/j.cogsys.2020.08.008_b0090
10.1016/j.cogsys.2020.08.008_b0190
Harding (10.1016/j.cogsys.2020.08.008_b0080) 2011
Liu (10.1016/j.cogsys.2020.08.008_b0140) 2004
Nordin (10.1016/j.cogsys.2020.08.008_b0160) 1997; 5
Li (10.1016/j.cogsys.2020.08.008_b0125) 2002; 2
10.1016/j.cogsys.2020.08.008_b0005
10.1016/j.cogsys.2020.08.008_b0105
10.1016/j.cogsys.2020.08.008_b0100
Cohn (10.1016/j.cogsys.2020.08.008_b0025) 1994; 15
10.1016/j.cogsys.2020.08.008_b0145
10.1016/j.cogsys.2020.08.008_b0085
10.1016/j.cogsys.2020.08.008_b0020
10.1016/j.cogsys.2020.08.008_b0185
10.1016/j.cogsys.2020.08.008_b0165
10.1016/j.cogsys.2020.08.008_b0180
Eiben (10.1016/j.cogsys.2020.08.008_b0040) 2007
Zhang (10.1016/j.cogsys.2020.08.008_b0200) 1999
Li (10.1016/j.cogsys.2020.08.008_b0130) 2008; 188
References_xml – volume: Vol. 866
  start-page: 312
  year: 1994
  end-page: 321
  ident: b0060
  article-title: Dynamic training subset selection for supervised learning in genetic programming
  publication-title: Parallel problem solving from nature III
– volume: Vol. 2
  start-page: 1217
  year: 1999
  end-page: 1224
  ident: b0205
  article-title: Genetic programming with incremental data inheritance
  publication-title: The genetic and evolutionary computation conference, proc
– reference: Gathercole, C. (1998).
– reference: Hmida, H., Ben Hamida, S., Borgi, A., & Rukoz, M. (2016a). Hierarchical data topology based selection for large scale learning. In
– reference: (pp 1221–1226), IEEE, doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0186, URL http://doi.ieeecomputersociety.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0186
– reference: (pp 1138–1151). ACM, doi:10.1145/3188745.3188752.
– reference: . (vol 3060, pp 161–174), doi:10.1007/978-3-540-24840-8_12.
– volume: 15
  start-page: 201
  year: 1994
  end-page: 221
  ident: b0025
  article-title: Improving generalization with active learning
  publication-title: Machine Learning
– reference: Iyengar, V. S., Apté, C., & Zhang, T. (2000). Active learning using adaptive resampling. In R. Ramakrishnan, S.J. Stolfo, R.J. Bayardo, I. Parsa (eds.),
– reference: Settles, B. (2010).
– reference: CGP. (2009).
– year: 2010
  ident: b0195
  article-title: Introduction to evolutionary algorithms
  publication-title: Decision Engineering, Springer, London, London,
– volume: 35
  start-page: 249
  year: 2013
  end-page: 283
  ident: b0050
  article-title: A survey on instance selection for active learning
  publication-title: Knowledge and Information Systems
– reference: (Vol. 1802, pp 121–132).
– reference: . Thesis, University of Edinburgh
– reference: (Vol. 7831, pp 73–84), doi:10.1007/978-3-642-37207-0_7.
– volume: 57
  year: 2018
  ident: b0075
  article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design
  publication-title: Structural and Multidisciplinary Optimization
– year: 1992
  ident: b0115
  article-title: Genetic programming – on the programming of computers by means of natural selection. Complex adaptive systems
– reference: Pickett, B. & Turner, C. J. (2011). A review and evaluation of existing adaptive sampling criteria and methods for the creation of NURBs-based Metamodels. In
– start-page: 202
  year: 1996
  end-page: 207
  ident: b0110
  article-title: Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid
  publication-title: Proceedings of the second international conference on Knowledge Discovery and Data Mining (KDD-96)
– reference: Miller, J. F. & Thomson, P. (2000). Cartesian genetic programming. In
– reference: UCI. (1999). Kdd cup.
– reference: &
– reference: Hmida, H., Ben Hamida, S., Borgi, A., & Rukoz, M. (2016b). Sampling methods in genetic programming learners from large datasets: A comparative study. In P. Angelov, Y. Manolopoulos, L.S. Iliadis, A. Roy, M.M.B.R. Vellasco (eds.),
– volume: 5
  start-page: 107
  year: 1997
  end-page: 140
  ident: b0160
  article-title: An on-line method to evolve behavior and to control a miniature robot in real time with genetic programming
  publication-title: Adaptive Behaviour
– reference: . (Vol. 2, Parts A and B, pp 609–618), doi:10.1115/DETC2011-47288.
– reference: .
– reference: 138(1), doi:10.1115/1.4031905, 011404,
– reference: . Tech. Rep. 1648, University of Wisconsin, Madison.
– volume: 2
  start-page: 53
  year: 2002
  end-page: 68
  ident: b0125
  article-title: Data reduction via adaptive sampling
  publication-title: Communications in Information and Systems
– reference: , vol 2, pp 1053–1060
– reference: Paris, G., Robilliard, D., Fonlupt, C. (2003). Exploring overfitting in genetic programming. In: P. Liardet, P. Collet, C. Fonlupt, E. Lutton, M. Schoenauer (eds.),
– reference: Hunt, R., Johnston, M., Browne, W. N., & Zhang, M. (2010). Sampling methods in genetic programming for classification with unbalanced data. In
– start-page: 146
  year: 1999
  end-page: 153
  ident: b0200
  article-title: Genetic programming with active data selection
  publication-title: Simulated evolution and learning
– reference: Liu, H., Xu, S., Ma, Y., Chen, X., & Wang, X. (2015) An adaptive bayesian sequential sampling approach for global metamodeling.
– reference: (vol 80, pp 393–402).
– volume: 59
  start-page: 39
  year: 2011
  end-page: 45
  ident: b0035
  article-title: Adaptive sampling algorithm for macromodeling of parameterized s -parameter responses
  publication-title: IEEE Transactions on Microwave Theory and Techniques
– reference: Iba, H. (1999). Bagging, boosting, and bloating in genetic programming. In
– start-page: 111
  year: 1997
  end-page: 118
  ident: b0065
  article-title: Small populations over many generations can beat large populations over few generations in genetic programming
  publication-title: Genetic programming 1997: Proc. of the second annual conf
– reference: . John Wiley & Sons, USA, doi:10.1002/9781119136378
– reference: (Vol. 2936, pp 267–277), doi:10.1007/978-3-540-24621-3_22.
– reference: Pétrowski, A. & Ben Hamida, S. (2017).
– reference: (vol 529, pp 50–60), doi:10.1007/978-3-319-47898-2_6.
– reference: (Vol. 2, pp 566–573). Morgan-Kaufmann.
– reference: Balkanski, E. & Singer, Y. (2018b). Approximation guarantees for adaptive sampling. In: J.G. Dy, A. Krause (eds.)
– reference: (pp 91–98). ACM, doi:10.1145/347090.347110.
– reference: Balkanski, E. & Singer, Y. (2018a). The adaptive complexity of maximizing a submodular function. In: I. Diakonikolas, D. Kempe, M. Henzinger (eds.),
– volume: 188
  start-page: 910
  year: 2008
  end-page: 924
  ident: b0130
  article-title: Adaptive data reduction for large-scale transaction data
  publication-title: European Journal of Operational Research
– volume: 12
  start-page: 223
  year: 2004
  end-page: 242
  ident: b0120
  article-title: Dynamic subset selection based on a fitness case topology
  publication-title: Evolutionary Computation
– reference: (Vol. 6464, pp 273–282), doi:10.1007/978-3-642-17432-2_28.
– reference: . John Wiley & Sons, USA, doi:10.1007/978-1-84996-129-5
– reference: Gonçalves, I. & Silva, S. (2013). Balancing learning and overfitting in genetic programming with interleaved sampling of training data. In K. Krawiec, A. Moraglio, T. Hu, A.S. Etaner-Uyar, B. Hu (eds.),
– reference: .
– reference: Curry, R. & Heywood, M. I. (2004). Towards efficient training on large datasets for genetic programming. In
– start-page: 463
  year: 2011
  end-page: 470
  ident: b0080
  article-title: Implementing cartesian genetic programming classifiers on graphics processing units using gpu.net
  publication-title: GECCO 2011 Computational intelligence on consumer games and graphics hardware (CIGPU), ACM, Dublin, Ireland
– start-page: 19
  year: 2007
  end-page: 46
  ident: b0040
  article-title: Parameter control in evolutionary algorithms
  publication-title: Parameter setting in evolutionary algorithms
– year: 2002
  ident: b0045
  article-title: Data mining and knowledge discovery with evolutionary algorithms
– volume: 382–383
  start-page: 216
  year: 2017
  end-page: 233
  ident: b0150
  article-title: Sampling-based adaptive bounding evolutionary algorithm for continuous optimization problems
  publication-title: Information Sciences
– reference: Atlas, L. E., Cohn, D., & Ladner, R. (1990) Training connectionist networks with queries and selective sampling. In
– reference: Luke, S. (2017).
– start-page: 56
  year: 2004
  end-page: 65
  ident: b0140
  article-title: Reducing overfitting in genetic programming models for software quality classification
  publication-title: 8th IEEE international symposium on high-assurance systems engineering
– reference: Simon, D. (2013).
– volume: Vol. 866
  start-page: 312
  year: 1994
  ident: 10.1016/j.cogsys.2020.08.008_b0060
  article-title: Dynamic training subset selection for supervised learning in genetic programming
– start-page: 56
  year: 2004
  ident: 10.1016/j.cogsys.2020.08.008_b0140
  article-title: Reducing overfitting in genetic programming models for software quality classification
– ident: 10.1016/j.cogsys.2020.08.008_b0185
– volume: 12
  start-page: 223
  issue: 2
  year: 2004
  ident: 10.1016/j.cogsys.2020.08.008_b0120
  article-title: Dynamic subset selection based on a fitness case topology
  publication-title: Evolutionary Computation
  doi: 10.1162/106365604773955157
– volume: 188
  start-page: 910
  issue: 3
  year: 2008
  ident: 10.1016/j.cogsys.2020.08.008_b0130
  article-title: Adaptive data reduction for large-scale transaction data
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.08.008
– year: 2010
  ident: 10.1016/j.cogsys.2020.08.008_b0195
  article-title: Introduction to evolutionary algorithms
  publication-title: Decision Engineering, Springer, London, London,
– ident: 10.1016/j.cogsys.2020.08.008_b0010
  doi: 10.1145/3188745.3188752
– ident: 10.1016/j.cogsys.2020.08.008_b0055
– ident: 10.1016/j.cogsys.2020.08.008_b0105
  doi: 10.1145/347090.347110
– ident: 10.1016/j.cogsys.2020.08.008_b0070
– start-page: 202
  year: 1996
  ident: 10.1016/j.cogsys.2020.08.008_b0110
  article-title: Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid
– ident: 10.1016/j.cogsys.2020.08.008_b0145
– year: 1992
  ident: 10.1016/j.cogsys.2020.08.008_b0115
– volume: 59
  start-page: 39
  issue: 1
  year: 2011
  ident: 10.1016/j.cogsys.2020.08.008_b0035
  article-title: Adaptive sampling algorithm for macromodeling of parameterized s -parameter responses
  publication-title: IEEE Transactions on Microwave Theory and Techniques
  doi: 10.1109/TMTT.2010.2090407
– start-page: 19
  year: 2007
  ident: 10.1016/j.cogsys.2020.08.008_b0040
  article-title: Parameter control in evolutionary algorithms
– volume: Vol. 2
  start-page: 1217
  year: 1999
  ident: 10.1016/j.cogsys.2020.08.008_b0205
  article-title: Genetic programming with incremental data inheritance
– ident: 10.1016/j.cogsys.2020.08.008_b0170
  doi: 10.1002/9781119136378
– ident: 10.1016/j.cogsys.2020.08.008_b0090
  doi: 10.1007/978-3-319-47898-2_6
– year: 2002
  ident: 10.1016/j.cogsys.2020.08.008_b0045
– volume: 2
  start-page: 53
  issue: 1
  year: 2002
  ident: 10.1016/j.cogsys.2020.08.008_b0125
  article-title: Data reduction via adaptive sampling
  publication-title: Communications in Information and Systems
  doi: 10.4310/CIS.2002.v2.n1.a3
– ident: 10.1016/j.cogsys.2020.08.008_b0095
  doi: 10.1007/978-3-642-17432-2_28
– ident: 10.1016/j.cogsys.2020.08.008_b0155
  doi: 10.1007/978-3-540-46239-2_9
– ident: 10.1016/j.cogsys.2020.08.008_b0135
  doi: 10.1115/1.4031905
– ident: 10.1016/j.cogsys.2020.08.008_b0165
  doi: 10.1007/978-3-540-24621-3_22
– ident: 10.1016/j.cogsys.2020.08.008_b0175
  doi: 10.1115/DETC2011-47288
– ident: 10.1016/j.cogsys.2020.08.008_b0180
– volume: 5
  start-page: 107
  issue: 2
  year: 1997
  ident: 10.1016/j.cogsys.2020.08.008_b0160
  article-title: An on-line method to evolve behavior and to control a miniature robot in real time with genetic programming
  publication-title: Adaptive Behaviour
  doi: 10.1177/105971239700500201
– ident: 10.1016/j.cogsys.2020.08.008_b0085
  doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0186
– volume: 15
  start-page: 201
  year: 1994
  ident: 10.1016/j.cogsys.2020.08.008_b0025
  article-title: Improving generalization with active learning
  publication-title: Machine Learning
  doi: 10.1023/A:1022673506211
– ident: 10.1016/j.cogsys.2020.08.008_b0015
– ident: 10.1016/j.cogsys.2020.08.008_b0030
  doi: 10.1007/978-3-540-24840-8_12
– start-page: 146
  year: 1999
  ident: 10.1016/j.cogsys.2020.08.008_b0200
  article-title: Genetic programming with active data selection
– start-page: 111
  year: 1997
  ident: 10.1016/j.cogsys.2020.08.008_b0065
  article-title: Small populations over many generations can beat large populations over few generations in genetic programming
– start-page: 463
  year: 2011
  ident: 10.1016/j.cogsys.2020.08.008_b0080
  article-title: Implementing cartesian genetic programming classifiers on graphics processing units using gpu.net
– ident: 10.1016/j.cogsys.2020.08.008_b0100
– volume: 35
  start-page: 249
  issue: 2
  year: 2013
  ident: 10.1016/j.cogsys.2020.08.008_b0050
  article-title: A survey on instance selection for active learning
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-012-0507-8
– volume: 57
  issue: 1
  year: 2018
  ident: 10.1016/j.cogsys.2020.08.008_b0075
  article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design
  publication-title: Structural and Multidisciplinary Optimization
– ident: 10.1016/j.cogsys.2020.08.008_b0190
– volume: 382–383
  start-page: 216
  year: 2017
  ident: 10.1016/j.cogsys.2020.08.008_b0150
  article-title: Sampling-based adaptive bounding evolutionary algorithm for continuous optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.12.023
– ident: 10.1016/j.cogsys.2020.08.008_b0005
– ident: 10.1016/j.cogsys.2020.08.008_b0020
SSID ssj0016952
Score 2.2969012
Snippet Active learning is a machine learning paradigm allowing to decide which inputs to use for training. It is introduced to Genetic Programming (GP) essentially...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 23
SubjectTerms Active learning
Adaptive sampling
Computer Science
Genetic programming
Machine learning
Sampling frequency control
Training data sampling
Title Adaptive sampling for active learning with genetic programming
URI https://dx.doi.org/10.1016/j.cogsys.2020.08.008
https://hal.science/hal-03493499
Volume 65
WOSCitedRecordID wos000595249800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1389-0417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016952
  issn: 1389-0417
  databaseCode: AIEXJ
  dateStart: 19991201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxsNeuAwQ46YI8YYiJbbjywtSBJsyqKoJhtQ3y4nTXWjTquuqgcR_59iO08CENh6QKityHafx-XpsH3_nHITeCKpTUmsaV1KwmGIsY2kYi2UmtK451di4kPlDPhqJ8VgeDQY_gy_MesqbRlxdycV_FTXUgbCt6-w_iLvrFCrgGoQOJYgdylsJPjd64fhAF9qyxQNR0um1kCSitb9CH9aHMZC0ZmEaC5ELOmqRj_dsTxh6xi_n3dO8LfTszGhvXW46JV-ESnfRtZ8vTxx9IJ_VHbXj8-W3-Y_Wb2il-2YInP5hhgj-MT1VSiwZi3rPzKBrWdZXlqQ37fqQRtcUurctnIM8TuBVYT-PExdyNRGbCSwc2hf5F3X04UAND0effv-2Rzos8iGUp3oa28g88JFr2DxvY55J0Ovb-eH--GN3DMWkS9nUvUrwvXQEwes_6W9rmzunwUrvVi3HD9C9drsR5R4mD9GgbnbR_ZDKI2o1-y7a6SbC74_QuwChKEAoAghFHkJRgFBkIRS1EIp6EHqMvh7sH78v4jbPRlwRwVaxEUlVmTSRIjFZnTJDSlnSSSngCtdCV1TqEktmMkqwMDwticF8IpOJlNyUhDxBW828qZ-iqJJYM50IjSmntZa2S6JJUiU1Z2ZC9xAJI6SqNgi9zYUyVYFteK78uCo7rsqmSE3EHoq7uxY-CMsN7XkYfNUuJP0CUQGsbrjzNciqe4iNvQ6AUbZuA5dnt2n0HO1s_iYv0NZqeVm_RHer9ersYvmqBdovWoyfdA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+sampling+for+active+learning+with+genetic+programming&rft.jtitle=Cognitive+systems+research&rft.au=Ben+Hamida%2C+Sana&rft.au=Hmida%2C+Hmida&rft.au=Borgi%2C+Amel&rft.au=Rukoz%2C+Marta&rft.date=2021-01-01&rft.pub=Elsevier&rft.issn=1389-0417&rft.volume=65&rft.spage=23&rft.epage=39&rft_id=info:doi/10.1016%2Fj.cogsys.2020.08.008&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03493499v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-0417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-0417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-0417&client=summon