Solving constrained optimal power flow with renewables using hybrid modified imperialist competitive algorithm and sequential quadratic programming
•Proposed a novel Hybrid Modified Imperialist Competitive Algorithm and Sequential Quadratic Programming.•Studied the uncertainties of solar power and wind energy.•Solved different OPF problems including wind and solar generators.•A comparative study proved the effectiveness of the HMICA-SQP in prov...
Saved in:
| Published in: | Electric power systems research Vol. 177; p. 105989 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.12.2019
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0378-7796, 1873-2046 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Proposed a novel Hybrid Modified Imperialist Competitive Algorithm and Sequential Quadratic Programming.•Studied the uncertainties of solar power and wind energy.•Solved different OPF problems including wind and solar generators.•A comparative study proved the effectiveness of the HMICA-SQP in providing better solutions.•A statistical performance evaluation proved the validity and robustness of the proposed method.
The objective of this paper was to develop and solve different constrained optimal power flow (OPF) problems for hybrid power systems containing renewable energy sources like wind energy and solar power. OPF seeks to optimize the transmission of electric power by finding a steady state operating point that minimizes gas emission and cost of generated electric power without disturbing network power flow, operating limits and system constraints. The OPF problem was solved using a hybrid modified imperialist competitive algorithm and sequential quadratic programming, (HMICA-SQP). Efficacy of the modified imperialist competitive algorithm (MICA) is further enhanced by the process of hybridization with the sequential quadratic programming (SQP) for rapid local refinement and improved precision of the solution. The potential and effectiveness of the proposed metaheuristic were presented and assessed using three benchmark test systems IEEE 30, IEEE 57 and IEEE 118-bus power systems that incorporates several solar and wind energy sources. Comparison of simulation results with recently published optimization approaches solutions showed that the suggested paradigm is more efficient, robust and provides the lowest cost of generated electric power while keeping low emissions. |
|---|---|
| AbstractList | The objective of this paper was to develop and solve different constrained optimal power flow (OPF) problems for hybrid power systems containing renewable energy sources like wind energy and solar power. OPF seeks to optimize the transmission of electric power by finding a steady state operating point that minimizes gas emission and cost of generated electric power without disturbing network power flow, operating limits and system constraints. The OPF problem was solved using a hybrid modified imperialist competitive algorithm and sequential quadratic programming, (HMICA-SQP). Efficacy of the modified imperialist competitive algorithm (MICA) is further enhanced by the process of hybridization with the sequential quadratic programming (SQP) for rapid local refinement and improved precision of the solution. The potential and effectiveness of the proposed metaheuristic were presented and assessed using three benchmark test systems IEEE 30, IEEE 57 and IEEE 118-bus power systems that incorporates several solar and wind energy sources. Comparison of simulation results with recently published optimization approaches solutions showed that the suggested paradigm is more efficient, robust and provides the lowest cost of generated electric power while keeping low emissions. •Proposed a novel Hybrid Modified Imperialist Competitive Algorithm and Sequential Quadratic Programming.•Studied the uncertainties of solar power and wind energy.•Solved different OPF problems including wind and solar generators.•A comparative study proved the effectiveness of the HMICA-SQP in providing better solutions.•A statistical performance evaluation proved the validity and robustness of the proposed method. The objective of this paper was to develop and solve different constrained optimal power flow (OPF) problems for hybrid power systems containing renewable energy sources like wind energy and solar power. OPF seeks to optimize the transmission of electric power by finding a steady state operating point that minimizes gas emission and cost of generated electric power without disturbing network power flow, operating limits and system constraints. The OPF problem was solved using a hybrid modified imperialist competitive algorithm and sequential quadratic programming, (HMICA-SQP). Efficacy of the modified imperialist competitive algorithm (MICA) is further enhanced by the process of hybridization with the sequential quadratic programming (SQP) for rapid local refinement and improved precision of the solution. The potential and effectiveness of the proposed metaheuristic were presented and assessed using three benchmark test systems IEEE 30, IEEE 57 and IEEE 118-bus power systems that incorporates several solar and wind energy sources. Comparison of simulation results with recently published optimization approaches solutions showed that the suggested paradigm is more efficient, robust and provides the lowest cost of generated electric power while keeping low emissions. |
| ArticleNumber | 105989 |
| Author | Lee, Jim Ben Hmida, Jalel Chambers, Terrence |
| Author_xml | – sequence: 1 givenname: Jalel orcidid: 0000-0002-7853-8332 surname: Ben Hmida fullname: Ben Hmida, Jalel email: jalel@louisiana.edu – sequence: 2 givenname: Terrence surname: Chambers fullname: Chambers, Terrence email: tlchambers@louisiana.edu – sequence: 3 givenname: Jim surname: Lee fullname: Lee, Jim email: jlee@louisiana.edu |
| BookMark | eNp9kcFq3DAQhkVJoZu0L9CTIGdvZXlt2dBLCElaWMih7VmMpfHuLLbkSNpd8hx94cpsTznkNGj4v39G81-zK-cdMva1FOtSlM23wxrnGNZSlF1u1F3bfWCrslVVIcWmuWIrUam2UKprPrHrGA9CiKZT9Yr9_eXHE7kdN97FFIAcWu7nRBOMfPZnDHwY_ZmfKe15QIdn6EeM_BgXaP_aB7J88pYGyiBNMwaCkWLKhvmRKNEJOYw7H7LDxMFZHvHliC5lHX85gg2QyPA5-F2Aacq2n9nHAcaIX_7XG_bn8eH3_Y9i-_z08_5uW5iqbVJh69ZIW3Z9bZvBNgqtQqgGgSiqjVGqVRZ6qFWtjKoHu5EdgO1EXfY9SIChumG3F988O28Ukz74Y3B5pJZVJYSUUjRZ1V5UJvgYAw7aUMore7eca9Sl0EsE-qCXCPQSgb5EkFH5Bp1DPmx4fR_6foEwf_1EGHQ0hM6gpYAmaevpPfwfBKKofg |
| CitedBy_id | crossref_primary_10_1016_j_rser_2021_111072 crossref_primary_10_1007_s40684_020_00262_y crossref_primary_10_1155_2022_7694026 crossref_primary_10_3390_app11156883 crossref_primary_10_1002_2050_7038_12858 crossref_primary_10_1007_s40974_024_00337_5 crossref_primary_10_1038_s41598_023_37635_7 crossref_primary_10_1038_s41598_024_54510_1 crossref_primary_10_1016_j_asoc_2024_111573 crossref_primary_10_3390_math9131532 crossref_primary_10_3390_pr10122590 crossref_primary_10_1080_01430750_2022_2163287 crossref_primary_10_1016_j_asoc_2023_110977 crossref_primary_10_1016_j_epsr_2023_109346 crossref_primary_10_3390_en14102831 crossref_primary_10_1155_2021_1015367 crossref_primary_10_3233_JIFS_223994 crossref_primary_10_1080_00207160_2022_2037132 crossref_primary_10_1109_ACCESS_2021_3131161 crossref_primary_10_1007_s40998_023_00592_y crossref_primary_10_3390_math12193064 crossref_primary_10_32604_cmes_2024_048839 crossref_primary_10_1016_j_energy_2021_120211 crossref_primary_10_3390_app12031129 crossref_primary_10_1007_s00542_020_05046_7 crossref_primary_10_1007_s00500_021_05654_z crossref_primary_10_3390_electronics11223825 crossref_primary_10_1038_s41598_025_98899_9 crossref_primary_10_1049_gtd2_12555 crossref_primary_10_1007_s40095_021_00397_x crossref_primary_10_1016_j_egyr_2024_04_016 crossref_primary_10_1109_ACCESS_2022_3209996 |
| Cites_doi | 10.1016/j.engappai.2010.06.006 10.1016/j.asoc.2016.05.027 10.1007/s10115-013-0701-3 10.1016/j.asoc.2015.11.027 10.1109/59.708745 10.1016/j.apenergy.2017.11.101 10.1016/j.ijepes.2018.12.008 10.1109/TEVC.2010.2051444 10.1007/s00521-016-2794-6 10.1109/TSG.2016.2645220 10.1109/TPWRS.2013.2274577 10.1080/01621459.1979.10481670 10.1016/j.asoc.2011.09.015 10.1016/j.asoc.2018.11.042 10.1109/TPWRS.2017.2737580 10.1109/TPWRS.2017.2710481 10.1109/TMAG.2011.2172400 10.1109/TSG.2016.2549560 10.1109/TSG.2018.2807845 10.1007/s10586-017-0882-8 10.1109/ACCESS.2018.2849599 10.3390/en11112891 10.3390/en11071692 10.1016/j.ins.2009.12.010 10.1016/j.asoc.2014.08.024 10.1016/j.eswa.2012.12.093 10.1049/iet-gtd.2011.0851 10.1109/TEC.2006.874233 10.1049/iet-rpg.2017.0886 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Dec 2019 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Dec 2019 |
| DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1016/j.epsr.2019.105989 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2046 |
| ExternalDocumentID | 10_1016_j_epsr_2019_105989 S0378779619303086 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c386t-d58c2d19b5d6fd67ed7ea3f0ee034c7787daba5757c75fd429aad9051bba2aaf3 |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497593500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7796 |
| IngestDate | Sun Nov 30 03:53:23 EST 2025 Sat Nov 29 07:10:42 EST 2025 Tue Nov 18 21:18:31 EST 2025 Fri Feb 23 02:49:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Solar power Security constraints Wind energy Optimal power flow Multiobjective optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c386t-d58c2d19b5d6fd67ed7ea3f0ee034c7787daba5757c75fd429aad9051bba2aaf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7853-8332 |
| PQID | 2330022206 |
| PQPubID | 2047565 |
| ParticipantIDs | proquest_journals_2330022206 crossref_citationtrail_10_1016_j_epsr_2019_105989 crossref_primary_10_1016_j_epsr_2019_105989 elsevier_sciencedirect_doi_10_1016_j_epsr_2019_105989 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-01 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Trivedi, Jangir, Parmar (bib0065) 2018; 30 Neyestani, Farsangi, Nezam (bib0130) 2011; 23 Christie, R. Power Systems Test Case Archive Abdo, Kamel, Ebeed, Yu, Jurado (bib0075) 2018; 11 Ghaddar, Marecek, Mevissen (bib0015) 2013; 28 García, Fernández, Luengo, Herrera (bib0195) 2010; 180 Zamzam, Sidiropoulos, Dall’Anese (bib0050) 2018; 9 Abido (bib0095) 2011 Bukhsh, Grothey, McKinnon, Trodden (bib0025) 2013; 28 Hosseini, Al Khaled (bib0085) 2014; 24 Quade (bib0190) 1979; 74 Ramesh, Kannan, Baskar (bib0100) 2012; 12 Canfield, R. Koraki, Strunz (bib0115) 2018; 33 Singh, Mukherjee, Ghoshal (bib0055) 2016; 40 (October 2018). Biswas, Suganthan, Mallipeddi Gehan, Amaratunga (bib0010) 2019; 75 Mahdad, Srairi (bib0080) 2016; 46 Yu, Wong, Wang, Wei (bib0090) 2011; 15 Niknam, Narimani, Aghaei, Azizipanah-Abarghooee (bib0135) 2012; 6 Cruz, Fitiwi, Santos, Mariano, Catalao (bib0110) 2018 Afonso, Mariani, dos Santos Coelho (bib0105) 2013; 40 Tian, Wang, Li, Zhou (bib0160) 2018; 12 Esmaeil, Lucas (bib0150) 2007 Ben Hmida, Morshed, Lee, Chambers (bib0030) 2018; 11 Coelho, Afonso, Alotto (bib0145) 2012; 48 Zhou, Su, Liu, Cui, Liu (bib0070) 2018 IRENA (bib0005) 2018 Fortenbacher, Demiray (bib0040) 2019; 107 Xie, Ji, Li, Wu (bib0140) 2018; 33 Wei, Sasaki, Kubokawa, Yokoyama (bib0045) 1998; 13 Duman (bib0060) 2018; 6 Han, Quan, Xiong (bib0155) 2015; 42 Karki, Hu, Billinton (bib0125) 2006; 21 Morshed, Ben Hmida, Fekih (bib0035) 2018; 211 Vaccaro, Cañizares (bib0020) 2018; 9 Rafiei, Niknam, Aghaei, Shafie-khah, Catalão (bib0120) 2018; 9 Yarpiz. Trivedi (10.1016/j.epsr.2019.105989_bib0065) 2018; 30 10.1016/j.epsr.2019.105989_bib0170 Bukhsh (10.1016/j.epsr.2019.105989_bib0025) 2013; 28 Ben Hmida (10.1016/j.epsr.2019.105989_bib0030) 2018; 11 Singh (10.1016/j.epsr.2019.105989_bib0055) 2016; 40 Koraki (10.1016/j.epsr.2019.105989_bib0115) 2018; 33 10.1016/j.epsr.2019.105989_bib0185 Ramesh (10.1016/j.epsr.2019.105989_bib0100) 2012; 12 10.1016/j.epsr.2019.105989_bib0165 Quade (10.1016/j.epsr.2019.105989_bib0190) 1979; 74 Neyestani (10.1016/j.epsr.2019.105989_bib0130) 2011; 23 Afonso (10.1016/j.epsr.2019.105989_bib0105) 2013; 40 Yu (10.1016/j.epsr.2019.105989_bib0090) 2011; 15 Han (10.1016/j.epsr.2019.105989_bib0155) 2015; 42 Cruz (10.1016/j.epsr.2019.105989_bib0110) 2018 Abdo (10.1016/j.epsr.2019.105989_bib0075) 2018; 11 Morshed (10.1016/j.epsr.2019.105989_bib0035) 2018; 211 Mahdad (10.1016/j.epsr.2019.105989_bib0080) 2016; 46 IRENA (10.1016/j.epsr.2019.105989_bib0005) 2018 Karki (10.1016/j.epsr.2019.105989_bib0125) 2006; 21 Duman (10.1016/j.epsr.2019.105989_bib0060) 2018; 6 Abido (10.1016/j.epsr.2019.105989_bib0095) 2011 10.1016/j.epsr.2019.105989_bib0180 10.1016/j.epsr.2019.105989_bib0175 Ghaddar (10.1016/j.epsr.2019.105989_bib0015) 2013; 28 Niknam (10.1016/j.epsr.2019.105989_bib0135) 2012; 6 Fortenbacher (10.1016/j.epsr.2019.105989_bib0040) 2019; 107 Biswas (10.1016/j.epsr.2019.105989_bib0010) 2019; 75 Xie (10.1016/j.epsr.2019.105989_bib0140) 2018; 33 Hosseini (10.1016/j.epsr.2019.105989_bib0085) 2014; 24 García (10.1016/j.epsr.2019.105989_bib0195) 2010; 180 Tian (10.1016/j.epsr.2019.105989_bib0160) 2018; 12 Rafiei (10.1016/j.epsr.2019.105989_bib0120) 2018; 9 Vaccaro (10.1016/j.epsr.2019.105989_bib0020) 2018; 9 Wei (10.1016/j.epsr.2019.105989_bib0045) 1998; 13 Esmaeil (10.1016/j.epsr.2019.105989_bib0150) 2007 Zamzam (10.1016/j.epsr.2019.105989_bib0050) 2018; 9 Zhou (10.1016/j.epsr.2019.105989_bib0070) 2018 Coelho (10.1016/j.epsr.2019.105989_bib0145) 2012; 48 |
| References_xml | – reference: Christie, R. Power Systems Test Case Archive, – year: 2018 ident: bib0005 article-title: Renewable Power Generation Costs in 2017 – volume: 23 start-page: 1121 year: 2011 end-page: 1126 ident: bib0130 article-title: A modified particle swarm optimization for economic dispatch with non-smooth cost functions publication-title: Eng. Appl. Artif. Intell. – reference: Yarpiz. – volume: 21 start-page: 413 year: 2006 end-page: 418 ident: bib0125 article-title: A simplified wind power generation model for reliability evaluation publication-title: IEEE Trans. Energy Convers – volume: 40 start-page: 3794 year: 2013 end-page: 3802 ident: bib0105 article-title: Modified imperialist competitive algorithm based on attraction and repulsion concepts for reliability-redundancy optimization publication-title: Expert Syst. Appl. – volume: 33 start-page: 2239 year: 2018 end-page: 2247 ident: bib0140 article-title: Quasi-monte carlo based probabilistic optimal power flow considering the correlation of wind speeds using copula function publication-title: IEEE Trans. Power Syst. – reference: Canfield, R. – volume: 30 start-page: 1889 year: 2018 end-page: 1904 ident: bib0065 article-title: Optimal power flow with voltage stability improvement and loss reduction in power system using Moth-Flame Optimizer publication-title: Neural Comput. Applic. – volume: 11 start-page: 2891 year: 2018 ident: bib0030 article-title: Hybrid imperialist competitive and Grey Wolf algorithm to solve multiobjective optimal power flow with wind and solar units publication-title: Energies – volume: 6 start-page: 45394 year: 2018 end-page: 45416 ident: bib0060 article-title: A modified moth swarm algorithm based on an arithmetic crossover for constrained optimization and optimal power flow problems publication-title: IEEE Access – volume: 75 start-page: 616 year: 2019 end-page: 632 ident: bib0010 article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach publication-title: Appl. Soft Comput. – volume: 74 start-page: 680 year: 1979 end-page: 783 ident: bib0190 article-title: Using weighted rankings in the analysis of complete blocks with additive block effects publication-title: J. Am. Stat. Assoc. – volume: 28 start-page: 709 year: 2013 end-page: 713 ident: bib0015 article-title: Optimal power flow as a polynomial optimization problem publication-title: IEEE Trans. Power Syst. – volume: 11 start-page: 1692 year: 2018 ident: bib0075 article-title: Solving non-smooth optimal power flow problems using a developed Grey wolf optimizer publication-title: Energies – volume: 9 start-page: 6961 year: 2018 end-page: 6971 ident: bib0120 article-title: Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine publication-title: IEEE Trans. Smart Grid – volume: 6 start-page: 515 year: 2012 end-page: 527 ident: bib0135 article-title: Improved particle swarm optimization for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index, IET Generation publication-title: Transm. Distrib. Eng. Technol. – volume: 28 start-page: 4780 year: 2013 end-page: 4788 ident: bib0025 article-title: Local solutions of the optimal power flow problem publication-title: IEEE Trans. Power Syst. – volume: 40 start-page: 161 year: 2016 end-page: 177 ident: bib0055 article-title: Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem publication-title: Appl. Soft Comput. J. – start-page: 1 year: 2018 end-page: 9 ident: bib0070 article-title: Cooperative approach to artificial bee colony algorithm for optimal power flow publication-title: Cluster Comput. – volume: 15 start-page: 812 year: 2011 end-page: 831 ident: bib0090 article-title: Neighborhood knowledge-based evolutionary algorithm for multi-objective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 46 start-page: 501 year: 2016 end-page: 522 ident: bib0080 article-title: Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm publication-title: Appl. Soft Comput. – volume: 107 start-page: 680 year: 2019 end-page: 689 ident: bib0040 article-title: Linear/quadratic programming-based optimal power flow using linear power flow and absolute loss approximations publication-title: Int. J. Electr. Power Energy Syst. – volume: 180 start-page: 2044 year: 2010 end-page: 2064 ident: bib0195 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power publication-title: Inf. Sci. – volume: 9 start-page: 230 year: 2018 end-page: 239 ident: bib0020 article-title: A knowledge-based framework for power flow and optimal power flow analyses publication-title: IEEE Trans. Smart Grid – volume: 13 start-page: 870 year: 1998 end-page: 877 ident: bib0045 article-title: An interior point nonlinear programming for optimal power flow problems with a novel data structure publication-title: IEEE Trans. Power Syst. – volume: 33 start-page: 473 year: 2018 end-page: 485 ident: bib0115 article-title: Wind and solar power integration in electricity markets and distribution networks through service centric virtual power plants publication-title: IEEE Trans. Power Syst. – volume: 42 start-page: 689 year: 2015 ident: bib0155 article-title: A modified gravitational search algorithm based on sequential quadratic programming and chaotic map for ELD optimization publication-title: Knowl. Inf. Syst. – reference: . (October 2018). – volume: 12 start-page: 1478 year: 2018 end-page: 1485 ident: bib0160 article-title: Affinely adjustable robust AC–DC optimal power flow considering correlation of wind power, IET renew publication-title: Power Gener. – volume: 24 start-page: 1078 year: 2014 end-page: 1094 ident: bib0085 article-title: A survey on the Imperialist Competitive Algorithm metaheuristic: implementation in engineering domain and directions for future research publication-title: Appl. Soft Comput. – volume: 12 start-page: 741 year: 2012 end-page: 753 ident: bib0100 article-title: Application of modified NSGA-II algorithm to multi-objective reactive power planning publication-title: Appl. Soft Comput. – start-page: 1 year: 2018 end-page: 12 ident: bib0110 article-title: Multi flexibility options integration to cope with large-scale integration of renewables publication-title: IEEE Trans. Sustainable Energy – start-page: 241 year: 2011 end-page: 268 ident: bib0095 article-title: Multiobjective Particle Swarm Optimization for Optimal Power Flow Problem, Handbook of Swarm Intelligence – volume: 9 start-page: 3966 year: 2018 end-page: 3975 ident: bib0050 article-title: Beyond relaxation and Newton–Raphson: solving AC OPF for multi-phase systems with renewables publication-title: IEEE Trans. Smart Grid – start-page: 4661 year: 2007 end-page: 4667 ident: bib0150 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition publication-title: Proc. IEEE Congr. Evol. Comput – volume: 48 start-page: 579 year: 2012 end-page: 582 ident: bib0145 article-title: A modified imperialist competitive algorithm for optimization in electromagnetics publication-title: IEEE Trans. Magn. – volume: 211 start-page: 1136 year: 2018 end-page: 1149 ident: bib0035 article-title: A probabilistic multiobjective approach for power flow optimization in hybrid wind-PV-PEV systems publication-title: Appl. Energy – ident: 10.1016/j.epsr.2019.105989_bib0180 – volume: 23 start-page: 1121 year: 2011 ident: 10.1016/j.epsr.2019.105989_bib0130 article-title: A modified particle swarm optimization for economic dispatch with non-smooth cost functions publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.06.006 – volume: 46 start-page: 501 year: 2016 ident: 10.1016/j.epsr.2019.105989_bib0080 article-title: Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.05.027 – volume: 42 start-page: 689 year: 2015 ident: 10.1016/j.epsr.2019.105989_bib0155 article-title: A modified gravitational search algorithm based on sequential quadratic programming and chaotic map for ELD optimization publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-013-0701-3 – volume: 40 start-page: 161 year: 2016 ident: 10.1016/j.epsr.2019.105989_bib0055 article-title: Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2015.11.027 – ident: 10.1016/j.epsr.2019.105989_bib0170 – volume: 13 start-page: 870 year: 1998 ident: 10.1016/j.epsr.2019.105989_bib0045 article-title: An interior point nonlinear programming for optimal power flow problems with a novel data structure publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.708745 – volume: 211 start-page: 1136 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0035 article-title: A probabilistic multiobjective approach for power flow optimization in hybrid wind-PV-PEV systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.11.101 – volume: 107 start-page: 680 year: 2019 ident: 10.1016/j.epsr.2019.105989_bib0040 article-title: Linear/quadratic programming-based optimal power flow using linear power flow and absolute loss approximations publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.12.008 – volume: 15 start-page: 812 year: 2011 ident: 10.1016/j.epsr.2019.105989_bib0090 article-title: Neighborhood knowledge-based evolutionary algorithm for multi-objective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2051444 – volume: 30 start-page: 1889 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0065 article-title: Optimal power flow with voltage stability improvement and loss reduction in power system using Moth-Flame Optimizer publication-title: Neural Comput. Applic. doi: 10.1007/s00521-016-2794-6 – ident: 10.1016/j.epsr.2019.105989_bib0165 – volume: 9 start-page: 3966 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0050 article-title: Beyond relaxation and Newton–Raphson: solving AC OPF for multi-phase systems with renewables publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2645220 – start-page: 241 year: 2011 ident: 10.1016/j.epsr.2019.105989_bib0095 – volume: 28 start-page: 4780 year: 2013 ident: 10.1016/j.epsr.2019.105989_bib0025 article-title: Local solutions of the optimal power flow problem publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2274577 – volume: 74 start-page: 680 year: 1979 ident: 10.1016/j.epsr.2019.105989_bib0190 article-title: Using weighted rankings in the analysis of complete blocks with additive block effects publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1979.10481670 – volume: 12 start-page: 741 year: 2012 ident: 10.1016/j.epsr.2019.105989_bib0100 article-title: Application of modified NSGA-II algorithm to multi-objective reactive power planning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.09.015 – year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0005 – volume: 75 start-page: 616 year: 2019 ident: 10.1016/j.epsr.2019.105989_bib0010 article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.042 – volume: 33 start-page: 2239 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0140 article-title: Quasi-monte carlo based probabilistic optimal power flow considering the correlation of wind speeds using copula function publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2017.2737580 – volume: 33 start-page: 473 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0115 article-title: Wind and solar power integration in electricity markets and distribution networks through service centric virtual power plants publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2017.2710481 – volume: 48 start-page: 579 year: 2012 ident: 10.1016/j.epsr.2019.105989_bib0145 article-title: A modified imperialist competitive algorithm for optimization in electromagnetics publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2172400 – volume: 9 start-page: 230 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0020 article-title: A knowledge-based framework for power flow and optimal power flow analyses publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2549560 – volume: 9 start-page: 6961 issue: 6 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0120 article-title: Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2807845 – volume: 28 start-page: 709 year: 2013 ident: 10.1016/j.epsr.2019.105989_bib0015 article-title: Optimal power flow as a polynomial optimization problem publication-title: IEEE Trans. Power Syst. – start-page: 1 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0070 article-title: Cooperative approach to artificial bee colony algorithm for optimal power flow publication-title: Cluster Comput. doi: 10.1007/s10586-017-0882-8 – volume: 6 start-page: 45394 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0060 article-title: A modified moth swarm algorithm based on an arithmetic crossover for constrained optimization and optimal power flow problems publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2849599 – ident: 10.1016/j.epsr.2019.105989_bib0175 – volume: 11 start-page: 2891 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0030 article-title: Hybrid imperialist competitive and Grey Wolf algorithm to solve multiobjective optimal power flow with wind and solar units publication-title: Energies doi: 10.3390/en11112891 – volume: 11 start-page: 1692 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0075 article-title: Solving non-smooth optimal power flow problems using a developed Grey wolf optimizer publication-title: Energies doi: 10.3390/en11071692 – start-page: 4661 year: 2007 ident: 10.1016/j.epsr.2019.105989_bib0150 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition publication-title: Proc. IEEE Congr. Evol. Comput – volume: 180 start-page: 2044 issue: 10 year: 2010 ident: 10.1016/j.epsr.2019.105989_bib0195 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.12.010 – start-page: 1 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0110 article-title: Multi flexibility options integration to cope with large-scale integration of renewables publication-title: IEEE Trans. Sustainable Energy – volume: 24 start-page: 1078 year: 2014 ident: 10.1016/j.epsr.2019.105989_bib0085 article-title: A survey on the Imperialist Competitive Algorithm metaheuristic: implementation in engineering domain and directions for future research publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.08.024 – volume: 40 start-page: 3794 year: 2013 ident: 10.1016/j.epsr.2019.105989_bib0105 article-title: Modified imperialist competitive algorithm based on attraction and repulsion concepts for reliability-redundancy optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.12.093 – volume: 6 start-page: 515 year: 2012 ident: 10.1016/j.epsr.2019.105989_bib0135 article-title: Improved particle swarm optimization for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index, IET Generation publication-title: Transm. Distrib. Eng. Technol. doi: 10.1049/iet-gtd.2011.0851 – volume: 21 start-page: 413 year: 2006 ident: 10.1016/j.epsr.2019.105989_bib0125 article-title: A simplified wind power generation model for reliability evaluation publication-title: IEEE Trans. Energy Convers doi: 10.1109/TEC.2006.874233 – volume: 12 start-page: 1478 year: 2018 ident: 10.1016/j.epsr.2019.105989_bib0160 article-title: Affinely adjustable robust AC–DC optimal power flow considering correlation of wind power, IET renew publication-title: Power Gener. doi: 10.1049/iet-rpg.2017.0886 – ident: 10.1016/j.epsr.2019.105989_bib0185 |
| SSID | ssj0006975 |
| Score | 2.47098 |
| Snippet | •Proposed a novel Hybrid Modified Imperialist Competitive Algorithm and Sequential Quadratic Programming.•Studied the uncertainties of solar power and wind... The objective of this paper was to develop and solve different constrained optimal power flow (OPF) problems for hybrid power systems containing renewable... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105989 |
| SubjectTerms | Algorithms Alternative energy sources Computer simulation Constraints Electric power Electric power systems Electric power transmission Evolutionary algorithms Heuristic methods Hybrid systems Mica Multiobjective optimization Optimal power flow Optimization Power flow Quadratic programming Renewable energy sources Security constraints Solar energy Solar power Wind energy Wind power |
| Title | Solving constrained optimal power flow with renewables using hybrid modified imperialist competitive algorithm and sequential quadratic programming |
| URI | https://dx.doi.org/10.1016/j.epsr.2019.105989 https://www.proquest.com/docview/2330022206 |
| Volume | 177 |
| WOSCitedRecordID | wos000497593500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBXbTQ_tofSTJk2LDr0tBnu9tqxjCClpKaGQFPZmZEtqHLz21vuR9Hfk1l_bGUn2GoeGttDLsnj9hd9baTSe94aQ9wnTkWLBzAulEN5MhZEnTDMzBUsWxhMRJEYo_JmdnSXzOf8yGv1stTDbklVVcnPDl_8VatgGYKN09i_g7k4KG-A7gA6fADt8_hHw53W5tUpaNIeFhT-ElDUMDAvUXGFPtIku62ubgEU_y2sUT60mG5M0uPyBCi7sj1NoDE6LxdLcM5DBVJ-jJg1rjUT5rW7gDLbBhq3HXmPy_ftGyMa4wLrKr0U7N7bpf9N3B38392KdpPHdRS-tZnRD1eR0UUhXyluqrhLk-FJgExNb3qQao1YclhUVi342I-CDypC7Mhsr7YKlLmPceWbbkTphIeDu8pftUG5bwtyZFmyG4gpm-BV6wAYc2xtz27toYLd9jhfDa0Fki14-8QOyN2Ww85jsHX08mX_q5vmYGxvn7uacJMtWDw6v9LuwZxAAmKjm4il54pYj9MjS6BkZqeo5edwzqXxBbh2haI9Q1BGKGhApEooioeiOUNQQilpC0ZZQtEco2iMU7QhFgVB0RyjaEYr2CPWSfP1wcnF86rlWHl4eJvHak1GST2XAs0jGWsZMSaZEqH2l_HCWM3jiUmQClg4sZ5GWECQJIdE6LsvEVAgdviLjqq7Ua0KFn0WZhCFGs3wmRJTpyM9EzjW-Qsxjf58E7ZNOc-dzjw-nTNuCxqsU0UkRndSis08m3TFL6_Jy795RC2Dq4lQbf6bAt3uPO2zRTt2AsUqnYWgE6X588I-nfUMe7f5Jh2S8bjbqLXmYb9fFqnnnWPsL8yTOJg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+constrained+optimal+power+flow+with+renewables+using+hybrid+modified+imperialist+competitive+algorithm+and+sequential+quadratic+programming&rft.jtitle=Electric+power+systems+research&rft.au=Ben+Hmida%2C+Jalel&rft.au=Chambers%2C+Terrence&rft.au=Lee%2C+Jim&rft.date=2019-12-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=177&rft_id=info:doi/10.1016%2Fj.epsr.2019.105989&rft.externalDocID=S0378779619303086 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |