Solving constrained optimal power flow with renewables using hybrid modified imperialist competitive algorithm and sequential quadratic programming

•Proposed a novel Hybrid Modified Imperialist Competitive Algorithm and Sequential Quadratic Programming.•Studied the uncertainties of solar power and wind energy.•Solved different OPF problems including wind and solar generators.•A comparative study proved the effectiveness of the HMICA-SQP in prov...

Full description

Saved in:
Bibliographic Details
Published in:Electric power systems research Vol. 177; p. 105989
Main Authors: Ben Hmida, Jalel, Chambers, Terrence, Lee, Jim
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.12.2019
Elsevier Science Ltd
Subjects:
ISSN:0378-7796, 1873-2046
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Proposed a novel Hybrid Modified Imperialist Competitive Algorithm and Sequential Quadratic Programming.•Studied the uncertainties of solar power and wind energy.•Solved different OPF problems including wind and solar generators.•A comparative study proved the effectiveness of the HMICA-SQP in providing better solutions.•A statistical performance evaluation proved the validity and robustness of the proposed method. The objective of this paper was to develop and solve different constrained optimal power flow (OPF) problems for hybrid power systems containing renewable energy sources like wind energy and solar power. OPF seeks to optimize the transmission of electric power by finding a steady state operating point that minimizes gas emission and cost of generated electric power without disturbing network power flow, operating limits and system constraints. The OPF problem was solved using a hybrid modified imperialist competitive algorithm and sequential quadratic programming, (HMICA-SQP). Efficacy of the modified imperialist competitive algorithm (MICA) is further enhanced by the process of hybridization with the sequential quadratic programming (SQP) for rapid local refinement and improved precision of the solution. The potential and effectiveness of the proposed metaheuristic were presented and assessed using three benchmark test systems IEEE 30, IEEE 57 and IEEE 118-bus power systems that incorporates several solar and wind energy sources. Comparison of simulation results with recently published optimization approaches solutions showed that the suggested paradigm is more efficient, robust and provides the lowest cost of generated electric power while keeping low emissions.
AbstractList The objective of this paper was to develop and solve different constrained optimal power flow (OPF) problems for hybrid power systems containing renewable energy sources like wind energy and solar power. OPF seeks to optimize the transmission of electric power by finding a steady state operating point that minimizes gas emission and cost of generated electric power without disturbing network power flow, operating limits and system constraints. The OPF problem was solved using a hybrid modified imperialist competitive algorithm and sequential quadratic programming, (HMICA-SQP). Efficacy of the modified imperialist competitive algorithm (MICA) is further enhanced by the process of hybridization with the sequential quadratic programming (SQP) for rapid local refinement and improved precision of the solution. The potential and effectiveness of the proposed metaheuristic were presented and assessed using three benchmark test systems IEEE 30, IEEE 57 and IEEE 118-bus power systems that incorporates several solar and wind energy sources. Comparison of simulation results with recently published optimization approaches solutions showed that the suggested paradigm is more efficient, robust and provides the lowest cost of generated electric power while keeping low emissions.
•Proposed a novel Hybrid Modified Imperialist Competitive Algorithm and Sequential Quadratic Programming.•Studied the uncertainties of solar power and wind energy.•Solved different OPF problems including wind and solar generators.•A comparative study proved the effectiveness of the HMICA-SQP in providing better solutions.•A statistical performance evaluation proved the validity and robustness of the proposed method. The objective of this paper was to develop and solve different constrained optimal power flow (OPF) problems for hybrid power systems containing renewable energy sources like wind energy and solar power. OPF seeks to optimize the transmission of electric power by finding a steady state operating point that minimizes gas emission and cost of generated electric power without disturbing network power flow, operating limits and system constraints. The OPF problem was solved using a hybrid modified imperialist competitive algorithm and sequential quadratic programming, (HMICA-SQP). Efficacy of the modified imperialist competitive algorithm (MICA) is further enhanced by the process of hybridization with the sequential quadratic programming (SQP) for rapid local refinement and improved precision of the solution. The potential and effectiveness of the proposed metaheuristic were presented and assessed using three benchmark test systems IEEE 30, IEEE 57 and IEEE 118-bus power systems that incorporates several solar and wind energy sources. Comparison of simulation results with recently published optimization approaches solutions showed that the suggested paradigm is more efficient, robust and provides the lowest cost of generated electric power while keeping low emissions.
ArticleNumber 105989
Author Lee, Jim
Ben Hmida, Jalel
Chambers, Terrence
Author_xml – sequence: 1
  givenname: Jalel
  orcidid: 0000-0002-7853-8332
  surname: Ben Hmida
  fullname: Ben Hmida, Jalel
  email: jalel@louisiana.edu
– sequence: 2
  givenname: Terrence
  surname: Chambers
  fullname: Chambers, Terrence
  email: tlchambers@louisiana.edu
– sequence: 3
  givenname: Jim
  surname: Lee
  fullname: Lee, Jim
  email: jlee@louisiana.edu
BookMark eNp9kcFq3DAQhkVJoZu0L9CTIGdvZXlt2dBLCElaWMih7VmMpfHuLLbkSNpd8hx94cpsTznkNGj4v39G81-zK-cdMva1FOtSlM23wxrnGNZSlF1u1F3bfWCrslVVIcWmuWIrUam2UKprPrHrGA9CiKZT9Yr9_eXHE7kdN97FFIAcWu7nRBOMfPZnDHwY_ZmfKe15QIdn6EeM_BgXaP_aB7J88pYGyiBNMwaCkWLKhvmRKNEJOYw7H7LDxMFZHvHliC5lHX85gg2QyPA5-F2Aacq2n9nHAcaIX_7XG_bn8eH3_Y9i-_z08_5uW5iqbVJh69ZIW3Z9bZvBNgqtQqgGgSiqjVGqVRZ6qFWtjKoHu5EdgO1EXfY9SIChumG3F988O28Ukz74Y3B5pJZVJYSUUjRZ1V5UJvgYAw7aUMore7eca9Sl0EsE-qCXCPQSgb5EkFH5Bp1DPmx4fR_6foEwf_1EGHQ0hM6gpYAmaevpPfwfBKKofg
CitedBy_id crossref_primary_10_1016_j_rser_2021_111072
crossref_primary_10_1007_s40684_020_00262_y
crossref_primary_10_1155_2022_7694026
crossref_primary_10_3390_app11156883
crossref_primary_10_1002_2050_7038_12858
crossref_primary_10_1007_s40974_024_00337_5
crossref_primary_10_1038_s41598_023_37635_7
crossref_primary_10_1038_s41598_024_54510_1
crossref_primary_10_1016_j_asoc_2024_111573
crossref_primary_10_3390_math9131532
crossref_primary_10_3390_pr10122590
crossref_primary_10_1080_01430750_2022_2163287
crossref_primary_10_1016_j_asoc_2023_110977
crossref_primary_10_1016_j_epsr_2023_109346
crossref_primary_10_3390_en14102831
crossref_primary_10_1155_2021_1015367
crossref_primary_10_3233_JIFS_223994
crossref_primary_10_1080_00207160_2022_2037132
crossref_primary_10_1109_ACCESS_2021_3131161
crossref_primary_10_1007_s40998_023_00592_y
crossref_primary_10_3390_math12193064
crossref_primary_10_32604_cmes_2024_048839
crossref_primary_10_1016_j_energy_2021_120211
crossref_primary_10_3390_app12031129
crossref_primary_10_1007_s00542_020_05046_7
crossref_primary_10_1007_s00500_021_05654_z
crossref_primary_10_3390_electronics11223825
crossref_primary_10_1038_s41598_025_98899_9
crossref_primary_10_1049_gtd2_12555
crossref_primary_10_1007_s40095_021_00397_x
crossref_primary_10_1016_j_egyr_2024_04_016
crossref_primary_10_1109_ACCESS_2022_3209996
Cites_doi 10.1016/j.engappai.2010.06.006
10.1016/j.asoc.2016.05.027
10.1007/s10115-013-0701-3
10.1016/j.asoc.2015.11.027
10.1109/59.708745
10.1016/j.apenergy.2017.11.101
10.1016/j.ijepes.2018.12.008
10.1109/TEVC.2010.2051444
10.1007/s00521-016-2794-6
10.1109/TSG.2016.2645220
10.1109/TPWRS.2013.2274577
10.1080/01621459.1979.10481670
10.1016/j.asoc.2011.09.015
10.1016/j.asoc.2018.11.042
10.1109/TPWRS.2017.2737580
10.1109/TPWRS.2017.2710481
10.1109/TMAG.2011.2172400
10.1109/TSG.2016.2549560
10.1109/TSG.2018.2807845
10.1007/s10586-017-0882-8
10.1109/ACCESS.2018.2849599
10.3390/en11112891
10.3390/en11071692
10.1016/j.ins.2009.12.010
10.1016/j.asoc.2014.08.024
10.1016/j.eswa.2012.12.093
10.1049/iet-gtd.2011.0851
10.1109/TEC.2006.874233
10.1049/iet-rpg.2017.0886
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Dec 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Dec 2019
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.epsr.2019.105989
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
ExternalDocumentID 10_1016_j_epsr_2019_105989
S0378779619303086
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c386t-d58c2d19b5d6fd67ed7ea3f0ee034c7787daba5757c75fd429aad9051bba2aaf3
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000497593500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Sun Nov 30 03:53:23 EST 2025
Sat Nov 29 07:10:42 EST 2025
Tue Nov 18 21:18:31 EST 2025
Fri Feb 23 02:49:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solar power
Security constraints
Wind energy
Optimal power flow
Multiobjective optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-d58c2d19b5d6fd67ed7ea3f0ee034c7787daba5757c75fd429aad9051bba2aaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7853-8332
PQID 2330022206
PQPubID 2047565
ParticipantIDs proquest_journals_2330022206
crossref_citationtrail_10_1016_j_epsr_2019_105989
crossref_primary_10_1016_j_epsr_2019_105989
elsevier_sciencedirect_doi_10_1016_j_epsr_2019_105989
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Trivedi, Jangir, Parmar (bib0065) 2018; 30
Neyestani, Farsangi, Nezam (bib0130) 2011; 23
Christie, R. Power Systems Test Case Archive
Abdo, Kamel, Ebeed, Yu, Jurado (bib0075) 2018; 11
Ghaddar, Marecek, Mevissen (bib0015) 2013; 28
García, Fernández, Luengo, Herrera (bib0195) 2010; 180
Zamzam, Sidiropoulos, Dall’Anese (bib0050) 2018; 9
Abido (bib0095) 2011
Bukhsh, Grothey, McKinnon, Trodden (bib0025) 2013; 28
Hosseini, Al Khaled (bib0085) 2014; 24
Quade (bib0190) 1979; 74
Ramesh, Kannan, Baskar (bib0100) 2012; 12
Canfield, R.
Koraki, Strunz (bib0115) 2018; 33
Singh, Mukherjee, Ghoshal (bib0055) 2016; 40
(October 2018).
Biswas, Suganthan, Mallipeddi Gehan, Amaratunga (bib0010) 2019; 75
Mahdad, Srairi (bib0080) 2016; 46
Yu, Wong, Wang, Wei (bib0090) 2011; 15
Niknam, Narimani, Aghaei, Azizipanah-Abarghooee (bib0135) 2012; 6
Cruz, Fitiwi, Santos, Mariano, Catalao (bib0110) 2018
Afonso, Mariani, dos Santos Coelho (bib0105) 2013; 40
Tian, Wang, Li, Zhou (bib0160) 2018; 12
Esmaeil, Lucas (bib0150) 2007
Ben Hmida, Morshed, Lee, Chambers (bib0030) 2018; 11
Coelho, Afonso, Alotto (bib0145) 2012; 48
Zhou, Su, Liu, Cui, Liu (bib0070) 2018
IRENA (bib0005) 2018
Fortenbacher, Demiray (bib0040) 2019; 107
Xie, Ji, Li, Wu (bib0140) 2018; 33
Wei, Sasaki, Kubokawa, Yokoyama (bib0045) 1998; 13
Duman (bib0060) 2018; 6
Han, Quan, Xiong (bib0155) 2015; 42
Karki, Hu, Billinton (bib0125) 2006; 21
Morshed, Ben Hmida, Fekih (bib0035) 2018; 211
Vaccaro, Cañizares (bib0020) 2018; 9
Rafiei, Niknam, Aghaei, Shafie-khah, Catalão (bib0120) 2018; 9
Yarpiz.
Trivedi (10.1016/j.epsr.2019.105989_bib0065) 2018; 30
10.1016/j.epsr.2019.105989_bib0170
Bukhsh (10.1016/j.epsr.2019.105989_bib0025) 2013; 28
Ben Hmida (10.1016/j.epsr.2019.105989_bib0030) 2018; 11
Singh (10.1016/j.epsr.2019.105989_bib0055) 2016; 40
Koraki (10.1016/j.epsr.2019.105989_bib0115) 2018; 33
10.1016/j.epsr.2019.105989_bib0185
Ramesh (10.1016/j.epsr.2019.105989_bib0100) 2012; 12
10.1016/j.epsr.2019.105989_bib0165
Quade (10.1016/j.epsr.2019.105989_bib0190) 1979; 74
Neyestani (10.1016/j.epsr.2019.105989_bib0130) 2011; 23
Afonso (10.1016/j.epsr.2019.105989_bib0105) 2013; 40
Yu (10.1016/j.epsr.2019.105989_bib0090) 2011; 15
Han (10.1016/j.epsr.2019.105989_bib0155) 2015; 42
Cruz (10.1016/j.epsr.2019.105989_bib0110) 2018
Abdo (10.1016/j.epsr.2019.105989_bib0075) 2018; 11
Morshed (10.1016/j.epsr.2019.105989_bib0035) 2018; 211
Mahdad (10.1016/j.epsr.2019.105989_bib0080) 2016; 46
IRENA (10.1016/j.epsr.2019.105989_bib0005) 2018
Karki (10.1016/j.epsr.2019.105989_bib0125) 2006; 21
Duman (10.1016/j.epsr.2019.105989_bib0060) 2018; 6
Abido (10.1016/j.epsr.2019.105989_bib0095) 2011
10.1016/j.epsr.2019.105989_bib0180
10.1016/j.epsr.2019.105989_bib0175
Ghaddar (10.1016/j.epsr.2019.105989_bib0015) 2013; 28
Niknam (10.1016/j.epsr.2019.105989_bib0135) 2012; 6
Fortenbacher (10.1016/j.epsr.2019.105989_bib0040) 2019; 107
Biswas (10.1016/j.epsr.2019.105989_bib0010) 2019; 75
Xie (10.1016/j.epsr.2019.105989_bib0140) 2018; 33
Hosseini (10.1016/j.epsr.2019.105989_bib0085) 2014; 24
García (10.1016/j.epsr.2019.105989_bib0195) 2010; 180
Tian (10.1016/j.epsr.2019.105989_bib0160) 2018; 12
Rafiei (10.1016/j.epsr.2019.105989_bib0120) 2018; 9
Vaccaro (10.1016/j.epsr.2019.105989_bib0020) 2018; 9
Wei (10.1016/j.epsr.2019.105989_bib0045) 1998; 13
Esmaeil (10.1016/j.epsr.2019.105989_bib0150) 2007
Zamzam (10.1016/j.epsr.2019.105989_bib0050) 2018; 9
Zhou (10.1016/j.epsr.2019.105989_bib0070) 2018
Coelho (10.1016/j.epsr.2019.105989_bib0145) 2012; 48
References_xml – reference: Christie, R. Power Systems Test Case Archive,
– year: 2018
  ident: bib0005
  article-title: Renewable Power Generation Costs in 2017
– volume: 23
  start-page: 1121
  year: 2011
  end-page: 1126
  ident: bib0130
  article-title: A modified particle swarm optimization for economic dispatch with non-smooth cost functions
  publication-title: Eng. Appl. Artif. Intell.
– reference: Yarpiz.
– volume: 21
  start-page: 413
  year: 2006
  end-page: 418
  ident: bib0125
  article-title: A simplified wind power generation model for reliability evaluation
  publication-title: IEEE Trans. Energy Convers
– volume: 40
  start-page: 3794
  year: 2013
  end-page: 3802
  ident: bib0105
  article-title: Modified imperialist competitive algorithm based on attraction and repulsion concepts for reliability-redundancy optimization
  publication-title: Expert Syst. Appl.
– volume: 33
  start-page: 2239
  year: 2018
  end-page: 2247
  ident: bib0140
  article-title: Quasi-monte carlo based probabilistic optimal power flow considering the correlation of wind speeds using copula function
  publication-title: IEEE Trans. Power Syst.
– reference: Canfield, R.
– volume: 30
  start-page: 1889
  year: 2018
  end-page: 1904
  ident: bib0065
  article-title: Optimal power flow with voltage stability improvement and loss reduction in power system using Moth-Flame Optimizer
  publication-title: Neural Comput. Applic.
– volume: 11
  start-page: 2891
  year: 2018
  ident: bib0030
  article-title: Hybrid imperialist competitive and Grey Wolf algorithm to solve multiobjective optimal power flow with wind and solar units
  publication-title: Energies
– volume: 6
  start-page: 45394
  year: 2018
  end-page: 45416
  ident: bib0060
  article-title: A modified moth swarm algorithm based on an arithmetic crossover for constrained optimization and optimal power flow problems
  publication-title: IEEE Access
– volume: 75
  start-page: 616
  year: 2019
  end-page: 632
  ident: bib0010
  article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach
  publication-title: Appl. Soft Comput.
– volume: 74
  start-page: 680
  year: 1979
  end-page: 783
  ident: bib0190
  article-title: Using weighted rankings in the analysis of complete blocks with additive block effects
  publication-title: J. Am. Stat. Assoc.
– volume: 28
  start-page: 709
  year: 2013
  end-page: 713
  ident: bib0015
  article-title: Optimal power flow as a polynomial optimization problem
  publication-title: IEEE Trans. Power Syst.
– volume: 11
  start-page: 1692
  year: 2018
  ident: bib0075
  article-title: Solving non-smooth optimal power flow problems using a developed Grey wolf optimizer
  publication-title: Energies
– volume: 9
  start-page: 6961
  year: 2018
  end-page: 6971
  ident: bib0120
  article-title: Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine
  publication-title: IEEE Trans. Smart Grid
– volume: 6
  start-page: 515
  year: 2012
  end-page: 527
  ident: bib0135
  article-title: Improved particle swarm optimization for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index, IET Generation
  publication-title: Transm. Distrib. Eng. Technol.
– volume: 28
  start-page: 4780
  year: 2013
  end-page: 4788
  ident: bib0025
  article-title: Local solutions of the optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
– volume: 40
  start-page: 161
  year: 2016
  end-page: 177
  ident: bib0055
  article-title: Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem
  publication-title: Appl. Soft Comput. J.
– start-page: 1
  year: 2018
  end-page: 9
  ident: bib0070
  article-title: Cooperative approach to artificial bee colony algorithm for optimal power flow
  publication-title: Cluster Comput.
– volume: 15
  start-page: 812
  year: 2011
  end-page: 831
  ident: bib0090
  article-title: Neighborhood knowledge-based evolutionary algorithm for multi-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 46
  start-page: 501
  year: 2016
  end-page: 522
  ident: bib0080
  article-title: Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm
  publication-title: Appl. Soft Comput.
– volume: 107
  start-page: 680
  year: 2019
  end-page: 689
  ident: bib0040
  article-title: Linear/quadratic programming-based optimal power flow using linear power flow and absolute loss approximations
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 180
  start-page: 2044
  year: 2010
  end-page: 2064
  ident: bib0195
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
  publication-title: Inf. Sci.
– volume: 9
  start-page: 230
  year: 2018
  end-page: 239
  ident: bib0020
  article-title: A knowledge-based framework for power flow and optimal power flow analyses
  publication-title: IEEE Trans. Smart Grid
– volume: 13
  start-page: 870
  year: 1998
  end-page: 877
  ident: bib0045
  article-title: An interior point nonlinear programming for optimal power flow problems with a novel data structure
  publication-title: IEEE Trans. Power Syst.
– volume: 33
  start-page: 473
  year: 2018
  end-page: 485
  ident: bib0115
  article-title: Wind and solar power integration in electricity markets and distribution networks through service centric virtual power plants
  publication-title: IEEE Trans. Power Syst.
– volume: 42
  start-page: 689
  year: 2015
  ident: bib0155
  article-title: A modified gravitational search algorithm based on sequential quadratic programming and chaotic map for ELD optimization
  publication-title: Knowl. Inf. Syst.
– reference: . (October 2018).
– volume: 12
  start-page: 1478
  year: 2018
  end-page: 1485
  ident: bib0160
  article-title: Affinely adjustable robust AC–DC optimal power flow considering correlation of wind power, IET renew
  publication-title: Power Gener.
– volume: 24
  start-page: 1078
  year: 2014
  end-page: 1094
  ident: bib0085
  article-title: A survey on the Imperialist Competitive Algorithm metaheuristic: implementation in engineering domain and directions for future research
  publication-title: Appl. Soft Comput.
– volume: 12
  start-page: 741
  year: 2012
  end-page: 753
  ident: bib0100
  article-title: Application of modified NSGA-II algorithm to multi-objective reactive power planning
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2018
  end-page: 12
  ident: bib0110
  article-title: Multi flexibility options integration to cope with large-scale integration of renewables
  publication-title: IEEE Trans. Sustainable Energy
– start-page: 241
  year: 2011
  end-page: 268
  ident: bib0095
  article-title: Multiobjective Particle Swarm Optimization for Optimal Power Flow Problem, Handbook of Swarm Intelligence
– volume: 9
  start-page: 3966
  year: 2018
  end-page: 3975
  ident: bib0050
  article-title: Beyond relaxation and Newton–Raphson: solving AC OPF for multi-phase systems with renewables
  publication-title: IEEE Trans. Smart Grid
– start-page: 4661
  year: 2007
  end-page: 4667
  ident: bib0150
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
  publication-title: Proc. IEEE Congr. Evol. Comput
– volume: 48
  start-page: 579
  year: 2012
  end-page: 582
  ident: bib0145
  article-title: A modified imperialist competitive algorithm for optimization in electromagnetics
  publication-title: IEEE Trans. Magn.
– volume: 211
  start-page: 1136
  year: 2018
  end-page: 1149
  ident: bib0035
  article-title: A probabilistic multiobjective approach for power flow optimization in hybrid wind-PV-PEV systems
  publication-title: Appl. Energy
– ident: 10.1016/j.epsr.2019.105989_bib0180
– volume: 23
  start-page: 1121
  year: 2011
  ident: 10.1016/j.epsr.2019.105989_bib0130
  article-title: A modified particle swarm optimization for economic dispatch with non-smooth cost functions
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.06.006
– volume: 46
  start-page: 501
  year: 2016
  ident: 10.1016/j.epsr.2019.105989_bib0080
  article-title: Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.05.027
– volume: 42
  start-page: 689
  year: 2015
  ident: 10.1016/j.epsr.2019.105989_bib0155
  article-title: A modified gravitational search algorithm based on sequential quadratic programming and chaotic map for ELD optimization
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0701-3
– volume: 40
  start-page: 161
  year: 2016
  ident: 10.1016/j.epsr.2019.105989_bib0055
  article-title: Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2015.11.027
– ident: 10.1016/j.epsr.2019.105989_bib0170
– volume: 13
  start-page: 870
  year: 1998
  ident: 10.1016/j.epsr.2019.105989_bib0045
  article-title: An interior point nonlinear programming for optimal power flow problems with a novel data structure
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.708745
– volume: 211
  start-page: 1136
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0035
  article-title: A probabilistic multiobjective approach for power flow optimization in hybrid wind-PV-PEV systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.11.101
– volume: 107
  start-page: 680
  year: 2019
  ident: 10.1016/j.epsr.2019.105989_bib0040
  article-title: Linear/quadratic programming-based optimal power flow using linear power flow and absolute loss approximations
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.12.008
– volume: 15
  start-page: 812
  year: 2011
  ident: 10.1016/j.epsr.2019.105989_bib0090
  article-title: Neighborhood knowledge-based evolutionary algorithm for multi-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2051444
– volume: 30
  start-page: 1889
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0065
  article-title: Optimal power flow with voltage stability improvement and loss reduction in power system using Moth-Flame Optimizer
  publication-title: Neural Comput. Applic.
  doi: 10.1007/s00521-016-2794-6
– ident: 10.1016/j.epsr.2019.105989_bib0165
– volume: 9
  start-page: 3966
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0050
  article-title: Beyond relaxation and Newton–Raphson: solving AC OPF for multi-phase systems with renewables
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2645220
– start-page: 241
  year: 2011
  ident: 10.1016/j.epsr.2019.105989_bib0095
– volume: 28
  start-page: 4780
  year: 2013
  ident: 10.1016/j.epsr.2019.105989_bib0025
  article-title: Local solutions of the optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2274577
– volume: 74
  start-page: 680
  year: 1979
  ident: 10.1016/j.epsr.2019.105989_bib0190
  article-title: Using weighted rankings in the analysis of complete blocks with additive block effects
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1979.10481670
– volume: 12
  start-page: 741
  year: 2012
  ident: 10.1016/j.epsr.2019.105989_bib0100
  article-title: Application of modified NSGA-II algorithm to multi-objective reactive power planning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.09.015
– year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0005
– volume: 75
  start-page: 616
  year: 2019
  ident: 10.1016/j.epsr.2019.105989_bib0010
  article-title: Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.042
– volume: 33
  start-page: 2239
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0140
  article-title: Quasi-monte carlo based probabilistic optimal power flow considering the correlation of wind speeds using copula function
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2737580
– volume: 33
  start-page: 473
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0115
  article-title: Wind and solar power integration in electricity markets and distribution networks through service centric virtual power plants
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2710481
– volume: 48
  start-page: 579
  year: 2012
  ident: 10.1016/j.epsr.2019.105989_bib0145
  article-title: A modified imperialist competitive algorithm for optimization in electromagnetics
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2172400
– volume: 9
  start-page: 230
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0020
  article-title: A knowledge-based framework for power flow and optimal power flow analyses
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2549560
– volume: 9
  start-page: 6961
  issue: 6
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0120
  article-title: Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2807845
– volume: 28
  start-page: 709
  year: 2013
  ident: 10.1016/j.epsr.2019.105989_bib0015
  article-title: Optimal power flow as a polynomial optimization problem
  publication-title: IEEE Trans. Power Syst.
– start-page: 1
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0070
  article-title: Cooperative approach to artificial bee colony algorithm for optimal power flow
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-0882-8
– volume: 6
  start-page: 45394
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0060
  article-title: A modified moth swarm algorithm based on an arithmetic crossover for constrained optimization and optimal power flow problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2849599
– ident: 10.1016/j.epsr.2019.105989_bib0175
– volume: 11
  start-page: 2891
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0030
  article-title: Hybrid imperialist competitive and Grey Wolf algorithm to solve multiobjective optimal power flow with wind and solar units
  publication-title: Energies
  doi: 10.3390/en11112891
– volume: 11
  start-page: 1692
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0075
  article-title: Solving non-smooth optimal power flow problems using a developed Grey wolf optimizer
  publication-title: Energies
  doi: 10.3390/en11071692
– start-page: 4661
  year: 2007
  ident: 10.1016/j.epsr.2019.105989_bib0150
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
  publication-title: Proc. IEEE Congr. Evol. Comput
– volume: 180
  start-page: 2044
  issue: 10
  year: 2010
  ident: 10.1016/j.epsr.2019.105989_bib0195
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.12.010
– start-page: 1
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0110
  article-title: Multi flexibility options integration to cope with large-scale integration of renewables
  publication-title: IEEE Trans. Sustainable Energy
– volume: 24
  start-page: 1078
  year: 2014
  ident: 10.1016/j.epsr.2019.105989_bib0085
  article-title: A survey on the Imperialist Competitive Algorithm metaheuristic: implementation in engineering domain and directions for future research
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.08.024
– volume: 40
  start-page: 3794
  year: 2013
  ident: 10.1016/j.epsr.2019.105989_bib0105
  article-title: Modified imperialist competitive algorithm based on attraction and repulsion concepts for reliability-redundancy optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.12.093
– volume: 6
  start-page: 515
  year: 2012
  ident: 10.1016/j.epsr.2019.105989_bib0135
  article-title: Improved particle swarm optimization for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index, IET Generation
  publication-title: Transm. Distrib. Eng. Technol.
  doi: 10.1049/iet-gtd.2011.0851
– volume: 21
  start-page: 413
  year: 2006
  ident: 10.1016/j.epsr.2019.105989_bib0125
  article-title: A simplified wind power generation model for reliability evaluation
  publication-title: IEEE Trans. Energy Convers
  doi: 10.1109/TEC.2006.874233
– volume: 12
  start-page: 1478
  year: 2018
  ident: 10.1016/j.epsr.2019.105989_bib0160
  article-title: Affinely adjustable robust AC–DC optimal power flow considering correlation of wind power, IET renew
  publication-title: Power Gener.
  doi: 10.1049/iet-rpg.2017.0886
– ident: 10.1016/j.epsr.2019.105989_bib0185
SSID ssj0006975
Score 2.47098
Snippet •Proposed a novel Hybrid Modified Imperialist Competitive Algorithm and Sequential Quadratic Programming.•Studied the uncertainties of solar power and wind...
The objective of this paper was to develop and solve different constrained optimal power flow (OPF) problems for hybrid power systems containing renewable...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105989
SubjectTerms Algorithms
Alternative energy sources
Computer simulation
Constraints
Electric power
Electric power systems
Electric power transmission
Evolutionary algorithms
Heuristic methods
Hybrid systems
Mica
Multiobjective optimization
Optimal power flow
Optimization
Power flow
Quadratic programming
Renewable energy sources
Security constraints
Solar energy
Solar power
Wind energy
Wind power
Title Solving constrained optimal power flow with renewables using hybrid modified imperialist competitive algorithm and sequential quadratic programming
URI https://dx.doi.org/10.1016/j.epsr.2019.105989
https://www.proquest.com/docview/2330022206
Volume 177
WOSCitedRecordID wos000497593500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBXbTQ_tofSTJk2LDr0tBnu9tqxjCClpKaGQFPZmZEtqHLz21vuR9Hfk1l_bGUn2GoeGttDLsnj9hd9baTSe94aQ9wnTkWLBzAulEN5MhZEnTDMzBUsWxhMRJEYo_JmdnSXzOf8yGv1stTDbklVVcnPDl_8VatgGYKN09i_g7k4KG-A7gA6fADt8_hHw53W5tUpaNIeFhT-ElDUMDAvUXGFPtIku62ubgEU_y2sUT60mG5M0uPyBCi7sj1NoDE6LxdLcM5DBVJ-jJg1rjUT5rW7gDLbBhq3HXmPy_ftGyMa4wLrKr0U7N7bpf9N3B38392KdpPHdRS-tZnRD1eR0UUhXyluqrhLk-FJgExNb3qQao1YclhUVi342I-CDypC7Mhsr7YKlLmPceWbbkTphIeDu8pftUG5bwtyZFmyG4gpm-BV6wAYc2xtz27toYLd9jhfDa0Fki14-8QOyN2Ww85jsHX08mX_q5vmYGxvn7uacJMtWDw6v9LuwZxAAmKjm4il54pYj9MjS6BkZqeo5edwzqXxBbh2haI9Q1BGKGhApEooioeiOUNQQilpC0ZZQtEco2iMU7QhFgVB0RyjaEYr2CPWSfP1wcnF86rlWHl4eJvHak1GST2XAs0jGWsZMSaZEqH2l_HCWM3jiUmQClg4sZ5GWECQJIdE6LsvEVAgdviLjqq7Ua0KFn0WZhCFGs3wmRJTpyM9EzjW-Qsxjf58E7ZNOc-dzjw-nTNuCxqsU0UkRndSis08m3TFL6_Jy795RC2Dq4lQbf6bAt3uPO2zRTt2AsUqnYWgE6X588I-nfUMe7f5Jh2S8bjbqLXmYb9fFqnnnWPsL8yTOJg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+constrained+optimal+power+flow+with+renewables+using+hybrid+modified+imperialist+competitive+algorithm+and+sequential+quadratic+programming&rft.jtitle=Electric+power+systems+research&rft.au=Ben+Hmida%2C+Jalel&rft.au=Chambers%2C+Terrence&rft.au=Lee%2C+Jim&rft.date=2019-12-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=177&rft_id=info:doi/10.1016%2Fj.epsr.2019.105989&rft.externalDocID=S0378779619303086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon